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SUMMARY

In a longitudinal study, suppose that the primary endpoint is the time

to a specific event. This response variable, however, may be censored by an

independent censoring variable or by the occurrence of one of several depen-

dent competing events. For each study subject, a set of baseline covariates

is collected. The question is how to construct a reliable prediction rule for

the future subject’s profile of all competing risks of interest at a specific time

point for risk-benefit decision makings. In this paper, we propose a two-

stage procedure to make inferences about such subject-specific profiles. For

the first step, we use a parametric model to obtain a univariate risk index

score system. We then estimate consistently the average competing risks

for subjects which have the same parametric index score via a nonparamet-

ric function estimation procedure. We illustrate this new proposal with the

data from a randomized clinical trial for evaluating the efficacy of a treat-

ment for prostate cancer. The primary endpoint for this study was the time

to prostate cancer death, but had two types of dependent competing events,

one from cardiovascular death and the other from death of other causes.

Keywords: Local likelihood function; Nonparametric function estimation;

Perturbation-resampling method; Risk index score.
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1. INTRODUCTION

Consider a longitudinal clinical study whose primary endpoint is the time

to a specific clinical event. However, this event time is possibly censored by

an independent censoring variable or by the occurrence of one of several

dependent competing events. For example, in a randomized clinical trial to

evaluate the efficacy of estrogen diethylstilbestrol (DES) for treating stage 3

or 4 prostate cancer, 242 patients were randomly assigned to two high dose

groups (≥ 1 mg/day) and 241 subjects were assigned to two low dose groups

(≤ 0.2 mg/day) (Byar and Green, 1980; Cheng et al., 1998). The primary

endpoint for the study is the time to prostate cancer death. At the end of the

study, there were 48, 78 and 34 deaths due to prostate cancer, cardiovascular

diseases and other causes in the high dose groups. For the low dose groups,

the corresponding numbers of deaths are 77, 61 and 46, respectively. With

respect to the overall survival, the high dose groups appeared to be superior

to the low dose groups. Furthermore, the treatment with high doses of DES

reduced the prostate cancer death. However, there was a serious concern

about its potential fatal cardiovascular-related toxicity.

To quantify the “pure” treatment effect for prostate cancer in the presence

of possibly dependent competing risks is a rather challenging task, if not

impossible (Tsiatis, 1975). The risk-benefit decision makings on the proper

usage of DES should depend on the entire profile of all competing risks,

not solely on the prostate cancer mortality. Moreover, since the choice of

balancing the risk and benefit is rather subject-specific, it is important to

know how to utilize the future patient’s “baseline” characteristics to predict

such an individual-level competing risk profile.

A classical method of handling dependent competing risk problem is to

model the so-called cause-specific hazard function for the primary endpoint

via the Cox proportional hazards model (Cox, 1972). However, it is not

clear how to utilize this technique to make survival predictions (Kalbfleisch

and Prentice, 1980; Pepe and Mori, 1993). A useful alternative to deal with
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competing risks is to consider the cumulative incidence functions (Benichou

and Gail, 1990; Gaynor et al., 1993; Gelman et al., 1990; Korn and Dorey,

1992; Goldhirsch et al., 1994). Recently Cheng et al. (1998) and Fine and

Gray (1999) modeled the cumulative incidence function with the subject’s

covariates, for example, via a Cox-type model. Further novel procedures

along this line have been studied, for example, by Fine (2001), Klein and

Andersen (2005), Klein (2006) and Scheike et al. (2008). Another fruitful

class of parametric or semi-parametric methods is to consider latent failure

time modeling (Kalbfleisch and Prentice, 2002; Lawless, 2003; Andersen et

al., 2002; Li et al., 2007) to analyze the competing risk data. The validity

of predicting the competing risk profiles based on a parametric or semi-

parametric model is heavily dependent on the adequacy of the fitted model.

In this paper, we are interested in constructing subject-level predictions

of all dependent competing risks of interest at a specific time point, or a set

of time points. When, for each subject, more than one baseline covariate

is involved, a purely nonparametric function estimation procedure for the

above event rates may not perform well even with relatively large samples.

