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Summary

Recently there has been increased interest in modelling the association between aggregate dis-
ease counts and environmental exposures measured, for example via air pollution monitors, at
point locations. This paper has two aims: first we develop a model for such data in order to
avoid ecological bias; second we illustrate that modelling the exposure surface and estimating
exposures may lead to bias in estimation of health effects. Design issues are also briefly con-
sidered, in particular the loss of information in moving from individual to ecological data, and
the at-risk populations to consider in relation to the pollution monitor locations. The approach
is investigated initially through simulations, and is then applied to a study of the association
between mortality in the over 65’s in the year 2000, and the previous year’s SO2, in London. We
conclude that the use of the proposed model can provide valid inference, but the use of estimated
exposures should be carried out with great caution.

Some key words: Ecological fallacy, Environmental epidemiology, Exposure modelling, Quasi-likelihood,
Spatial Epidemiology.

1. Introduction

Recently a great deal of attention has been paid to the investigation of associations between
health outcomes and environmental exposures that may be measured in air, water or soil. Pop-
ulation and health data are often routinely available in ecological, that is group, form while
the exposure data typically consist of a set of values recorded at monitor sites, or via one-off
sampling. The exposure information is usually spatially sparse, which has recently lead to the
modelling of an exposure surface. We primarily consider models appropriate for point sampling of
environmental rather than behavioral exposures such as dietary, smoking and alcohol variables;
information on behavioral variables is obtained on individuals at specific residential locations,
often via surveys. The model we introduce in Section 3 may be used for behavioural exposures,
but the estimation of an exposure surface would not be of interest since behavioural variables do
not generally exhibit spatial structure. Exposures that are conducive to examination via ecolog-
ical designs and which are amenable to analysis with the model developed in this paper, include
chronic air pollution (for examples, see Table 7.2 of Pope and Dockery, 1996), water constituents
(e.g. Maheswaren et al., 1999), and soil contaminants (e.g. Elliott et al., 2000).
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2 J. Wakefield et al.

A number of authors have considered the modelling of exposure surfaces. Le et al. (1996) de-
velop theory based on a multivariate normal distribution to model air pollution variables; Gelfand
et al. (2001) use a Gaussian random field (GRF) model for the modelling of ozone; Tonellato
(2001) considers the modelling of carbon monoxide at multiple sites; and Shaddick and Wake-
field (2002) model the spatio-temporal variability of four pollutants in London. More recently
a number of authors have combined health data with modelled exposures. For example, Zidek
et al. (1998) extend the work of Le et al. (1996) to examine the association between daily hospital
admissions for respiratory disease and sulphate concentrations; Carlin et al. (1999) examine the
relationship between pediatric asthma emergency room visits and ozone, where the latter are
modelled using kriging within a GIS; and Zhu et al. (2003) extend this analysis by assuming the
ozone measures arise from a continuous, stationary spatial process whose parameters are esti-
mated using Bayesian methods. The above authors do not consider correcting for ecological bias;
assuming that associations observed at the level of the area hold for the individuals within the
areas can lead to the so-called ecological fallacy (Selvin, 1958). Ecological bias can manifest itself
in a variety of ways; the one that we concentrate on is pure specification bias, which arises under
aggregation of a non-linear model. The aims of this paper are two-fold. First, we develop a con-
volution model that avoids pure specification bias due to the use of an incorrect mean function.
Second, we illustrate the problems of the use of estimated exposures within a health model.

As an example of a study for which the methods of this paper are intended, we examine the
association between respiratory mortality in the year 2000 in the over 65s in inner London, and
the previous year’s SO2, measured in parts per billion (ppb). The latter is available as the yearly
average of (daily) values at each of 16 monitor sites, and is a concentration. A major problem
with such studies is that the density of exposure monitors is insufficient to fully characterise
the exposure surface for a complete geographical study region. To illustrate, population and
health data were extracted for all enumeration districts (EDs) whose centroids lie within 1km of
at least one of the monitor sites (an ED is a census-defined geographical area that contains on
average 400 individuals); 1km was chosen as this radius is sufficiently large to show the exposure
characterisation problems.

Table 1 reports summary statistics for the study; the populations are not integers since they
have been adjusted for undercount and migration (Simpson et al., 1996). Figure 1 shows the
locations of the 16 monitor sites. A plot of mortality risk versus SO2 (at the ecological level)
indicates no clear association. We emphasize that in this application we have observed mortality
and population information at each of the 1027 EDs whose centroids lie within 1km of a monitor,
but exposure is only measured at the 16 monitors.

The structure of this paper is as follows. In Section 2 we indicate a number of inadequacies
with previous approaches, and in Section 3 suggest a new model. In Section 4 we demonstrate
the use of this model on simulated data, and in Section 5 return to the motivating example.
Section 6 provides a concluding discussion.

