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Abstract

Modern cancer treatments have substantially improved cure rates and have

generated a great interest in and need for proper statistical tools to analyze

survival data with non-negligible cure fractions. Data with cure fractions are

often complicated by dependent censoring, and the analysis of this type of

data typically involves untestable parametric assumptions on the dependence

of the censoring mechanism and the true survival times. Motivated by the

analysis of prostate cancer survival trends, we propose a class of semiparametric

transformation cure models that allows for dependent censoring without making

parametric assumptions on the dependence relationship. The proposed class

of models encompasses a number of common models for the latency survival

function, including the proportional hazards model and the proportional odds

model, and also allows for time-dependent covariates. An inverse censoring

probability reweighting scheme is used to derive unbiased estimating equations.

We validate small sample properties with simulations and demonstrate the

method with a data application.

Keywords: Estimating equation, proportional hazards model, proportional odds

model, right censoring, transformation model.

1. Introduction

Survival models incorporating a cure fraction are an important statistical tool for

analyzing cancer survival data. Research for many cancer types, including prostate

and breast cancer, non-Hodgkin’s lymphoma, leukemia, melanoma, and head and

neck cancer, has shown that a significant proportion of patients with these cancers

are cured after therapy; that is, an individual will have little or no risk of experiencing

the event of interest, e.g. breast cancer, after treatment. Cure survival models are
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often developed assuming the study population is a mixture of cured and not cured

subjects (Berkson and Gage 1952; Farewell 1982; Kuk and Chen 1992; Peng and

Dear 2000; Sy and Taylor 2000). Recently, Lu and Ying (2004) used the mixture

formulation to extend a class of semiparametric transformation models proposed by

Cheng, Wie, and Ying (1995) to incorporate cure fractions. An alternative to the

mixture cure formulation is the promotion cure model, which is popular for Bayesian

cure survival analysis and has an attractive biological interpretation (Chen, Ibrahim,

and Sinha 1999; Tsodikov, Ibrahim, and Yakovlev 2003). The promotion cure model

has one covariate function that describes both the survival and cure components.

In contrast, the two components of the mixture cure model can depend on different

parameters, allowing for separate covariate interpretations for the cure function and

for the survival function for those who are not cured.

A key assumption made in the literature is independence between the survival

time and the censoring time, but such an assumption is often violated in observa-

tional studies. For example, in our motivating study a non-negligible number of

patients diagnosed with prostate cancer were found to have died from cardiovascular

disease. Research has shown that prostate cancer and heart disease share high fat diet

as a common risk factor (Wilson et al. 1998; Strom et al. 2008). Therefore, assuming

independence between the main end point (death from prostate cancer) and censor-

ing causes (e.g. death from heart disease) is problematic. Dependent censoring will

often hamper statistical analysis since classical models will not be valid, and ignoring

dependent censoring will typically introduce bias (Li, Tiwari, and Guha 2007). To

account for this, Li et al. (2007) developed a cure model in the presence of dependent

censoring, but their model requires a priori assumptions on the dependence structure

and does not allow for covariates.

In this project, we propose a semiparametric transformation model which allows
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for covariates as well as dependent censoring. The key idea is to use an inverse

censoring probability reweighting scheme to derive unbiased estimating equations

that account for dependent censoring. In this manner, we are able to avoid making

parametric assumptions about the dependence structure between the survival time

and the censoring time. It is also worth noting that our proposed model, which

accommodates time-dependent covariates, is more general than that proposed by Lu

and Ying (2004), which only allows for time-independent covariates.

Broadly speaking, this project advances the field in three distinct ways. First, the

proposed methods can be used to investigate trends in Surveillance Epidemiology and

End Results (SEER) cancer survival data (www.seer.cancer.gov); a number of cancer

sites in the SEER database may indicate cure patterns, including prostate, colon, and

ovarian cancer (Tai et al. 2005). Second, survival studies with cure fractions are sub-

ject to heavy censoring that is likely to violate the traditional independent censoring

assumption. This project addresses the problem by developing methods that can ac-

commodate dependent censoring, and by providing procedures for model diagnostics

and techniques for statistical inference. The proposed estimation procedure success-

fully avoids parametric assumptions on the joint distribution of the censoring and

true failure times, which have caused difficulties in the study of dependent censoring

in the existing literature. Finally, the theoretical proofs developed in this project

provide an original application of empirical process theory and functional analysis

techniques, which will be valuable for semiparametric estimation.

The rest of the paper is stuctured as follows: in Section 2 we define notation and

set up the survival model. In Section 3 we define the weight function. Section 4 uses

the results of Sections 2 and 3 to define estimating equations and provides theoretical

results. Section 5 summarizes a computational algorithm and a weighted bootstrap

method for inference procedures on the estimating equations. Section 6 provides
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a model checking procedure. In Section 7 we present simulation results and data

analysis findings. Section 8 contains a short discussion. Sketches of proofs of theorems

are contained in the Appendix.

2. A Class of Semiparametric Models

Denote the failure time for a patient by T , which is assumed to have the decomposition

T = ηT ∗ +(1−η)∞, where η ∈ {0, 1} indicates whether the sampled subject is cured

(η = 0) or not (η = 1), and T ∗, with support on [0,∞), denotes the failure time if

the patient is not cured. Let C denote the censoring time, X a κ length vector of

covariates related to the cure indicator η, which includes 1, and Z(·) a ξ length vector

of external time-dependent covariates related to T ∗ that may share time-independent

components with X. Define T̃ = min(T, C), ∆ = I(T ≤ C), a counting process

related to the survival progress N(t) = I(T̃ ≤ t, ∆ = 1), and the at-risk process

Y (t) = I(T̃ ≥ t). In practice, we observe (T̃i, ∆i,Zi(·),Xi), for i = 1, . . . , n, which

are independent and identically distributed copies of (T̃ , ∆,Z(·),X). To ensure that

we have unbiased estimates for our parameters we assume that the support of the

censoring time is not shorter than the support of the failure time (Fine, Ying, and

Wei 1998; Fine 1999).