Here, we consider the case that there is a primary event of interest and

construct a two-stage procedure. For the first step, we use a parametric or

semi-parametric model to create a univariate risk index score. We then use

a nonparametric function estimation method to make joint inferences about

the average competing risks for subjects with the same index score. The new

proposal is illustrated with the data from the above DES study. Note that a

similar approach has been taken along this line for predicting the individual-

level single event rate without the presence of competing risks by Cai et al.

(2008).
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2. CONSISTENT ESTIMATION FOR MEAN COMPETING

RISKS OF SUBJECTS WITH THE SAME PARAMETRIC

RISK SCORE

Suppose that there are K distinct types of possibly dependent competing

events. For a random subject in the study, let T̃ be the study time period

from the study entry to the first time point at which one out of these K events

occurs. Let ε be a random variable whose possible values are {1, · · · , K}. If

ε = k, Type k event is observed at T̃ . Also, let U be the subject’s “baseline”

covariate vector. Furthermore, suppose that we are interested in the K

conditional event rates at a specific time point t0, that is,

πk(U) = pr(T̃ ≤ t0, ε = k | U), k = 1, · · · , K. (2.1)

In practice, T̃ is often censored by an independent continuous variable C with

an unknown survival distribution G(·). Assume that C is independent of T̃

and U. Let T = min(T̃ , C) and ∆ = I(T̃ = T ), where I(·) is the indicator

function. Also, let {(T̃i, Ci, εi, Ui), i = 1, · · · , n} be n independent copies of

(T̃ , C, ε, U). The problem is how to make inference about (2.1) based on the

incomplete event time observations {(Ti,∆iεi, Ui), i = 1, · · · , n}. Unfortu-

nately, if the dimension of U is greater than one, any existing nonparametric

regression estimator for (2.1) may not perform well even when the sample

size n is large and the event rates are not extremely low or high. Instead of

estimating such fine subject-level event rates (2.1), a feasible, practical alter-

native is to construct a univariate parametric risk index system based on U

and group the study subjects with respect to this scoring system. Then using

a univariate nonparametric function estimation procedure, one may estimate

consistently these K average competing event rates for each stratum whose

subjects have the same index score.

To construct a univariate scoring system, we consider the case that there

is a primary event of interest for the study, say, the event corresponding to

ε = 1. Let X, a p× 1 vector, be a function of U and the first component of
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X is one. Let Xi be the counterpart of X from Ui, i = 1, · · · , n. Consider a

parametric working model for the primary event rate:

π1(U) = g(β′X), (2.2)

where g is a known strictly increasing, smooth function, for example, the

anti-logit function, and β is a p × 1 vector of unknown parameters. With-

out censoring, one may use the maximum likelihood estimator or a simple

estimating function such as

n−1

n∑
i=1

Xi{I(Ti ≤ t0, ε = 1)− g(β′Xi)} (2.3)

to estimate β.

In the presence of independent right censoring, one may modify (2.3) by

adjusting censoring. One possible modification is

R(β) = n−1

n∑
i=1

wi

Ĝ(Ti ∧ t0)
Xi{I(Ti ≤ t0, ε = 1)− g(β′Xi)}, (2.4),

where wi = I(Ti∧t0 ≤ Ci) = I(Ti ≤ t0)∆i+I(Ti ≥ t0) and Ĝ(·) is the Kaplan-

Meier estimator for G(·). This generalization has been studied, for example,

by Zheng et al. (2007) and Uno et al. (2008) for handling various problems

in survival analysis. Heuristically, for a large sample size n, conditional on T̃

and U, the expected value of wi/Ĝ(Ti∧t0) is approximately one. This implies

that for large n, R(β) ≈ (2.3). Therefore, asymptotically one would expect

that a root β̂ to R(β) = 0 is free of the study-specific censoring distribution

G(·). It is important to note that under rather mild conditions, β̂ converges

to a finite value β0 even when the model (2.2) is not correctly specified (Uno

et al., 2008). This stability property, coupled with the fact that β0 is free

of the study-specific censoring distribution, is essential for developing our

inference procedures. Note that if the model (2.2) is correctly specified, the

estimate g(β̂′X) would be a consistent estimator for (2.1).
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Now, consider a future subject from the same study population, whose U

and X are U0 and X0 with potential, but unobservable (T̃ , ε)′ = (T̃ 0, ε0)′. Let