2. Previous Approaches

Consider a study region A consisting of K sub-areas, Ak, for which population data, Nk,
and disease data, Yk, are available, k = 1, ···, K. We assume a univariate exposure and no
confounders. Exposure data xm are available from a set of pollution monitors within the study
region, at locations sm, m = 1, ···, M . A näıve ecological model is given by

Yk|xk,β? ∼ind Poisson{Nk exp(β?
0 + β?

1xk)} (1)
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Health-Exposure Modelling 3

Table 1. Summary statistics for the respiratory mortality study. The second column identifies

the monitor with the label on Figure 1.

Monitor Site Label Number of Number Population Incidence Yearly Mean

EDs of cases (over 65s) Rate ×103 SO2 (ppb)

Bromley 1 33 18 2365.0 7.61 0.90

Bexley 2 28 13 1847.2 7.04 2.83

Bloomsbury 3 84 20 3377.6 5.92 4.96

Brent 4 31 12 1494.5 8.03 1.64

London Bridge Place 5 102 46 5218.9 8.81 2.64

Cromwell Road 6 124 16 3808.0 4.20 4.38

Eltham 7 16 16 1615.9 9.90 2.06

Hillingdon 8 12 4 929.1 4.31 3.80

Lewisham 9 42 53 2688.7 19.7 2.94

Marylebone Road 10 100 16 4138.0 3.87 5.03

N. Kensington 11 99 40 4332.5 9.23 2.44

Southwark 12 87 43 5497.4 7.82 2.88

Teddington 13 23 24 1763.4 13.6 2.21

Southwark Roadside 14 57 35 3015.8 11.6 3.66

Sutton 15 42 43 2912.2 14.8 3.14

West London 16 147 28 4260.5 6.57 0.31

Totals/Means 1027 427 49264.6 9.94 2.86

where β? = (β?
0 , β?

1 ) and xk is the observed mean exposure within area k, k = 1, ···, K.
To illustrate the problems with (1) consider individual i in area k, let Yki denote a Bernoulli

disease indicator, and assume the individual-level model is

Yki|xki,β ∼ind Bernoulli{p(xki,β)}, (2)

for k = 1, ···, K, i = 1, ···, Nk. For a rare disease assume p(x,β) = exp(β0 + β1x) so that
β = (β0, β1). We emphasize that the individual-level parameter of interest is β1, while in (1),
β?

1 is the ecological association, and ecological bias will in general result in β1 6= β?
1 . The

characterization of ecological bias has seen a great deal of attention, see for example Richardson
et al. (1987), Piantadosi et al. (1988), Greenland and Morgenstern (1989), Greenland (1992),
Greenland and Robins (1994), Diggle and Elliott (1995), Plummer and Clayton (1996), Wakefield
and Salway (2001) and Wakefield (2003, 2004).

In the aggregate setting we do not know the individual responses, Yki, but rather the sum Yk.
Letting xk = (xk1, ···, xkNk

)T denote the collection of the exposures for the individuals of area k
we have

E[Yk|xk,β] = Nkqk,

where

qk =
eβ0

Nk

Nk∑

i=1

exp(β1xki), (3)
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4 J. Wakefield et al.
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Fig. 1. Locations of 16 pollution monitor sites in London, circles are of radius 1km. Health and population
data are from all ED’s whose centroids lie within 1km of any monitor. The names of the monitor sites
are given in Table 1.

is the average risk of the individuals in area k. If we know the collection xk but not the linkage
with individuals, then each of the Nk responses are Bernoulli with probability (3), but they are
not independent (since we are sampling without replacement from xk) and so Yk is not binomial
with parameters Nk and qk; we derive the appropriate likelihood in Section 3. An alternative
approach (related to block Kriging) is to model the exposure surface, x(s), for s ∈ A, form the
average

xk =

∫

Ak

x(s)fk(s) ds, (4)

where fk(s) represents the population density in area k at location s, and then substitute this
mean into (1). Such an approach leads to ecological bias since the risk function is evaluated
at the mean exposure, while (3) shows that we should calculate the mean of the risk functions.
Zhu et al. (2003), building on Gelfand et al. (2001), use such an approach within a Bayesian
hierarchical model.

Prentice and Sheppard (1995) propose an “aggregate data” method in which exposures xkj ,
j = 1, ···, mk ≤ Nk, are available on a subset of individuals, for further details of this approach
see Sheppard and Prentice (1995) and Guthrie and Sheppard (2001). An estimate of (3) is given

https://biostats.bepress.com/uwbiostat/paper272



Health-Exposure Modelling 5

by

q̂k =
eβ0

mk

mk∑

j=1

exp(β1xkj) (5)

which, together with the variance of Yk, allows an estimating equation for β to be constructed.
If mk < Nk then the estimating equation is biased, but Prentice and Sheppard (1995) obtain an
expression for this bias, and use this to provide an unbiased estimating equation.