Using the above notation, we can define a model for T . Following Farewell (1982),

we use a logistic model for the cure indicator η:

P (η = 1|X,Z) = G(γ ′X), (1)

where G(x) = exp(x)/(1 + exp(x)). Among patients who are not cured, we assume

that given the covariate path Z̄(t) = {Z(u), u ≤ t}, T ∗ possesses the following survival
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function:

Sg(t; Z̄(t)) = g
{

∫ t

0

exp(β′Z(u)) dH(u)
}

, (2)

where H is a fixed but unspecified nondecreasing function with H(0) = 0, and

g is a known continuous and strictly decreasing function such that g(0) = 1 and

limt→∞ g(t) = 0. This model has been considered in Kosorok and Song (2007) and

Zeng and Lin (2007). Zeng and Lin (2007) suggested extending their model to cure

applications in future research; in contrast to our proposal, their work assumed con-

ditional independence between T and C. The survival function for the noncured

subjects, Sg(·), is commonly referred to as the latency survival function. The for-

mulation of (2) is comprehensive: when g(x) = 1/(1 + x) the resulting model is

a time-dependent construction of the proportional odds model (Bennett 1983), and

when g(x) = exp(−x) the model reduces to the time-dependent proportional hazards

model (Cox 1972).

Combining (1) and (2), we can describe the survival function for T as

P (T ≥ t|Z̄(t),X) = g
{

∫ t

0

exp(β′Z(u)) dH(u)
}

G(γ ′X) + Ḡ(γ ′X), (3)

where Ḡ(x) = 1 − G(x). Let W(·) denote the external time-dependent covariate

process associated with censoring and let W̄(t) = {W(u), u ≤ t} denote the co-

variate path associated with W(·). We assume that P (T ≥ t|Z̄(t),X) = P (T ≥

t|Z̄(t),X,W̄(t)), i.e. that W̄(t) does not contain any extra information for T beyond

what is already in Z̄(t) and X.

3. A Reweighting Scheme for Dependent Censoring

We wish to make minimal assumptions on the dependence between T and C, and so

it will not be feasible to construct likelihood-based inference procedures. Instead, we
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will derive unbiased estimating equations for β, the parameter associated with the

latency survival function, and γ, the parameter associated with the cure function. To

this end, we first define some notation related to the censoring process. Define the

crude hazard for censoring as

λc(t|W̄(t)) = lim
dt→0

(dt)−1P (C ∈ (t, t + dt), ∆ = 0|T̃ ≥ t,W̄(t)) (4)

which can also be regarded as a cause specific hazard. Conveniently, (4) can be esti-

mated with observed data even when T and C are dependent (Fleming and Harrington

1991, Theorem 1.3.1).

We make the following assumption on the crude hazard for censoring:

λc(t|W̄(t), T, T > t) = λc(t|W̄(t), T > t).

This assumption implies that, conditional on the covariate process W̄(t), the crude

hazard for censoring at time t does not further depend on the possibly unobserved

failure time. This assumption has been described as “no unmeasured confounders

for censoring” and the assumption would fail if a covariate related to both T and C

were not included in W̄(t) (Robins and Finkelstein 2000). This assumption has been

well discussed for semiparametric survival problems in the literature with examples

and information on how to select covariates for W̄(t) (Robins 1992; Robins and

Rotnitzky 1992; Robins 1993; Rotnitzky and Robins 1995; Robins and Finkelstein

2000; Rotnitzky and Robins 2003; Miloslavsky, Keles, Laan, and Butler 2004).

Flexible models on λc(t|W̄(t)) can be considered. For example, if αE is the

6
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parameter vector associated with W(·), we could write the crude hazard function as

λc(t|W̄(t)) = λ0(t) exp(α′
EW(t)), (5)

where λ0(t) is left unspecified.

Let Λc(t|W̄(t)) =
∫ t

0
λc(u|W̄(u)) du and K(t|W̄(t)) =

∏

u≤t(1 − dΛc(u|W̄(u))).

Throughout we will write K(t|W̄(t)) = K(t). Note that if all the components of

W(·) are time-independent and T and C are independent, then K(t) = P (C > t|W)

and K(t) can be interpreted as the probability that a person with covariate W is

not censored up to time t. This interpretation does not hold in general as the crude

hazard λc(t) is not equal to the net hazard of censoring when T and C are dependent.

Similar arguments as in Robins (1993) lead to

E[I(T̃ ∈ (t, t + dt), ∆ = 1)/K(T̃−)] = P (T ∈ (t, t + dt)) (6)

and E[I(T̃ ≥ t)/K(t−)] = P (T ≥ t). (7)

These equations imply that the reweighted sample of patients observed to fail at time

t is representative of all patients who fail at time t and that the reweighted sample

of patients who have not failed by time t is representative of the general survival

probability of all patients at time t.

4. Estimating Equations and Theoretical Results

Equations (6) and (7) are important as they hold even when T and C are dependent,

and we can use them to derive estimating equations for the unknown regression pa-

rameters β and γ, and the function H . Specifically, (6) implies that E[dN(t)/K(t−)+

dP (T ≥ t|Z̄(t),X)] = 0, or, equivalently, EW[E[dN(t)+K(t−) dP (T ≥ t|Z̄(t),X)|W]] =

7
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0; while (7) implies that EW[E[Y (t) − K(t−)P (T ≥ t|Z̄(t),X)|W]] = 0. Together

these constitute a basis for estimation. Here, P (T ≥ t|Z̄(t),X) is specified in Equa-

tion (3) and dP (·) is the derivative of Equation (3) with respect to t.

Let α denote the parameters associated with K(·); define θ = (α, β, γ, H) and

write the true value of θ as θ0 = (α0, β0, γ0, H0). Denote the estimating equations

associated with α as Unα(α). In the following, the subscript i marks individuals.

Define

µβ,i
(θ) =

∫ ν

0

Zi(u)[dNi(u) + Ki(u−)G(γ ′Xi) dSg(u; Z̄i(u))]

µγ ,i(θ) =

∫ ν

0

Xi[Yi(u) − Ki(u−)[G(γ ′Xi)Sg(u; Z̄i(u)) + Ḡ(γ ′Xi)]] du

µH,i(θ)(t) =

∫ t

0

dNi(u) + Ki(u−)G(γ ′Xi) dSg(u; Z̄i(u)).

A natural set of estimating equations for β, γ and H using (3) and our results from

(6), and (7) is:

U
nβ(θ)

def
=

n
∑

i=1

µβ,i
(θ) (8)

Unγ(θ)
def
=

n
∑

i=1

µγ ,i(θ) (9)

UnH(θ)(t)
def
=

n
∑

i=1

µH,i(θ)(t), ∀ t ∈ [0, ν]. (10)

In the above, choose ν to be a constant such that P (T̃ > ν) > č > 0 for some

fixed č. The constraint on ν is imposed to avoid tail instability associated with large

values of t. In practice the weight function K(·) is unknown and can be replaced

with an empirical estimator. This is easily done by replacing Λc(u|W̄(u)) in the

definition of K(t) with a consistent estimate Λ̂c(u|W̄(u)). Since the left term of UnH

8
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only jumps at observed failure times, the estimate for H will be a step-function that

jumps at the observed failure times. Let Un(θ) = (Unα,U
nβ,Unγ , UnH)(θ) and

define U(θ) = EUn(θ).