β̂′X0 = v, a given constant. We are interested in estimating the following

(K − 1) average event rates at time t0 :

pr(T̃ 0 ≤ t0, ε
0 = k | β̂′X0 = v), k = 1, · · · , K − 1, (2.5)

where the probability is with respect to the future observation (U0, T̃ 0, ε0)

as well as the observed data {(Ti,∆iεi, Ui), i = 1, · · · , n}, from which β̂ is

estimated. Note that the probabilities in (2.5) depend on the sample size n

and are convergent to the following conditional probabilities

ηk(v) = pr(T̃ 0 ≤ t0, ε
0 = k | β′0X0 = v), k = 1, · · · , K − 1, (2.6)

as n → ∞. Also note that (2.6) is the set of the multinomial cell prob-

abilities for future subjects whose limiting risk score is v. For the non-

censored case, let us consider a nonparametric estimation procedure for

η(v) = {η1(v), · · · , ηK−1(v)}′ via a localized multinomial likelihood func-

tion. Specifically, let Yik = I(Ti ≤ t0, εi = k) for k = 1, . . . , K − 1, and

β̂′Xi = V̂i. Then, a kernelized log-likelihood function for η(v), expressed with

the unknown parameter vector p = (p1, · · · , pK−1)′ is

n∑
i=1

Kh(V̂i − v)
K−1∑
k=1

log

{
pYikk (1−

K−1∑
k=1

pk)
1−
∑K−1
k=1 Yik

}
, (2.7)

where pk ≥ 0,
∑K−1

k=1 pk ≤ 1, Kh(s) = K(s/h)/h for a symmetric standard

kernel function K(·) with a finite support and h is the smooth parameter. In

the presence of censoring, we add a weight function wi/Ĝ(Ti ∧ t0) in front of

Kh(·) in (2.7). The resulting log-likelihood is

n∑
i=1

wi

Ĝ(Ti ∧ t0)
Kh(V̂i − v)

K−1∑
k=1

log

{
pYikk (1−

K−1∑
k=1

pk)
1−
∑K−1
k=1 Yik

}
. (2.8)

An estimator for η(v) can be obtained by maximizing (2.8) with respect to

p’s with the above constraints.
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The performance of this nonparametric local estimator may be improved

by replacing pk of each summand in (2.8) by

exp{ak + bk(V̂i − v)}
1 +

∑K−1
i=1 exp{ak + bk(V̂i − v)}

,

where a = (a1, · · · , aK−1)′ and b = (b1, · · · , bK−1)′ are unknown vectors of

parameters. Here, the rational is to use a linear function ak + bk(V − v) to

approximate log{ηk(V )/ηK(V )} in a small neighborhood of v. The resulting

log-likelihood function is

`(a, b; v) =
n∑
i=1

wiKh(V̂i − v)

Ĝ(Ti ∧ t0)

K−1∑
k=1

(
Yik{ak + bk(V̂i − v)}

− log[1 +
K−1∑
k=1

exp{ak + bk(V̂i − v)}]
)
. (2.9)

Let â and b̂ be the maximizers for `(a, b; v) with respect to a and b. Also, let

η̂k(v) be

exp(âk)/[1 +
K−1∑
k=1

exp(âk)], k = 1, · · · , K − 1. (2.10)

In Appendix A, we show that when h = O(n−ν), 1/5 < ν < 1/2, η̂k(v) is con-

sistent estimator for ηk(v), k = 1, · · · , K−1. Moreover, the joint distribution

of

{(nh)1/2[f{η̂k(v)} − f{ηk(v)}], k = 1, · · · , K − 1} (3.1)

can be approximated by a multivariate normal with mean 0 and covariance

matrix Σ(v), where f(·) : [0, 1] → [−∞,∞] is a given smooth, strictly in-

creasing function. In this paper, we let f(·) be the logit function.