A second approach (Richardson et al., 1987) assumes that pk(·|φk) is the distribution of
exposure in area k, with parameters φk, in which case the average risk is

eβ0

∫

x(s):s∈Ak

exp(β1x)pk(x|φk) dx, (6)

and the link with (3) is revealed if we replace fk(x|φk) by a discrete distribution on xk1, ···, xkNk
.

Pure specification bias occurs with the use of (1) because, unless the exposure is constant within
Ak, integrating a non-linear risk model leads to the model changing form. As an illustration, for
a normal within-area distribution, xki ∼iid N(xk, s2

k), so that φk = (xk, s2
k), (6) takes the form

exp(β0 + β1xk + β2
1s2

k/2) (7)

A plausible model that is amenable to analytic study (Wakefield, 2003) is to assume that s2
k =

a + bxk so that if b > 0 the variance increases with the mean, behaviour that is often observed
with environmental exposures (e.g. Ott, 1994). This choice leads to (7) taking the ecological form

exp(β0 + aβ2
1/2 + β1xk + bβ2

1xk/2), (8)

so that, in terms of the näıve ecological model (1) we have

β?
0 = β0 + aβ2

1/2, β?
1 = β1 + bβ2

1/2, (9)

illustrating that bias will result unless b = 0, that is unless the variance is independent of the
mean. It is clear in this case (and true more generally) that pure specification bias is small if
β1, and/or the within-area variabilities in exposure, are close to zero. Hence, for example, we
may conclude that in the study of Zhu et al. (2003) pure specification bias will be small since
the study areas are zip-codes and the main exposure contrasts are temporal rather than spatial.
In such a context modelling an exposure surface is likely to give small benefits, and may even be
detrimental, as we show in Section 4.2.

3. A Convolution Model

3.1. Model Development

The likelihood, under the assumptions of Section 2 and when all individual-level exposures are
available, is the convolution

Pr(Yk = yk|xk) =
∑

y
k
∈Cyk

Nk∏

i=1

Pr(Yki = yki|xki) =
∑

y
k
∈Cyk

Nk∏

i=1

pyki

ki (1 − pki)
1−yki (10)

where yk = (yk1, ···, ykNk
)T, pki = p(xki) is the risk model evaluated at xki, and Cyk

is the

set containing the
(
Nk

yk

)
ways of assigning Yk cases to Nk individuals. In general (10) will be

Hosted by The Berkeley Electronic Press



6 J. Wakefield et al.

computationally expensive to enumerate (since Nk is typically large), but in the case of a rare
event each of the Bernoulli random variables may be approximated by a Poisson random variable,
and with the log-linear risk model pki = eβ0+β1xki we obtain the convolution model

Yk|xk ∼ind Poisson

{
eβ0

Nk∑

i=1

exp(β1xki)

}
(11)

This distribution should still be viewed as group-level because we have individual-level exposures,
but only aggregate disease counts and there is no linkage between individual-level outcomes and
exposures. However, the use of this model removes pure specification bias.

Usually the full exposure information xki, i = 1, ···, Nk, will be unavailable. Suppose, however,
that mk exposures, xkj , are measured at locations skj , j = 1, ···, mk. One possible use of this
information is to allocate Nkj individuals to measurement xkj . For example, suppose we have
populations Nkj within ED j contained within region k, and exposures, xkj at ED centroids, skj ,
but disease counts, Yk, at a coarser geographical scale (for example the monitor regions in the
motivating example), we may then allocate ED population Nkj to exposure xkj . One may then
replace (11) with

Yk|xk ∼ind Poisson




eβ0

mk∑

j=1

Nkj exp(β1xkj)




 (12)

If we take Nkj = Nk/mk, so that we divide the population equally, then

Yk|xk ∼ind Poisson




Nk × eβ0

mk

mk∑

j=1

exp(β1xkj)




 (13)

Comparison with (5) reveals we have a parametric version of the aggregate method of Prentice
and Sheppard (1995). If mk < Nkj then this model is susceptible to ecological bias, and explains
the finite-correction bias suggested for the aggregate method. The key to minimising ecological
bias is to have a fine enough partition of space at which exposure measurements are available,
relative to the spatial exposure variability.