To make the definition of Unα more concrete, we provide an example where

the crude hazard for censoring (Equation (4)), follows a proportional hazards model

(Equation (5)). In this case we can decompose α into two parts (αE, αΛ) where

αE represents the Euclidean parameter of the model and αΛ denotes the baseline

cumulative hazard function for the model. The estimating equations associated with

(αE, αΛ) are the usual partial likelihood score equations and the Breslow formula for

the cumulative hazard:

UnαE
(α) =

n
∑

i=1

∫ ν

0

Wi(u)(dNci(u) − Yi(u) exp(α′
EWi(u)) dΛ0(u))

UnαΛ
(α)(t) =

n
∑

i=1

∫ t

0

dNci(u) − Yi(u) exp(α′
EWi(u)) dΛ0(u), ∀ t ∈ [0, ν]

where Nci(t) = I(T̃i ≤ t, ∆i = 0) for i = 1, . . . , n, and Λ0(·) is the baseline cumu-

lative hazard function. For this proportional hazards case we would write Unα =

(Unα
E
, UnαΛ

)′.

Define θ̂ = (α̂, β̂, γ̂, Ĥ) as zeroes of Un(θ) = (Unα,U
nβ,Unγ , UnH)(θ). In

general one is interested in the zeroes of (8) and (9), which we denote φ̂ = (β̂, γ̂).

We note that the asymptotic variance formula for n1/2(φ̂ − φ) is analytically so

complicated that it will be of limited computational utility. Instead, we propose an

application of a weighted bootstrap, which is introduced in Section 5 and is shown

to yield a consistent estimate for the variance. We will write the weighted bootstrap

version of Un(θ) by Un(θ)∗ and denote the weighted bootstrap estimate of θ from

Un(θ)∗ as θ̂
∗
.

9
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Conditions for and sketches of proofs for the following asymptotic results are

contained in the Appendix.

Theorem 1. Under regularity conditions (c.1)–(c.4), the survival model in Equation

(3) is identifiable.

This result is more general than that for cure survival models provided by Li,

Taylor, and Sy (2001) since time-dependent cure proportional odds and proportional

hazards models are included in our result as special cases. Further, in contrast to Li

et al. (2001), we do not require the value zero to be in the support of the covariates,

which may not be a realistic assumption in many situations. As pointed out by a

reviewer, a key component of the identifiability result is the presence of covariates

in both components of the mixture model. In fact, Li et al. (2001) show that if the

latency survival function is nonparameteric and independent of covariates and if the

cure fraction is taken to be a constant (and so does not depend on covariates) the

mixture cure survival model is not identifiable. The dependence of our result on

covariates is analogous to identifiability results in the competing risks literature. A

number of authors have put forward identifiable competing risks models, and all of

the results depend on the presence of covariates in the models (Heckman and Honore

1989; Abbring and van den Berg 2003; Lee 2006).

Theorem 2. Under regularity conditions (c.1)–(c.7), θ̂ is a consistent estimator for

θ0.

Theorem 3. Under regularity conditions (c.1) – (c.7) and (b.1)–(b.5), n1/2(θ̂ − θ0)

converges weakly to a zero-mean Gaussian process. Conditional on the observed data,

n1/2(θ̂
∗ − θ̂) has the same limiting distribution as n1/2(θ̂ − θ0).

10
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5. Inference Procedures and Weighted Bootstrap Scheme

5.1. Algorithm

With the large sample theory established, we propose an iterative algorithm to solve

estimating equations (8)–(10). To start, let t0 < t1 < . . . < tk be the ordered observed

failure times such that tk ≤ ν and t0 = 0. In practice, ν can be set equal to the 90th

or 95th percentile of the observed failure times.

Step 1: Choose initial values for β, γ, and H , denoted β̂
(0)

, γ̂(0), Ĥ(0), respectively.

In general, the initial values for β and γ can be obtained from estimates that

ignore dependent censoring or potential cure fractions and one can let Ĥ(0) be

the constant value 0.

Step 2: Compute estimates for K(·). For example, if the crude censoring distribution

follows a time-dependent proportional hazards model, the calculation can be

done following Robins (1993).

Suppose that we have estimates for β, γ, and H from the (m− 1)th iteration; denote

these estimates by β̂
(m−1)

, γ̂(m−1), and Ĥ(m−1).

Step 3: Recall that Ĥ(·) is a step function with jumps at tj , j = 1, . . . , k. Denote

the jump size at tj as Ĥ{tj}. For j = 1, . . . , k obtain estimates Ĥ(m){tj},

in order, as solutions to UnH(tj) = 0 with β and γ set equal to β̂
(m−1)

and

γ̂(m−1), respectively. As Ĥ(m)(t) is a step function,
∫ tj
0

eZi(u)′
ˆβ

(m−1)

dĤ(m)(u) =
∑j

l=1 eZi(tl)
′
ˆβ

(m−1)

Ĥ(m){tl}. Hence Ĥ(m){tj} can be obtained recursively given

the estimates of Ĥ(m){tl}, l ≤ j − 1. A unique solution is guaranteed to exist

due to the monotonicity of g.

11

http://biostats.bepress.com/harvardbiostat/paper99



Step 4: To estimate β̂
(m)

, solve for β such that U
nβ = 0 with γ set equal to γ̂(m−1) and

H set equal to Ĥ(m). The proof of Theorem 2 establishes that the derivative of

U
nβ is negative definite, therefore the Newton-Raphson solution will be unique.

Step 5: To find γ̂(m), solve for γ such that Unγ = 0, with β = β̂
(m)

and H = Ĥ(m). As

with the solution β̂
(m)

, the derivative of Unγ is negative definite (see the proof

of Theorem 2), so the Newton-Raphson method can be used to find a unique

solution.

Step 6: Repeat Steps 3 - 5 until predetermined convergence criteria are met.