3. CONSTRUCTING POINTWISE AND SIMULTANEOUS

CONFIDENCE INTERVALS FOR ηk(·) OVER THE RISK

SCORE
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To estimate the covariance matrix Σ(v) associated with (3.1), we utilize a

perturbation-resampling procedure which is similar to a wild bootstrapping

method (Mammen, 1993) and has been successfully applied to many inter-

esting inference problems, especially in survival analysis (Gilbert et al, 2004;

Tian et al. 2005). Specifically, let {Bi, i = 1, · · · , n} be a random sample

from the unit exponential. Let a∗ = {a∗1, · · · , a∗K−1}′ be the minimizer of

`∗(a, b; v), a perturbed version of (2.9), where

`∗(a, b; v) =
n∑
i=1

Bi
wiKh(V

∗
i − v)

G∗(Ti ∧ t0)

( K−1∑
k=1

Yik{ak + bk(V
∗
i − v)}

− log[1 +
K−1∑
k=1

exp{ak + bk(V
∗
i − v)}]

)
.

Here, G∗(·) and V ∗i are the perturbed counterparts of Ĝ(·) and V̂i, respec-

tively, where

G∗(t) = exp

[
−

n∑
i=1

∫ t

0

Bid{I(Ti ≤ s,∆i = 0)}∑n
j=1 BjI(Tj ≥ s)

]
,

V ∗i = X ′iβ
∗ and β∗ is the solution to the perturbed estimating equation of

(2.4)
n∑
i=1

Biwi
G∗(Ti ∧ t0)

Xi{I(Ti ≤ t0, ε = 1)− g(X ′iβ)} = 0.

Furthermore, let the corresponding perturbed η∗k(v) be

exp(a∗k)/[1 +
K−1∑
k=1

exp(a∗k)], k = 1, · · · , K − 1.

It follows from similar arguments given in Cai et al. (2008) that conditional

on the data, the limiting distribution of

{(nh)1/2[f{η∗k(v)} − f{η̂k(v)}], k = 1, · · · , K − 1}

is the same as the unconditional distribution of (3.1). The covariance ma-

trix Σ(v) is identical to the limit of Σ̂(v), the conditional expected value
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of (nh)[f{η∗(v)} − f{η̂(v)}][f{η∗(v)} − f{η̂(v)}]′ (conditional on the data),

where f{η∗(v)} = (f{η∗1(v)}, · · · , f{η∗K−1(v)})′ and f{η̂(v)} = (f{η̂1(v)}, · · · ,
f{η̂K−1(v)})′.

To obtain an approximation to Σ̂(v) for a given data set, we generate

a large number, M, of independent realizations from {Bi, i = 1, · · · , n}.
For each realization, we obtain a realization of f{η∗(v)}. With M such

independent realizations, one may use the standard sample covariance matrix

estimate Σ̃(v) or a robust version thereof to estimate Σ(v). This, coupled with

the normal approximation to the distribution of f{η̂(v)}, provides confidence

intervals for f{ηk(v)}. A two sided (1− α) confidence interval for ηk(v) is

f−1[f{η̂k(v)} ± z(1−α/2)(nh)−1/2σ̃k(v)], (3.2)

where f(·) is the logit function, z(1−α/2) is the (1 − α/2) quantile of the

standard normal distribution and σ̃k(v) is the standard error estimate from

the kth diagonal element of Σ̃(v). Note that joint confidence regions for

{ηk(v), k = 1, · · · , K − 1} can also be obtained by considering a sup-type

statistic: supk=1,··· ,K−1|η̂k(v) − ηk(v)| to choose the cutoff point for the con-

fidence intervals (3.2).

Note that since the convergence rate for η̂(v) is slower than square root n,

in theory, there is no need to consider the sampling variation from β̂ and Ĝ(·)
for constructing asymptotically valid confidence intervals. However, we find

via extensive empirical studies that utilization of such perturbed versions of

these statistics can substantially improve the finite sample performance of

the nonparametric function estimation.

To construct a (1−α) simultaneous confidence band for ηk(v) over a pre-

specified interval I of v, we cannot use use the conventional method based on

a sup-statistic, supv∈I σ̃
−1
k (v)|(nh)1/2{η̂k(v)−ηk(v)}| due to the fact that as a

process in v, the limiting distribution of (nh)1/2{η̂k(v)−ηk(v)} does not exist.