3.2. Inference with Known Exposures

Inference for the convolution model (12), with the exposures xkj known, is easily carried out
via likelihood, with the extension to quasi-likelihood being immediate. The Poisson log-likelihood
corresponding to (12) is not a generalised linear model since we do not have a linear predictor,
but may be maximised with respect to β0 in closed form to give the profile log-likelihood for β1:

lp(β1) = −y+ log




K∑

k=1

mk∑

j=1

Nkj exp{β1xkj}



+
K∑

k=1

yk log




mk∑

j=1

Nkj exp{β1xkj}



 ,

which is straightforward to maximise.
In most ecological studies, the sample sizes are large and asymptotic inference is likely to be

accurate, at least for simple models. For the convolution model (12) the expected information is
given by

IC(β) =




∑K

k=1

∑mk

j=1 Nkjpkj

∑K
k=1

∑mk

j=1 Nkjxkipkj

∑K
k=1

∑mk

j=1 Nkjxkipkj

∑K
k=1

(∑mk

j=1 Nkjxkjpkj

)2

/
∑mk

j=1 Nkjpkj



 , (14)

https://biostats.bepress.com/uwbiostat/paper272



Health-Exposure Modelling 7

where pkj = exp(β0+β1xkj). Quasi-likelihood is based on assuming that var(Yk|β) = κ×E[Yk|β]
with cov(Yk, Yk′ ) = 0 for k 6= k′. Point estimates are the same as under maximum likelihood,
and standard errors are multiplied by

√
κ̂, using the method-of-moments estimator

κ̂ =
1

K − 2

K∑

k=1

(yk − µ̂k)2

µ̂k
,

with µ̂k =
∑mk

j=1 Nkj exp(β̂0 + β̂1xkj) (McCullagh and Nelder, 1989). If the variance is propor-
tional to the mean, and the data are independent, the asymptotic distribution of the estimator
for β, as m+ =

∑K
k=1 mk → ∞, is given by

IC(β)1/2(β̂m+
− β) →d N(0, κI2)

Quasi-likelihood is appealing since it is straightforward to implement and provides a consistent
estimator so long as the first two moments are correctly specified. If residual spatial dependence
is present then a more complex approach is required; in this case random effects models are
appealing, and computation via Markov chain Monte Carlo (MCMC) is convenient. Section 6
gives brief details of a model that allows for residual spatial dependence.

3.3. Information Considerations

The loss of information in moving from individual to aggregate data may be quantified via
examination of the respective information matrices. For individual-level Poisson data

Yki|xki ∼ind Poisson(pki) (15)

where pki = exp(β0 + β1xki), and

II(β) =

[ ∑K
k=1

∑Nk

i=1 pki

∑K
k=1

∑Nk

i=1 xkipki∑K
k=1

∑Nk

i=1 xkipki

∑K
k=1

∑Nk

i=1 x2
kipki

]
(16)

For direct comparison between (14) and (16) we take mk = Nk so that Nkj = 1. The element

IC
22, that represents the information for the parameter of interest β1, may be written as

K∑

k=1




Nk∑

i=1

x2
kipki −





1

∑Nk

i=1 pki




(

Nk∑

i=1

x2
kipki

)(
Nk∑

i=1

pki

)
−
(

Nk∑

i=1

xkipki

)2













so that the term within curly brackets represents the loss of information associated with the
convolution; this term is zero if there is no within-area variability in exposure, and increases as
the within-area variability increases.

We now present a simple example to illustrate the loss of information in moving from individual
to ecological outcomes. Specifically we examine the asymptotic efficiency in using the convolution
model (11) relative to the individual model (15). We assume there are Nk = 400 individuals in
each of K = 1000 areas, so that we have roughly the same number of areas and the same
population sizes as in the motivating study. Within-area exposures are assumed normal with
xk = 2 + 3 × (k − 1)/(K − 1) and s2

k = b × xk, k = 1, ···, K. Table 2 reports the efficiencies
for a number of values of β0, β1 and b. We also give the ratio of the between-area variability
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8 J. Wakefield et al.

in exposure to the sum of the within- and the between-area variability; an ecological study is
likely to be carried out when this ratio is large since between-area variability in exposure is being
exploited. The final column gives the bias of the ecological model, E[β̂?

1 ] − β1 = bβ2
1/2; we see

overestimation in this situation in which the exposure variance increases with the mean. Line
1 of the table has a weak mean-variance relationship and a relative risk close to 1, and hence
the bias is small; the variance of the convolution estimator is increased by 47% relative to the
individual estimator. In other cases, the variance of the convolution estimator is 2.03–2.66 times
greater than the variance of the individual estimator.

Table 2. Comparison of information in different designs.

“Between” refers to the between-area variability in exposure

means, that is, var(xk), and “Total” the sum of the between

and the average within-area variability E[s2
k]; varC(β̂1) and

varI(β̂1) are the asymptotic variances of β̂1 under the con-

volution and individual models

Exposure Ratio Bias of
b

Between/Total
β0 β1

varC (bβ1)

varI(bβ1) Ecological

0.1 0.68 -5 log 1·2 1.47 0.002

0.2 0.52 -9 log 2 2.03 0.05

0.2 0.52 -10 log 3 2.27 0.12

0.3 0.42 -9 log 2 2.38 0.07

0.3 0.42 -10 log 3 2.66 0.18

3.4. Inference with Estimated Exposures

We now consider the situation in which the exposures, xkj , in model (12) are unknown.
Estimation of these exposures, based on monitored exposures xm, at locations sm, m = 1, ···, M ,
may be carried out if an appropriate exposure model is available to interpolate across the study
region. We take a Bayesian approach to modelling with unknown exposures, which is convenient
to reveal the implications of a number of approximations.