5.2. Weighted Bootstrap

To conduct inference on the parameter estimates we use a weighted bootstrap (Well-

ner and Zhan 1996), which is applicable even in this case with an infinite dimensional

nuisance parameter. Define µαi to be such that
∑n

i=1 µαi are the estimating equa-

tions for α. Recall that the estimates for θ = (α, β, γ, H) are approximate zeros of

Unj =
∑n

i=1 µji for j = α, β, γ, H . Choose a positive distribution B and generate

(bn1, . . . , bnn) such that B and (bn1, . . . , bnn) meet conditions (b.1)–(b.5) in the Ap-

pendix. Denote the zeroes of
∑n

i=1 µjibni, j = α, β, γ, H as θ̂
∗

= (α̂∗, β̂
∗
, γ̂∗, Ĥ∗).

As stated in Theorem 3, the conditional distribution of n1/2(θ̂− θ̂
∗
) is asymptotically

equivalent to the unconditional distribution of n1/2(θ̂−θ0). We can approximate the

distribution of θ̂
∗

by generating a large number of samples, (bn1, . . . , bnn), from B

and for each sample calculating a realization of θ̂
∗
. The empirical distribution can be

used to compute statistics for inference.

6. Model Diagnostics

In practice, it is of substantial interest to verify whether the functional forms im-

posed on the regression models are plausible. To this end we propose a two-step

12

Hosted by The Berkeley Electronic Press



model checking procedure. First, assumptions on the form of K need to be veri-

fied. If the assumed model for K is correct, the asymptotic distribution of Ξ(t) =

n−1/2
∑n

i=1 q̃(Wi, t)
′µαi(α̂) will be a zero-mean Gaussian process, where q̃(·, ·) is a

weight function that is assumed to be known and bounded. Furthermore, if we let

(bn1, . . . , bnn) and α̂∗ be defined as in the previous section, we can approximate the

distribution of Ξ(t) with Ξ̃(t) = n−1/2
∑n

i=1 q̃(Wi, t)
′(µαi(α̂)(1 − bni) − µαi(α̂) +

µαi(α̂
∗)). That the distribution Ξ̃(t) approximates Ξ(t) follows from the argument

in Appendix C of Peng and Huang (2008).

A formal lack-of-fit test can be based upon the statistic TK = ||Ξ(t)||∞, where

|| · ||∞ denotes the supremum norm on [0, ν]. We can generate a large number of

sample paths from Ξ̃(·) by repeatedly sampling new (bn1, . . . , bnn). A p-value for TK
can be estimated by the empirical proportion of Tk ≤ ||Ξ̃(t)||∞. Similar arguments as

in Lin, Wei, and Ying (1993) show that this test is consistent against the alternative

that the model specification of K is false. A corresponding visual diagnostic method

is found by plotting a number of realizations of Ξ̃(·) and observing how extreme the

pattern of Ξ(·) looks in comparison to the simulated paths.

Once we are satisfied with the fit of K we can check the form of (3). Define

Mi(t, θ) = Yi(t)/Ki(t−)−G(γ ′Xi)Sg(t, Z̄(t))−Ḡ(γ ′Xi). Consider the function Γ(t) =

n−1/2
∑n

i=1 w(Zi,Xi, t)Mi(t, θ̂), where the weight function w(·, ·, ·) is assumed to be

known and bounded. If (3) is correctly specified and K(·) is consistently estimated,

Γ(t) converges to a zero-mean Gaussian process. We can approximate the distribution

of Γ(t) with the distribution of

Γ̃(t) = n−1/2
n

∑

i=1

w(Zi,Xi, t)(Mi(t, θ̂)(1 − bni) − Mi(t, θ̂) + Mi(t, θ̂
∗
)), (11)

where bni and θ̂
∗

are defined as in the previous section. If M(·, θ0) is specified
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correctly, Γ(t) should have mean zero for any t. Following the arguments for Ξ we

can establish that the distribution of Γ̃ is asymptotically the same as the distribution

of Γ.

As in the model-checking procedure for K(·), a formal test for lack-of-fit can be

made based upon TS = ‖Γ(t)‖∞. As with the diagnostic method for K(·), we can cal-

culate a p-value for TS (the corresponding test can be shown to be consistent against

the general alternative that (3) is not correctly specified) and develop a goodness-of-fit

plot.

7. Numerical Studies

7.1. Simulations

We evaluated the finite sample performance of the proposed methods with simula-

tions. Two such studies are summarized in Table 1. We considered proportional odds

and proportional hazards models. Dependent censoring can occur when a covariate

that affects both the survival and censoring times is not included in the model. To

mimic this situation we generated two covariates for each subject: a Bernoulli(0.5)

random variable and a Uniform(0,1) random variable. The censoring times followed

a proportional hazards model with both the Bernoulli and Uniform random variables

as covariates. The latency survival times followed either the proportional hazards

or proportional odds models with both the Bernoulli and Uniform random variables

as covariates. The cure functions only depended on the Bernoulli random variable.

For the proportional hazards model we took H(t) = t and for the proportional odds

model we took H(t) = 2t.

In all of the analyses we only included one covariate in the cure function and

in the latency survival function, the Bernoulli random variable. To model the crude

hazard for censoring we used a proportional hazards model with the Bernoulli random
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variable as the only covariate. Bias, monte carlo standard error estimates, bootstrap

based standard error estimates, and estimates of the root mean squared error (RMSE)

for several different parameter configurations are presented in Table 1. We found the

“true” values of the misspecified latency survival parameters by generating a very

large dataset (sample size = 1,000,000) with the two covariates, but fitting the model

on the dataset with just one covariate.

To investigate the biases that occur when dependent censoring is ignored we com-

pared our method to the method of Lu and Ying (2004) (we will refer to this method

as LY hereafter), which does not compensate for dependent censoring. Summaries for

bias, monte carlo standard errors, and estimates of RMSE can also be found in Table

1. The proposed method has the most significant gains over LY in estimating the

parameter associated with the cure proportion. The proposed method and LY have

comparable bias in estimating the latency survival parameter. In practice, if correct

estimates of the cure proportion are of primary interest, the proposed method can

reduce bias even when accounting for only some of the dependent censoring.