On the other hand, one may utilize the strong approximation argument given

in Bickel and Rosenblatt (1973) to show that the appropriately scaled sup

of a specific transformation of η̂k(v) converges to a proper random variable

9
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in distribution. In practice, a (1 − α) simultaneous confidence band for

{ηk(v), v ∈ I} is

f−1[f{η̂k(v)} ± cα(nh)−1/2σ̃k(v)], (3.3)

where cα is obtained via the following equation:

pr(supv∈I σ̃
−1
k (v)|(nh)1/2[f{η∗k(v)} − f{η̂k(v)}]| < cα) = 1− α,

and {η∗k(v), v ∈ I} is obtained by the above perturbation-resampling method

with the same set of {Bi, i = 1, · · · , n}. The justification of adequacy of

this approximation is given in Appendix B. Note that unlike the pointwise

confidence interval estimation for ηk(v), it does not seem trivial to generalize

the above simultaneous confidence interval estimation for all k = 1, · · · , K−
1.

Like any typical nonparametric function estimation problem, it is im-

portant to know how to choose the smooth parameter h in practice. Here,

we propose a J−fold cross-validation method to choose an optimal h value.

To this end, we first randomly divide the entire data set D into J mutu-

ally exclusive, roughly equally sized subsets, say, D1, · · · , DJ . Let the set

of observations in D, but not in Dj, be denoted by D(−j), j = 1, · · · , J. We

construct the scoring system based on observations in D(−j) based on the es-

timate β̂(−j). Next, for a fixed h value, let the corresponding nonparametric

estimator for ηk(v) be η̂(k,−j)(v). With these subject-specific risk estimates,

we compute the log-likelihood function with observations in Dj:

`j(h) = −
∑
l∈Dj

wl

Ĝ(Tl ∧ t0)

[
K∑
k=1

Ylk log{η̂(k,−j)(V(l,−j))}

]
, (3.4)

where η̂(K,−j)(v) = 1−
∑K−1

k=1 η̂(k,−j)(v) and V̂(l,−j) = β̂′(−j)Xl, l ∈ Dj. Now, let

`cv(h) =
∑J

j=1 `j(h). We choose the maximizer hop of `cv(h) as an “optimal”

choice of the smooth parameter h.

It follows from the argument in Hardle et al. (1988), we expect that the

above hop is in the order of Op(n
−1/5). To ensure that the validity of the
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aforementioned large sample properties for η̂k(v), one may choose a smooth

parameter h = hop × n−ξ where 0 < ξ < 3/10. In practice, we find that the

resulting nonparametric estimator performs well with ξ = 0.1.

4. EXAMPLE

We illustrate the new proposal with a subset of the data from the DES

trial discussed in the Introduction section. This data set consists of patient-

level observations from the high DES dose groups. There were 242 patients

in these groups with a median followup time of 63 months. Here, T̃ is the

time from randomization to one of K = 4 competing events, and ε = 1, for

prostate cancer death; = 2, for cardiovascular related death; and = 3, for

other causes of death; = 4, for surviving beyond t0. At the end of the study,

there were 48, 78 and 34 patients died due to prostate cancer, heart diseases

and other causes, respectively. The baseline covariate vector U includes Age

(AG), weight index (WT), performance rating (PF), history of cardiovascu-

lar disease (HX), serum hemoglobin (HG), size of primary lesion (SZ) and

Gleason score (SG). Since this data set was analyzed in the past using a

discretized coding system for the covariates due to an easy clinical interpre-

tation (Byar and Green, 1980; Cheng et al., 1998), we followed the same

system in our analysis. For convenience to readers, the coding for covariates

is summarized in Table 1.

First, we consider a case for predicting the subject-level relatively long

term competing risks. To this end, let t0 = 5 (years). Since the primary

endpoint of the study is the time to prostate cancer death, we fitted the

data with a working model (2.2) by letting X = (1, U)′ and g be the anti-

logit function. The point estimate β̂ for β via (2.4) is given in Table 2

(a). Although only WY, SZ and SG are statistically significant with this

working model, we used the entire covariate vector U to build the risk scoring

V = β̂′X. In Figure 1(a), we present a smoothed density estimate of V, which

is a bimodal function. Most study subjects are clustered around V = −4.5

and −0.9.

11
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To estimate ηk(v), k = 1, 2, 3, we let the kernel Kh(·) for η̂k(v) be the stan-

dard Epanechnikov function. The smoothing parameter h was chosen by min-

imizing `cv(h) defined in Section 3 with a 10-fold cross-validation procedure.