Denote by yK = (y1, ···, yK)T the vector of observed disease counts, xK = (x1, ···,xK)T, with
xk = (xk1, ···, xkmk

)T, k = 1, ···, K, the set of unknown exposures, and xM = (x1, ···, xM )T the
set of observed exposures. Adopting a Bayesian approach to inference, and exploiting conditional
independencies, the joint posterior, over the unknown parameters and exposures, is given by

p(β,xK |yK ,xM )p(yK ,xM ) = p(β|xK ,yK)p(xK |xM )· (17)

The posterior for β is given by

p(β|xK ,yK) ∝
K∏

k=1

p(yk|β,xk)p(β)

where the predictive distribution p(xK |xM ) may be obtained by assuming a parametric form. We
illustrate by assuming a GRF model for the log exposures. Letting ψx represent the parameters

https://biostats.bepress.com/uwbiostat/paper272



Health-Exposure Modelling 9

of this model the predictive distribution in (17) is given by

p(xK |xM ) =

∫ K∏

k=1

p(xk|ψx)p(ψx|xM ) dψx, (18)

where

p(ψx|xM ) ∝
M∏

m=1

p(xm|ψx)p(ψx)· (19)

Under a GRF model, each of the distributions p(x|ψx) in (18) is multivariate lognormal. Since
xK is present in both terms on the right hand side of (17) a fully Bayesian approach would re-
quire simultaneous estimation of the health and exposure parameters. This has the advantage of
allowing feedback between the health and exposure models, but the disadvantage that implemen-
tation, via MCMC, is computationally expensive since the dimension of the estimated exposure
vector (

∑K
k=1 mk) is high. We discuss two approximations that ease this computational burden.

An approximation that cuts the link between the two components of (17) (the health and
exposure models) takes an estimate x̂k, and then substitutes this into the likelihood to give
p(yk|β, x̂k); this allows separate computation of the exposure and health models, but is danger-
ous since the errors-in-variables aspect of using an estimated exposure is not acknowledged. A
more sophisticated approach that still allows separate computation but acknowledges the uncer-
tainty in x̂k, is to approximate the predictive distribution. More precisely we may assume the
three-stage model:

Stage 1, Health Model:

Yk|xk,β ∼ind Poisson

{
eβ0

Nk∑

i=1

exp(β1xki)

}
, k = 1, ···, K

Stage 2, Exposure Model:

Let zkj = log xkj and zK = (z1, ···, zK)T, with zk = (zk1, ···, zkmk
)T, k = 1, ···, K. If we ignore

the uncertainty in the posterior for ψx

p(xk|xM ) ≈ p(xk|ψ̂x), (20)

with ψ̂x taken (for example) to be the posterior median, then

zK |µ̂, Σ̂ ∼ N(µ̂, Σ̂) (21)

where the estimated mean and covariance are functions of ψ̂x. We could also incorporate the
uncertainty in the posterior, use

µ̂ = E[zkj |xM ], Σ̂ = cov(zkj |xM ),

and replace the normal form in (21) with a Student’s t distribution, bringing this stage of the
model close to that of Zidek et al. (1998). Although the distribution given by (21) is high dimen-
sional, the moments can be determined in an initial analysis, greatly reducing the computational
burden. Note that (21) represents a Berkson error model with heteroscedastic errors.

Stage 3, Prior Distributions: Specify priors for β and ψ.

Hosted by The Berkeley Electronic Press



10 J. Wakefield et al.

4. Simulation Study

We now describe a simulation study with two aims. The first is to investigate the use of the
convolution model (12), the second is to assess the impact of estimated, rather than known,
exposures in the health model. The location and observed exposures from the air pollution
monitors, and the ED locations and populations at risk, are based on the London study described
in Section 1.

The overall structure of the simulation is as follows. We fit a GRF model to the 16 observed
monitor exposures and then, based on the estimated parameters, we simulate 1027 exposures at
each of the study ED centroids, and also at the 16 monitor sites. In Section 4.1 the 1027 values are
taken as the known exposures, and we compare the individual, convolution and ecological models.
In Section 4.2 we fit a GRF to the 16 simulated monitor values, and then obtain predictions at
each of the 1027 ED centroids, in order to investigate the use of estimated exposures. We would
expect the measured exposure to be most appropriate for those individuals living close to a
monitor, and so we consider different designs in which the study population consist of individuals
lying within 0·1 × r km of each of the 16 pollution monitors, for r = 2, ···, 10.