7.2. SEER Prostate Cancer Data

We applied the proposed method to prostate cancer data from the SEER database,

using data released in 2004. Specifically, we looked at males diagnosed with prostate

cancer from the Detroit, Michigan area whose cancer stage was classified as local or

regional. The Detroit registry was one of the original nine SEER registries and so

has longer follow-up than the more recent registries. To avoid potential confound-

ing related to prior cancer diagnoses, we restricted our sample to those men whose

prostate cancer was their first cancer diagnosis. The Federal Drug Administration

(FDA) approved the prostate-specific antigen (PSA) test for use in monitoring pa-

tients diagnosed with prostate cancer in 1986. The use of the PSA test for screening
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of prostate cancer increased dramatically starting in 1990, and so to avoid potential

biases associated with the new screening method we only considered cases diagnosed

up to 1989. Our random variable of interest was time from diagnosis of prostate

cancer to death from prostate cancer.

One question of interest was whether survival or cure fractions differed in this

dataset by race. Due to the small number of subjects in some racial categories in

this dataset we restricted our attention to the two largest racial groups, black and

white. There were 15,524 cases in the SEER database that met the criteria; 3,837

were classified as black and 11,687 were classified as white.

In this cohort, 3,717 people died of prostate cancer while 4,349 people died of

heart disease. These numbers are summarized in Table 2. Heart disease and prostate

cancer share the common risk factor of high fat diet (Wilson et al. 1998; Strom

et al. 2008). High fat diets have been shown to increase androgen levels in the body,

increase cholesterol levels, and are associated with increased consumption of Omega-

6 fatty acids. Increased levels of androgens have been shown to be associated with

prostate cancer cell proliferation (Fleshner et al. 2004; Pandini et al. 2005; Xu et al.

2006; Asirvatham et al. 2006). High cholesterol and Omega-6 fatty acids have been

shown to be associated with prostate carcinogenesis (Homma et al. 2004; Hughes-

Fulford et al. 2005; Zhuang et al. 2005; Bravi et al. 2006; Ritch et al. 2007). Further

complicating the relationship between heart disease and prostate cancer is the fact

that many men diagnosed with prostate cancer are treated with androgen therapy

to reduce hormone levels. This treatment has been shown to be associated with

an increased risk of death from heart disease (Keating et al. 2006). Given these

connections and the high rate of death from heart disease in this population, there is

some evidence that there may exist dependent censoring in this dataset.

Figure 1 shows the näıve (assuming independent censoring) Kaplan-Meier survival
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plots for the two subgroups. We can observe that both curves plateau above 0.5,

indicating that a large proportion of the population may not die of prostate cancer.

While for the first several years the survival curves are indistinguishable, the white

subgroup’s survival tail is noticeably higher than the tail of the black group.

There are several situations when physicians consider patients to be cured of

prostate cancer. First, surgery (radical prostatectomy) and radiotherapy (external-

beam radiotherapy, brachytherapy, or both) in early stage prostate cancer patients

can entirely eradicate the disease, inducing a cure among a significant proportion

of patients (Hanlon and Hanks 2000; Jani and Hellman 2003). Also, improvements

in prostate cancer treatment have made it so that many prostate cancer patients

who are not cured are treated for chronic disease rather than acute disease, and

their probability of dying of prostate cancer is not elevated above that of the general

population (American Cancer Society 2007). Given these considerations, a model

that explicitly accounts for a cure proportion and allows for inference on the cure

proportion can be of use for this prostate cancer application.

We considered both proportional hazards and proportional odds models. Race

was a covariate for the survival and cure functions, denoted RS and RC , respectively.

The models also contain a time-dependent covariate written PSAS, which takes the

value one after the year 1985 and the value zero otherwise. This covariate can help

to account for changes in survival induced by the policy change in 1986 when the

FDA approved the PSA test to help monitor progress of prostate cancer. We mod-

eled the crude hazard for censoring with a proportional hazards model containing

PSAS, RS, and covariates for grade, year of diagnosis, and age at diagnosis. We

took B ∼Exponential(1) and standard error estimates are based on 1000 bootstrap

replicates.

Figure 2 provides examples of model-checking plots for the time-dependent pro-

17

http://biostats.bepress.com/harvardbiostat/paper99



portional hazards and proportional odds cure models. The plot of Equation (11)

against time for the proportional odds cure model does not appear to have mean zero

and the p-value from 1000 bootstrap replicates with B ∼ Exponential(1) is 0.008,

which indicates that the proportional odds cure model may not be appropriate. The

corresponding plot for the proportional hazards cure model shows an approximately

mean zero trend and the p-value from 1000 bootstrap replicates with B ∼ Exponen-

tial(1) is 0.416. These data suggest the proportional hazards cure model fits the data

better than the proportional odds cure model, so we will present results for the pro-

portional hazards cure model. Results for the time-dependent model and a univariate

model containing only RS and RC can be found in Table 3.

The race covariate is significant in the univariate model for both the survival and

cure functions. The signs of the estimates indicate that black race is associated with

worse survival and a smaller probability of being cured. These covariates remain sig-

nificant in the time-dependent model, though the time-dependent covariate indicating

PSA approval is not significant.

We contrast our univariate results with alternative methods in Tables 4 and 5.

All models contain one covariate denoting race. The standard proportional hazards

model (ignoring possible cure fractions and dependent censoring) estimate is almost

identical to the competing risks proportional hazards model estimate with deaths from

other causes treated as censored events (Fine and Gray 1999). The three parameter

values presented in Table 4 have different interpretations. The parameter estimate

from our model has the interpretation of the log-hazard ratio for subjects who are not

cured. The standard proportional hazards model parameter has the interpretation

of the log-hazard ratio assuming the population is composed entirely of persons who

are not cured. The log-hazard ratio for the subdistribution for death from prostate

cancer are not easily interpretable, as noted in Fine and Gray (1999).
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Under the assumption of independent censoring, the tail end of the Kaplan-Meier

curve can estimate the proportion of cured subjects in a sample (Maller and Zhou

1992). Table 5 compares estimates of the tail of the Kaplan-Meier survival function

stratified by race to estimates of the cure proportion found from transforming the

regression results from the our proportional hazards cure model. The proportional

hazards cure model has a smaller cure fraction than the tail end of the Kaplan-Meier

plot indicates, and the confidence intervals for the estimates do not overlap.

As a referee noted, competing risks models (Prentice et al. 1978; Fine and Gray

1999) are a useful way to model survival data with the potential for dependent cen-

soring. However, this type of analysis may not be ideal for this specific application.

First, competing risks models can characterize the crude risk of failure for a specific

failure type, but do so without removing dependent risks (Pepe and Mori 1993). We

wish to evaluate the effect of race on prostate cancer survival, but these competing

risks models will not allow for the direct covariate interpretation we are interested

in. Second, a subject who is cured of prostate cancer could die of heart disease (a

competing risk). Therefore the probability of being cured is not readily modeled using

the existing competing risk framework, in contrast to the model we proposed.