Moreover, to make the smooth parameter in the order of slightly larger than

n−0.2, we multiply the above optimal value by 10−0.1. This results in h = 0.97.

Lastly we let the 2nd and 98th percentiles of the empirical distribution of V

be the the boundary points of I. We then constructed pointwise and simul-

taneous confidence intervals for {ηk(v), v ∈ I} with M = 1000 realizations of

the random sample from the unit exponential for the perturbation-resampling

procedure. In Figure 1(b), for the prostate cancer 5-year mortality rate es-

timation, we present the point estimates {η̂1(v), v ∈ I} with the solid curve,

and the 0.95 pointwise intervals (enclosed by dotted curves) and simultane-

ous band (gray shaded zone). For example, the estimated average prostate

cancer mortality rate for patients with an index score of -4.5 was 0.012 with

a 95% simultaneous confidence interval of (0.0006,0.17) and a 95% point-

wise confidence interval of (0.002,0.05), while the estimated average prostate

cancer mortality rate for patients with an index score of -0.9 was 0.35 with

a 95% simultaneous confidence interval of (0.27,0.41) and a 95% pointwise

confidence interval of (0.30,0.38). In Figure 1(c)(d), we present their coun-

terparts with respect to cardiovascular disease related death and death from

other causes.

Note that the 5-year rate from “other causes” is rather flat over v. On

the other hand, patients with low risk scores (< −2), the prostate cancer

death rates are low. However, the CV mortality rates are high. Therefore,

for this group of future patients treated by DES high doses, one would closely

monitor the patients’ CV functions. For patients with high risk score (> −2),

it seems that a high dose DES may not be a good choice for treating prostate

cancer.

Now, suppose that we are also interested in predicting a short term com-

peting risk profile. To this end, we let t0 = 2 (years). We fitted the data
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with a parametric working model (2.2). Here, X = (1, U)′. The estimated

regression coefficients are given in Table 2(b). Note that these estimates ap-

pear to be markedly different from those for the case with t0 = 5 (years),

suggesting that the risk score system may depend on the time point of inter-

est. Using the same setting as that for the above long term competing risk

prediction problem, the resulting smoothing parameter value h is 1.29. The

corresponding profiles for the dependent risks are given in Figure 2. For the

present case, the mortality rates for CV death or “other causes” death are

relatively flat over the entire index score. On the other hand, it appears that

the high dose DES works well for patients whose risk scores are lower than

−2.

5. REMARKS

It is important to note that in this paper the index scoring system is

constructed based on the contrast between the primary event rate and the

average of all other competing risks at a specific time point via (2.2). In

general, it is difficult, if not impossible, to create a univariate scoring system

for grouping the subjects, which is sensitive to differentiating subject-level

risks of all causes. On the other hand, for some specific situations, one

may be able to construct a “sharper” index score. For example, in the DES

study, since we are particularly concerned about the fatal cardiovascular risks

with the high DES dose treatment, for each subject a modified score may

be defined as a contrast of two univariate scores, one is β̂′X utilized in this

article, and the other one is derived by modeling the CV death rate π2(U)

via (2.2).

In this paper, we are interested in estimating the competing risks at a

fixed time point (or a set of time points). We find that in general, for a

subject with a covariate vector U , its score index for predicting long term

risks can be quite different from that for short term risks. If a single score

system is needed without a specific set of time points of interest, one may
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fit the data with a Cox-type model for the conditional cumulative incidence

function (Fine and Gray, 1999; Cheng et al., 1998), say, for example, of

the time to prostate cancer death in the DES example. The resulting risk

estimates η̂k(v), k = 1, · · · , K−1, in (2.5) are functions of time t. It would be

interesting to examine the properties of these estimates as processes of t for

a fixed risk index v. Cheng et al. (1998) proposed parametric counterparts

of such estimators, but their estimators are likely biased when the models

are not correctly specified.
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Appendix A: The Asymptotical Properties of

η̂(v)