Letting xm denote the measured SO2 at monitor m, we take log xm, m = 1, ···, 16 as arising
from an isotropic GRF model with mean µx, and covariance function of observations at locations
s and s′, σ2

x exp(−φx|s′−s′|), so that ψx = (µx, σ2
x, φx). We used the GeoBUGS software (Thomas

et al. 2000) to fit a GRF model with priors taken as: µx improper uniform, σ−2
x ∼ Ga(0·01, 0·001)

and φx ∼ U(0·12, 1·15). The gamma prior is quite flat, while the prior for φx allows both very
weak and very strong spatial dependence, relative to the study geography/monitor configuration,
see Thomas et al. (2000) for more details. We obtained posterior median estimates of µ̂x =

0·69, σ̂x = 0·71 and φ̂x = 0·84.

4.1. Known Exposures

We simulated disease counts for each ED, based on a log-linear Poisson model with a relative
risk of 2. We report a single simulation only, but set β0 = −5·5 which gives sufficient cases for
a repeat simulation to give very similar results. Three models were fitted: the individual model,
(15), with 1027 pairs (Ykj , xkj), j = 1, ···, mk, the ecological model, (1), with 16 pairs (Yk, xk),
and the convolution model (12) with 16 counts Yk, and the 1027 exposures xkj , with Nkj being
taken as the true ED populations, j = 1, ···, mk, k = 1, ···, 16.

Table 3 summarises the results over different study radii. For radii greater than 200m we see
unbiased estimation for the individual and convolution models, while the ecological model under-
estimates β1. The individual and convolution model estimates are similar, with larger standard
errors for the latter, reflecting the loss in information when there is no linkage between outcome
and exposure (as we saw in Section 3.3). In the limit (mk = 1, with a single exposure, for K = 16
areas) the three models would provide identical inference. The inaccuracy of estimation for a
radius of 200m is due to sampling variability (there are only 50 cases). Figure 2 shows individual,
ecological and convolution profile log likelihoods for β1. The loss in information in moving from
the individual to the convolution designs is clear, as is the bias in the ecological estimator, which
reduces as the study region diminishes in size (though sampling variability dominates at 200m).
The quadratic shape of the log-likelihoods indicates that asymptotic inference via quasi-likelihood
is accurate.

For the individual model κ̂ ≈ 1, while for the convolution model it is slightly larger than
unity. The estimated overdispersion is much larger for the ecological model, reflecting model
misspecification: the ecological responses do not follow the Poisson model, (1).
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Fig. 2. Profile log-likelihoods for simulated data with known exposures. The solid, dashed and dotted
lines correspond to individual, ecological and convolution models, respectively. The solid vertical line on
each plot represents the true value of β1.

4.2. Estimated Exposures

In this section we repeat the fitting of the individual and convolution models, but now use
estimated exposures. The simulated exposure data at the 16 monitors were analysed with a GRF
model, resulting in the estimates µ̂x = 0·61, σ̂x = 0·69 and φ̂x = 0·85. We obtained predictions at
each of the 1027 ED centroids to give our estimated exposures. The first approximation described
in Section 3.4 was used for inference.

Table 4 gives the results; the ecological model results are identical to the previous section but
are included for completeness. Figure 3 shows individual, ecological and convolution profile log
likelihoods for β1. The horizontal axes are the same as in Figure 2, but the vertical axes differ.

Both the individual and convolution models produce β̂1 with positive bias because the 16
observed exposures are not sufficient to characterise the exposure surface. This is illustrated
in Figure 4 in which the known exposures are plotted versus distance from the closest monitor
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12 J. Wakefield et al.

Table 3. Simulated data with known exposures: estimation for different study radii and different models;

the true value of the log relative risk, β1, is log 2 = 0·69.

Radii No. of Popn. No. of Individual Model Ecological Model Convolution Model

(km) EDs size cases bβ1 s.e.(bβ1) bκ bβ1 s.e.(bβ1) bκ bβ1 s.e.(bβ1) bκ

1.0 1027 49264.6 1674 0.67 0.010 1.0 0.46 0.098 55.8 0.68 0.014 1.3

0.9 847 40141.2 1362 0.66 0.012 1.0 0.46 0.083 32.5 0.67 0.017 1.4

0.8 682 32274.7 1071 0.67 0.016 1.0 0.44 0.070 18.1 0.68 0.020 1.1

0.7 519 24524.8 816 0.67 0.019 1.0 0.48 0.060 10.5 0.68 0.022 0.98

0.6 381 18145.9 619 0.66 0.022 1.1 0.52 0.053 5.9 0.67 0.028 1.3

0.5 265 12503.4 396 0.68 0.027 1.1 0.55 0.054 3.9 0.69 0.024 0.63

0.4 169 8067.9 215 0.70 0.032 0.99 0.61 0.063 2.9 0.71 0.033 0.89

0.3 96 4863.0 114 0.64 0.047 1.0 0.63 0.063 1.4 0.64 0.053 1.2

0.2 40 2135.8 50 0.59 0.099 0.88 0.46 0.069 0.65 0.59 0.090 0.68

for two representative sites on the top row, with the estimated exposures on the bottom row.
The modelled exposures for London Bridge Place are determined not only by the concentration
measured at that site (2.64 ppb) and the overall mean (2.86 ppb), but are increased due to the
high exposure measured at Cromwell Road (4.38 ppb), which is only 2.5 km away (sites 5 and
6 on Figure 1). We see that the estimated exposures do not reflect the variability of the true
exposures, and exhibit the well-known attenuation to the overall mean of these shrinkage-type
estimators. This attenuation results in a narrowing of the estimated exposure range as compared
to the true exposure range, resulting in overestimation of the regression coefficient.