8. Discussion

This paper provides a unified framework for a class of transformation cure models that

allow for dependent censoring. We utilize an inverse censoring probability formula

to develop unbiased estimating equations. Our method allows one to estimate cure

fractions more accurately in cases where there is dependence between censoring and

survival times. We also develop a weighted bootstrap for inference procedures and

supply a method to check whether the model specification is adequate.

Extending our estimation procedure to be able to incorporate internal time-
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dependent covariates is a subject of future research. This extension would allow

for a greater range of application in dependent censoring situations. A common

cause of dependent censoring is excluding covariates related to both the survival and

censoring times. This is an issue in any model, including models with only time-

independent covariates. As shown in our simulation study, our method can decrease

bias in situations with only time-independent covariates.

Rigorous testing for whether there is sufficient follow-up to identify cure propor-

tions is difficult even without dependent censoring. A test for sufficient follow-up

in the presence of dependent censoring may deserve a separate paper. A number of

tests for sufficient follow-up in cure survival situations have been put forward (Maller

and Zhou 1994, 1995; Klebanov and Yakovlev 2007). These tests, combined with

subject matter specific knowledge on whether a mixture cure formulation is suitable,

can provide information to allow an investigator to decide whether it is appropriate

to use this model.

Appendix: Technical Details

Before we present the asymptotic results we will review and define some notation.

All expectations are with respect to the true distributions of all random variables

involved. Denote the Euclidean norm as || · ||, the supremum norm on [0, ν] as || · ||∞,

and the norm corresponding to the parameters of α as || · ||α. For example, if we

assumed the crude hazard for censoring followed a proportional hazards form, our

model would have two parameters: αE , a Euclidean parameter associated with W(·),

and αΛ, associated with the cumulative baseline hazard. In this case a sensible

choice for ||α − α0||α would be ||αE − α0E|| + ||αΛ − α0Λ||∞. Define ||θ − θ0|| =

||α−α0||α + ||β−β0||+ ||γ−γ0||+ ||H−H0||∞. Let a single superscript dot denote

derivatives and a double superscript dot denote second derivatives.
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Consider the following regularity conditions:

(c.1) the covariates Xi and the covariate processes Zi(·) and Wi(·) are uniformly

bounded, have nondegenerate variance-covariance matrices, and are cadlag for

i = 1, . . . , n;

(c.2) φ0 = (β0, γ0) is a point in a bounded, open, convex subset of R
ξ+κ;

(c.3) the transformation function g is twice differentiable. The function g, its deriva-

tive ġ, and its second derivative g̈ are all Lipschitz;

(c.4) H0(t) is differentiable and is of bounded variation over [0, ν];

(c.5) E(n−1U̇
nφ(θ)|φ=φ0

) is nondegenerate with probability 1;

(c.6) maxNi(ν) > 0, i = 1, . . . , n;

(c.7) K(·) is uniformly bounded away from 0 on [0, ν]. The estimating equation Unα

meets conditions 1, 3, and 4 of Theorem 2. Unα is Fréchet differentiable at α0

and the derivative is continuously invertible;

(b.1) the vectors (bn1, . . . , bnn)
′ are exchangeable for all n = 1, 2, . . .;

(b.2) bni ≥ 0 for all n and all i and
∑n

i=1 bni = n for all n;

(b.3) the L2,1 norm of bn1 is bounded, i.e.
∫ ∞
0

√

PB(bn1 ≥ u) du ≤ M∗ < ∞;

(b.4) limψ→∞ lim supn→∞
∑

t≥ψ t2P (bn1 ≥ t) = 0;

(b.5) n−1
∑n

i=1(bni − 1)2 → c2 > 0 in PB-probability.

Conditions (c.1)-(c.5) are standard assumptions in survival analysis literature.

(c.6) is used in the proofs of Theorems 1 and 2. (c.7) requires that the estimates
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for the weight function, K, meet the same regularity conditions that we impose on

β, γ, and H . These conditions have been previously shown for a variety of survival

functions (e.g. van der Vaart 1998, Section 25.12 for the proportional hazards model).

Conditions (b.1) - (b.5) are met by most positive distributions by defining bni =

b′i/b̄
′
n, where b′i is an observed realization from the bootstrap distribution, B, and b̄′

denotes the average of n observed realizations. If B ∼ Exponential(1), B meets all

the regularity conditions.

The following are sketches of the proofs. More complete details can be found in a

technical report available from the first author.

Proof of Theorem 1

We want to show that

Ḡ(γ ′X) + G(γ ′X)g
{

∫ t

0

exp(β′Z(u)) dH(u)
}

= Ḡ(γ̃ ′X) + G(γ̃ ′X)g
{

∫ t

0

exp(β̃
′
Z(u)) dH̃(u)

}

(12)

for all t ∈ [0, ν] with probability 1 implies that γ = γ̃, β = β̃, H = H̃. Equation (12)

implies that there exists a time-independent constant v∗ (possibly random) such that

g
{

∫ t

0
exp(β̃

′
Z(u)) dH̃(u)

}

− 1

g
{

∫ t

0
exp(β′Z(u)) dH(u)

}

− 1
= v∗

for all t ∈ [0, ν]. Rewrite β̃ = β + ̟ and H̃(t) = H(t) + a
∫ t

0
ω(u) dH(u) for some

nonrandom function ω(u) and a ∈ R. Express v∗ as

g{
∫ t

0
exp(β̃

′
Z(u)) dH̃(u)} − 1

g{
∫ t

0
exp(β′Z(u)) dH(u)} − 1
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=
g{

∫ t

0
(1 + aω(u)) exp(Z(u)′(β + ̟)) dH(u)} − 1

g{
∫ t

0
exp(β′Z(u)) dH(u)} − 1

(13)

for all t ∈ [0, ν]. It follows that (13) is constant with respect to t if and only if ̟ = 0

and a = 0. To see that this is the case, use the mean value theorem and write the

right hand side of (13) as

1 + ḡ(t)

∫ t

0

exp(β′Z(u))[Z(u)′̟ + a] dH(u), (14)

where

ḡ(t) =
ġ{

∫ t

0
{1 + āω(u)} exp(β̄

′
Z(u)) dH(u)}

g{
∫ t

0
exp(β′Z(u)) dH(u)} − 1

,

β̄ = β + s̄β̃ and ā = s̄a for some constant s̄ ∈ [0, 1]. Equation (14) is independent

of t if and only if ̟ = 0 and a = 0. Hence β̃ = β and H̃ = H . Therefore, a

reëxamination of (12) yields that G(γ ′X) = G(γ̃ ′X) with probability 1. Since the

logistic function G(·) is invertible, it follows that γ ′X = γ̃ ′X or (γ − γ̃)′X = 0 with

probability 1. As X has a nondegenerate variance-covariance matrix, γ = γ̃.