Recalling that β̂ is a solution from the estimating equation

n−1

n∑
i=1

wi

Ĝ(Ti ∧ t0)
Xi{I(Ti ≤ t0, ε = 1)− g(β′Xi)} = 0,

it follows from the similar arguments used in Tian et al.(2007) that β̂ con-

verges to a deterministic limit β0 and

β̂ − β0 = n−1ξi + op(n
−1)

where β0 is the solution of r(β) = 0,

ξi = [E{ġ(β′0Xi)X
⊗2
i }]−1

(
Xi{I(T̃i ≤ t0, ε = 1)− g(β′Xi)}

−
∫ t0

0

K(Xi{I(T̃i ≤ t0, ε = 1)− g(β′Xi)}, u)
dMC

i (u)

G(Ti ∧ t0)

)
,

K(W,u) = W − E{WI(T̃ ∧ t0 ≥ u)}/pr(T̃ ∧ t0 ≥ u) for any random vector

W and MC
i (u) is the martingale process associated with the censoring time

Ci. Let Vi = β′0Xi and V̂i = β̂′Xi. With slightly abuse of notation, we let

{â(v)′, b̂(v)′}′ be the maximizer of

n∑
i=1

wiKh(V̂i − v)

Ĝ(Ti ∧ t0)

(
K−1∑
k=1

Yik{ak + bk(V̂i − v)} − log

[
1 +

K−1∑
k=1

exp{ak + bk(V̂i − v)}

])
,

and then it is the solution to the estimating equation

Ŝ(a, b; v) = {Ŝ ′1(a, b; v), · · · , Ŝ ′K−1(a, b; v)}′ = 0

where

Ŝk(a, b; v) = n−1

n∑
i=1

wiKh(V̂i − v)

Ĝ(Ti ∧ t0)

(
1

V̂i − v

){
Yik −

exp{ak + bk(V̂i − v)}
1 +

∑K−1
k=1 exp{ak + bk(V̂i − v)}

}
.
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To study the asymptotical properties of â(v), we let ∆̂a(v) = {â1(v) −
m1(v), · · · , âK−1(v)−mK−1(v)}′ and ∆̂b(v) = h{b̂1(v)−ṁ1(v), · · · , b̂K−1(v)−
ṁK−1(v)}, where mj(v) = log{ηj(v)/ηK(v)} and ṁj(v) = dmj(v)/dv, j =

1, · · · , K − 1. Therefore, {∆̂a(v)′, ∆̂b(v)′}′ is the solution to the estimating

equation

Q̂(∆a,∆b; v) = {Q̂′1(∆a,∆b; v), · · · , Q̂′K−1(∆a,∆b; v)}′ = 0

where Q̂k(∆a,∆b; v) is

n−1

n∑
i=1

wiKh(V̂i − v)

Ĝ(Ti ∧ t0)

(
1

(V̂i − v)/h

){
Yik −

e∆ak
+∆bk

(V̂i−v)/h+m̄k(V̂i,v)

1 +
∑K−1

k=1 e
∆ak

+∆bk
(V̂i−v)/h+m̄k(V̂i,v)

}

∆a = (∆a1 , · · · ,∆aK−1
)′, ∆b = (∆b1 , · · · ,∆bK−1

)′ and m̄k(u, v) = mk(v) +

ṁk(v)(u− v). Following the similar arguments used in Cai et al. (2008), one

may show that the changes in Q̂k(∆a,∆b; v) by replacing Ĝ(·) and V̂i by G(·)
and Vi, respectively, are asymptotically negligible. Let Qk(∆a,∆b;h, v) be

n−1

n∑
i=1

wiKh(Vi − v)

G(Ti ∧ t0)

(
1

(Vi − v)/h

){
Yik −

e∆ak
+∆bk

(Vi−v)/h+m̄k(Vi,v)

1 +
∑K−1

k=1 e
∆ak

+∆bk
(Vi−v)/h+m̄k(Vi,v)

}
,

and write difference Q̂k(∆a,∆b; v)−Qk(∆a,∆b; v) as

− n−1
n∑
i=1

{Ĝ(Ti ∧ t0)−G(Ti ∧ t0)} wiKh(V̂i − v)
Ĝ(Ti ∧ t0)G(Ti ∧ t0)