For radii of 300m–500m the ecological analysis actually provides more accurate estimation
than the individual and convolution models, since it is based on known exposures, albeit at just
16 points. Hence it may actually be detrimental to model the exposure surface. The very large
values of κ̂ indicate the difficulties in estimation of the exposures (though in practice one would
not know whether this overdispersion was due to other problems such as missing confounders,
and/or mis-recording of population/health counts).

Analyses using the three-stage model of Section 3.4 are not reported. The results were poor
because the simple errors-in-variables model (21) cannot correct for the attenuation problems
discussed above. Future research will examine when the three-stage model provides accurate
inference, in particular as a function of the spatial density of monitor information, relative to the
exposure variability.

5. Mortality and SO2 in London

We now return to the example introduced in Section 1. We carried out a number of simulations,
similar to those of the previous section, but found that for the observed number of cases the results
were highly variable; hence we conclude that the observable exposure data are not sufficient
to reliably estimate the association in this study. We carried out individual, ecological and
convolution analyses, as in Section 4.2, but do not include the results since they are dominated
by sampling variability. If there were more cases then we might hope to see some correspondence
between ecological and convolution analyses, at least for small radii. There is no benefit in using
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Fig. 3. Profile log-likelihoods for simulated data with estimated exposures. The solid, dashed and dotted
lines correspond to individual, ecological and convolution models, respectively. The solid vertical line on
each plot represents the true value of β1.

a simple errors-in-variables approach to correct for the estimated exposures, since the pollution
monitors are too sparsely located (relative to the spatial variability in exposure) to give reliable
estimation of the log SO2 surface.

The analyses we carried out were based on assuming that all populations are located at their
population ED centroids, and is therefore susceptible to ecological bias. Postcode centroids,
which are far more dense geographically, were available, but we decided that refinement of the
analysis to use this information was not merited, given that the exposure surface is so poorly
estimated.
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14 J. Wakefield et al.

Table 4. Simulated data with estimated exposures: estimation for different study radii and different

models; the true value of the log relative risk, β1, is log 2 = 0·69.

Radii No. of Popn. No. of Individual Model Ecological Model Convolution Model

(km) EDs size cases bβ1 s.e.(bβ1) bκ bβ1 s.e.(bβ1) bκ bβ1 s.e.(bβ1) bκ

1.0 1027 49264.6 1674 1.04 0.069 6.5 0.46 0.098 55.8 1.19 0.16 28.6

0.9 847 40141.2 1362 0.99 0.058 4.0 0.46 0.083 32.5 1.09 0.13 16.6

0.8 682 32274.7 1071 0.93 0.051 2.6 0.44 0.070 18.1 0.99 0.10 8.8

0.7 519 24524.8 816 0.91 0.051 2.2 0.48 0.061 10.5 0.97 0.087 5.7

0.6 381 18145.9 619 0.90 0.057 2.2 0.52 0.053 5.9 0.96 0.077 3.7

0.5 265 12503.4 396 0.88 0.068 2.3 0.55 0.054 3.9 0.92 0.083 3.2

0.4 169 8067.9 215 0.90 0.087 2.4 0.61 0.063 2.9 0.93 0.092 2.6

0.3 96 4863.0 114 0.85 0.086 1.4 0.63 0.063 1.4 0.85 0.089 1.5

0.2 40 2135.8 50 0.59 0.11 0.91 0.46 0.069 0.65 0.59 0.092 0.67

6. Discussion

In this paper we have considered the common spatial epidemiological situation in which aggre-
gate disease and population counts are available, along with exposure measures at a set of monitor
sites. We have illustrated that a näıve ecological regression is subject to pure specification bias,
but have developed a convolution model that is not subject to bias, so long as accurate within-
area exposure measures are available. A second conclusion is that estimated exposures should be
used with caution, since simple measurement error models cannot adjust for bias resulting from
estimates based on sparse monitor information. Some applications use a more complex exposure
model, based on geographic and atmospheric variables for example (e.g. Briggs et al., 1997), but
the general point is that the predictions still need to be accurate.