Proof of Theorem 2

First consider the convergence of Ĥ(t, φ0, α0), which is solved recursively from

(10) with φ and K(·) fixed at the true values, φ0 and K0(·). Let H be the set of all

nondecreasing, nonnegative, finite step functions with H(·) ∈ H such that H(0) = 0

and H(·) jumps only at the observed failure times from the data, t1 < . . . < tk ≤ ν.

We want to show that ||Ĥ(t, φ0, α0)−H0(t)||∞ → 0 almost surely as n → ∞. Define

the mapping Q on H as

Q(H)(t) =
n

∑

i=1

∫ t

0

dNi(u)/Ki(u−) + G(γ ′
0Xi) dSg(Z̄i(t), t, β0).
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For an arbitrary but fixed ε′ > 0 consider H1 ∈ H and H2 ∈ H such that ||H1 −

H2||∞ ≥ ε′. Denote the jump size of Hl at tj as Hl{tj}, l = 1, 2. Write Q(H1)(t) −

Q(H2)(t) =
∑

tj≤t wjaj where wj =
∑n

i=1 G(γ ′
0Xi)ġ(si) exp(β′

0Zi(tj)), 0 ≤ si ≤

|
∫ t

0
exp(β′

0Zi(u))d H1(u)−
∫ t

0
exp(β′

0Zi(u))d H2(u)|, and aj = H1{tj}−H2{tj}. Since

‖H1(t) − H2(t)‖∞ ≥ ε′/2, there must exist tj0 such that aj0 = |H1{tj0} − H2{tj0}| ≥

ε′/2k. Note that since Z(·) and X are uniformly bounded there must exist some finite

c̄ such that n/c̄ ≤ wj ≤ nc̄ for j = 1, . . . , k.

Suppose that |
∑

tj≤tj0
wjaj| ≤ ε′n/4kc̄. It follows that |

∑

tj≤tj0−1
wjaj| ≥ |wj0aj0|−

ε′n/4kc̄ ≥ ε′n/2kc̄ − ε′n/4kc̄ = ε′n/4kc̄. Therefore, either |∑tj≤tj0
wjaj | ≥ ε′n/4kc̄

or |
∑

tj≤tj0−1
wjaj| ≥ ε′n/4kc̄. Hence

‖
n

∑

i=1

G(γ ′
0Xi)[Sg(t, Z̄i(t), β0, H1) − Sg(t, Z̄i(t), β0, H2)]‖∞ ≥ ε′n/4kc̄ ≥ ε′/4c̄.

Select H ′ ∈ H such that H ′(tj) = H0(tj) for i = 1, . . . , k. The law of large numbers

and the continuity of H0 imply that ‖Q(H ′)(t)‖∞ → 0 almost surely as n → ∞. We

defined Ĥ(t, φ0, α0) such that Q(Ĥ(t, φ0, α0)) = op(1) for all t ∈ [0, ν], which implies

that ‖Q(H ′)(t) − Q{Ĥ(φ0, α0)}(t)‖∞ → 0 almost surely as n → ∞. Therefore

Ĥ(·, φ0, α0) is in an ε′ neighborhood of H ′ in [0, ν] under || · ||∞ with probability

1. Using the facts that Ĥ(·, φ0, α0) and H0 are monotone, and that ε′ > 0 can be

made arbitrarily small, we conclude that ||Ĥ(·, φ0, α0)−H0(·)||∞ → 0 in [0, ν] almost

surely.

We apply the inverse function theorem to prove consistency for φ (Foutz 1977).

That the estimating equations for β and γ are asymptotically unbiased follows from

the consistency of K̂(·) and the convergence of Ĥ(·, φ0, α0). Tedious but straight-

forward calculations can show that En−1U̇
nφ(θ)|φ=φ0

converges uniformly in a

neighborhood of the true parameters and is negative definite. Hence φ is consis-
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tent. Finally, the consistency of Ĥ(·, θ) follows immediately from the convergence of

H(·, φ0, α0) , the consistency of φ and K (consistency of K is assumed in (c.7)), and

the continuity of Ĥ(·, φ) with respect to φ and K(·).

Proof of Theorem 3

We use Theorem 3.3.5 of van der Vaart and Wellner (1996) and Theorem 3.1 from

Wellner and Zhan (1996). In the following, define Uj = Eµj for j = α, β, γ, H and

U = (Uα, . . . , UH), where the µj are defined as in Section 4. Let Hβ and Hγ to

be finite sets with same cardinality as the parameters and let HH = {ht = 1[0,t] : t ∈

[0, ν]}. The following four conditions need to be verified:

1. For j = α, β, γ, H and for any δn → 0: sup{||√n(Unj − Uj)(θ) − √
n(Unj −

Uj)(θ0)||j/1 +
√

n||θ − θ0|| : ||θ − θ0|| ≤ δn} = op(1), where || · ||j denotes the

norm associated with parameter j.

2. U is Fréchet differentiable at θ0 with derivative denoted U̇0, and U̇0 has a

continuous inverse.

3. θ̂ is consistent for θ0 and Un(θ̂) = op(n
−1/2).

4. If D̃nj is the envelope function of the class Dnj ≡ {µj(θ)(h)−µj (θ0)(h)

1+
√
n||θ−θ0||

: h ∈

Hj , ||θ − θ0|| < δn}, for every δn → 0 and j = α, β, γ, H ,

lim
ψ→∞

lim sup
n→∞

sup
t≥ψ

t2P (D̃nj(X,W,Z, ∆) > t) = 0.

Conditions 3 and 4 clearly hold in this situation. Theorem 2 and (c.5) establish

the consistency of θ̂, and the second requirement of Condition 3 holds by definition

of θ̂. Let M̃ = max(||Z(t)||∞, ||X||, 2) and let D̃
nβ = D̃nγ = D̃nH = 2M̃ . It follows

that Condition 4 is met for j = β, γ, H . Condition 4 is met for j = α by (c.7).
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For j = β, γ, H , Condition 1 can be shown using standard arguments by building

up Donsker classes of terms (Parner 1998; van der Vaart and Wellner 1996) and

by using the continuity of K, G, and g and the pointwise convergence of θ to θ0.

Condition 1 holds for j = α by (c.7).

The last step is to verify Condition 2. Write the Fréchet derivative, U̇0, of U at θ0

as a partitioned matrix:

(

B C

D E

)

, where B corresponds to the the Fréchet derivative

of Uα with respect to α evaluated at θ0; C to the Fréchet derivative of Uα with

respect to β, γ, and H evaluated at θ0; D to the Fréchet derivative of Uβ ,Uγ , UH

with respect to α evaluated at θ0; and E to the Fréchet derivative of Uβ ,Uγ , UH with

respect to β, γ, and H evaluated at θ0. The inverse of this partitioned matrix can

be written as

(

B
−1 + B

−1
CF

−1
DB

−1 −B
−1
CF

−1

−F
−1
DB

−1
F
−1

)

, where F = E − DB
−1
C (Stapleton

1995). Therefore, to prove that the partitioned matrix is continuously invertible,

one only needs to show that B and F are continuously invertible. Since Uα is not a

function of β, γ, or H , C is the zero matrix and we only need to show that B and E

are continuously invertible. B is continuously invertible by (c.5).

To verify that E is continuously invertible, write E as a partitioned matrix and

use the same argument as above. Specifically, write: E =

(

U̇p U̇q

U̇r U̇s

)

, where U̇p

is the derivative of (Uβ ,Uγ) with respect to β and γ evaluated at θ0; U̇q is the

derivative of (Uβ ,Uγ) with respect to H evaluated at θ0; U̇r is the derivative of

UH with respect to β and γ evaluated at θ0; and U̇s is the derivative of UH with

respect to H evaluated at θ0. We need to show that U̇p and U̇s − U̇rU̇
−1
p U̇q are

continuously invertible. U̇p is finite dimensional and so continuous invertibility is a

consequence of it being one-to-one. U̇s can be shown to be continuously invertible by

direct computation, and U̇rU̇
−1
p U̇q can be shown to be compact by invoking Helly’s
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selection theorem and the dominated convergence theorem. Direct calculation can

show that (U̇s − U̇rU̇
−1
p U̇q)[A] = 0 if and only if ||A||∞ = 0. We can therefore

conclude that U̇s − U̇rU̇
−1
p U̇q is one-to-one. The sum of a continuously invertible

operator and a compact operator is continuously invertible if the sum is one-to-one

(Rudin 1987). Therefore U̇s − U̇rU̇
−1
p U̇q is continuously invertible and the result

follows.
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Table 1: Simulation results

Proportional Hazards Model

Our Method Lu and Ying (2004)
Parameter True Values Bias SEMC SEB RMSE Bias SEMC RMSE

β -0.507 0.136 0.162 0.175 0.212 0.040 0.126 0.132
γ0 1 0.133 0.147 0.151 0.198 -0.136 0.148 0.201
γ1 -1 0.038 0.164 0.209 0.168 0.078 0.203 0.217

β -0.507 -0.014 0.164 0.236 0.165 0.017 0.117 0.118
γ0 0.8 -0.074 0.147 0.160 0.165 -0.103 0.145 0.179
γ1 -0.75 -0.017 0.191 0.212 0.192 0.054 0.199 0.206

Proportional Odds Model

Our Method Lu and Ying (2004)
Parameter True Values Bias SEMC SEB RMSE Bias SEMC RMSE

β -0.608 0.017 0.173 0.232 0.174 0.243 0.133 0.277
γ0 1 -0.133 0.219 0.209 0.256 0.455 0.255 0.525
γ1 -1 0.101 0.299 0.274 0.316 -0.353 0.303 0.465

β -0.608 -0.241 0.317 0.370 0.398 0.197 0.130 0.236
γ0 0.8 -0.137 0.214 0.223 0.254 0.389 0.234 0.454
γ1 -0.75 0.171 0.295 0.300 0.341 -0.213 0.278 0.350

Bias = average of estimate - true value
SEMC = standard deviation of estimates
SEB = mean of bootstrap standard errors
RMSE = (Bias2 + SE2

MC)0.5

Table 2: Summary of causes of death among SEER data
Cause of Death N (total=15,524) % SEER Code*
Prostate Cancer 3,717 23.9 28010
Diseases of the Heart 4,349 28.0 50060
Alive 2,208 14.2 00000
Other 5,250 33.8 all others
*Based on ICD-10 codes, using SEER COD Recode 9/17/2004
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Table 3: SEER data results for a proportional hazards cure model. Parameter esti-
mates and associated standard errors from the regression models are provided. Esti-
mates with the subscript S can be interpreted as the log-hazard ratio for non-cured
subjects. Estimates with the subscript C can be interpreted as the log-odds for being
not cured. Black race is the reference category for the race parameters.

Univariate

Parameter Estimate Standard error*
RaceS -0.129 0.033

InterceptC 0.245 0.008
RaceC -0.169 0.011

Time-Dependent

Parameter Estimate Standard error*
RaceS -0.123 0.031
PSAS -0.083 0.042

InterceptC 0.245 0.008
RaceC -0.170 0.011

*All standard error estimates are based on 1000
bootstrap replications with B ∼Exponential(1).

Table 4: Parameter estimates for proportional hazards functions for three different
models. Black race is the reference category for each of the models.
Model Parameter estimate Standard Error
Our proportional hazards cure model -0.129 0.033
Standard proportional hazards model -0.139 0.037
Competing risks proportional hazards model -0.138 0.037
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Table 5: Estimates of the proportion of men cured of prostate cancer: (1) from the
tail of the Kaplan-Meier survival curve stratified by race and (2) from transforming
the regression results from our proportional hazards cure model.

Cure estimate Confidence Interval

Our proportional hazards cure model
CureB 0.439 (0.435, 0.443)
CureW 0.481 (0.474, 0.481)

Näıve Kaplan-Meier tail estimates
CureB 0.566 (0.540, 0.593)
CureW 0.594 (0.578, 0.610)
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Figure 1: Näıve Kaplan-Meier curves (ignoring potential dependent censoring) for
survival comparing white subgroup (dashed line) to the black subgroup (solid line).
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Figure 2: Model checking plots. Twenty-five random sample paths are plotted in grey
with the observed paths marked in black.
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