The convolution model was derived with no confounding variables. We now describe a model
in which we jointly estimate confounder and exposure effects. At the level of the individual let
Ykci be the disease indicator of individual i in confounder stratum c and area k and assume

Ykci|xkci,β,γ ∼ Bernoulli{exp(β0 + β1xkci + γc)},

for k = 1, ···, K, c = 1, ···, C, i = 1, ···, Nkc. Usually the numbers of individuals and cases within
each confounder stratum by area, Nkc and Ykc, will be known. Aggregating over individuals
within confounder stratum, and assuming a rare disease, gives

Ykc|xkc,β,γ ∼ind Poisson

{
eβ0+γc

Nkc∑

i=1

exp(β1xkci)

}

where xkc = (xkc1, ···, xkcNk
). Suppose now that we have exposure measurements xkcj by con-

founder stratum, j = 1, ···, mk, at mk locations within area k. Then

Ykc|xkc,β,γ ∼ind Poisson




eβ0+γc

mk∑

j=1

Nkcj exp(β1xkcj)




 ,

where xkc = (xkc1, ···, xkcmk
) and we take Nkcj as the confounder-defined populations in sub-

area (e.g. ED) j. If we assume that individuals in the same sub-area are subject to the same
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Fig. 4. Known (top row) and estimated (bottom row) log SO2 versus distance from monitor for simulated
data, for the Bromley and London Bridge Place monitors. On each plot the dotted line represents the
overall mean of the fitted GRF surface, and the solid line corresponds to the value of the log exposure
at the monitor (located at at a distance of 0km).

exposure xk = (xk1, ···,xkmk
) regardless of confounder group, which means that we do not have

a within-area confounder, then we obtain

Ykc|xk,β,γ ∼ind Poisson




eβ0+γc

mk∑

j=1

Nkcj exp(β1xkj)




 · (22)

The assumption that the exposure distribution is the same across potential confounder stratum
within areas is clearly crucial, and will need to be critically assessed in any application. For
example, gender may be less related to exposure than age is, since different age groups may have
very different time activities and therefore exposure profiles.

We have concentrated upon inference via quasi-likelihood, but an obvious extension is to
include random effects which allow for unmeasured variables with spatial structure. Clayton
et al. (1993) used the model of Besag et al. (1991) in an ecological regression context, but did
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not allow for within-area variability in exposure. We extend (2) to the form

Yki|xki,β, Uk, Vk ∼ind Bernoulli{exp(β0 + β1xki + Uk + Vk)}, (23)

where Uk and Vk represent random effects with and without spatial structure, retrospectively, in
area k. Under aggregation model (23) takes the form

Yk|β,xk, Uk, Vk ∼ Poisson




eβ0+Uk+Vk

mk∑

j=1

Nkj exp(β1xkj)




 · (24)

The inclusion of random effects cannot control for general confounding. Clayton et al. (1993)
argue that spatial random effects can account for “confounding by location”, though this is
difficult in practice since regression estimates can be sensitive to the particular spatial model
used. More appropriate standard errors than under an assumption of independent outcomes. If
there is evidence of residual spatial dependence then we would recommend carrying out sensitivity
analyses under a range of scenarios, including models that do and do not acknowledge spatial
dependence.

Model (11), with some modification, also allows computation for the disease mapping model of
Kelsall and Wakefield (2002) to be carried out without recourse to approximation. For a related
approach, see Follestad and Rue (2003).

A difficult yet crucial issue in any analysis that uses spatially-referenced exposure data is
whether to model the exposure surface. As an aid to making this decision, we would recommend
following the procedure described in Section 4. Specifically, one may fit a model to the monitor
exposure data, and simulate new monitor and population location exposure data using the fitted
model; the differences between known and estimated values can then be examined, to gain insight
into whether an exposure modelling strategy is likely to be successful. The study design will often
inform the need to model the exposure surface.

An interesting design question is the determination of which populations to study in relation to
the location of the pollution monitors. This choice represents the classic mean-variance trade-off;
populations close to a monitor have accurate exposure assessment but are small in size, while
examining larger populations gives an increase in power but results in less accurate exposure
estimates. One way of increasing power is to have a dense monitoring network, where dense is
relative to both the spatial variability in exposure and to the population distribution. If the
exposure surface is relatively flat, only a sparse network is required, but in this case a spatial
study will have low power due to narrow exposure contrasts. In studies of the acute effects of air
pollution temporal contrasts provide the greatest exposure information, which suggests that in
such a study, modelling spatial variability in exposure will not be worthwhile.

Acknowledgements

The data analysed in Section 5 were supplied by the Small Area Health Statistics Unit, a
unit that is funded by a grant from the Department of Health; Department of the Environment,
Food and Rural Affairs; Environment Agency; Health and Safety Executive; Scottish Executive;
National Assembly for Wales; and Northern Ireland Assembly. This work of the first author
was supported by grant R01 CA095994 from the National Institutes of Health. The focus of the
article was greatly helped by the constructive comments of the editor and two referees.

https://biostats.bepress.com/uwbiostat/paper272



Health-Exposure Modelling 17

References
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