(
1

(V̂i − v)/h

)
{
Yik −

exp{∆ak + ∆bk(V̂i − v)/h+ m̄k(V̂i, v)}
1 +

∑K−1
k=1 exp{∆ak + ∆bk(V̂i − v)/h+ m̄k(V̂i, v)}

}
+
∫ v+h

v−h
Kh(s− v)

dPn

[
I(s < β̂′X)

(
1

(β̂′X − v)/h

){
Yk −

e∆ak
+∆bk

(β̂′X−v)/h+m̄k(β̂′X,v)

1 +
∑K−1

k=1 e∆ak
+∆bk

(β̂′X−v)/h+m̄k(β̂′X,v)

}

−I(s < β′0X)
(

1
(β′0X − v)/h

){
Yk −

e∆ak
+∆bk

(β′0X−v)/h+m̄k(β′0X,v)

1 +
∑K−1

k=1 e∆ak
+∆bk

(β′0X−v)/h+m̄k(β′0X,v)

} ]
× w

G(T ∧ t0)
,
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which is bounded by

sup
t
|Ĝ(t)−G(t)| × n−1

n∑
i=1

wiKh(V̂i − v)
Ĝ(Ti ∧ t0)G(Ti ∧ t0)

(
1

(V̂i − v)/h

) {
Yik

− exp{∆ak + ∆bk(V̂i − v)/h+ m̄k(V̂i, v)}
1 +

∑K−1
k=1 exp{∆ak + ∆bk(V̂i − v)/h+ m̄k(V̂i, v)}

}
+Op(h−1n−1/2)×

(
Gn

[
I(s < β̂′X)

(
1

(β̂′X − v)/h

){
Yk −

e∆ak
+∆bk

(β̂′X−v)/h+m̄k(β̂′X,v)

1 +
∑K−1

k=1 e∆ak
+∆bk

(β̂′X−v)/h+m̄k(β̂′X,v)

}

−I(s < β′0X)
(

1
(β′0X − v)/h

){
Yk −

e∆ak
+∆bk

(β′0X−v)/h+m̄k(β′0X,v)

1 +
∑K−1

k=1 e∆ak
+∆bk

(β′0X−v)/h+m̄k(β′0X,v)

} ]
×

w

G(T ∧ t0)
+Op(h2 + n−1/2)

)
= Op{n−1/2 + (nh2)−3/4+δ0 + (nh)−1},

for some small δ0 > 0, where Pn and P are the expectation operator with

respect to the empirical distribution of {(Ti,∆i, εi, Ui), i = 1, · · · , n} and

the distribution of (T,∆, ε, U), respectively, and Gn = n1/2(Pn − P). Fur-

thermore, since Q(∆a,∆b; v) = {Q1(∆a,∆b; v), · · · , QK−1(∆a,∆b; v)}′ can

be written as sum of n identically distributed independent random func-

tions, it follows from the standard arguments that it uniformly converges to

q(∆a,∆b; v) = {q1(∆a,∆b; v), · · · , qK−1(∆a,∆b; v)}′, where

qk(∆a,∆b; v) =

 g0(v)
∫
K(x)

[
ηk(v)− exp{∆ak

+∆bk
x+mk(v)}

1+
∑K−1
k=1 exp{∆ak

+∆bk
x+mk(v)}

]
dx

g0(v)
∫
xK(x)

[
ηk(v)− exp{∆ak

+∆bk
x+mk(v)}

1+
∑K−1
k=1 exp{∆ak

+∆bk
x+mk(v)}

]
dx

 ,

and g0(·) is the density function of the random variable β′0X. Since (∆′a,∆
′
b)
′ =

(0′, 0′)′ is the unique solution of q(∆a,∆b; v) = 0. ∆̂a(v) and ∆̂b(v) converge

to zero uniformly in v, assuming that the “slope” matrix of q(∆a,∆b; v) is

nonsingular. Coupled with the consistency of ∆̂a and ∆̂b, the Taylor series

expansion can be used to show that

∆̂a(v) = A(u)−1n−1

n∑
i=1

wiKh(V̂i − v)

Ĝ(Ti ∧ t0)


Yi1 − exp{m̄1(V̂i,v)}

1+
∑K−1
k=1 exp{m̄k(V̂i,v)}
· · ·

Yi(K−1) − exp{m̄K−1(V̂i,v)}
1+
∑K−1
k=1 exp{m̄k(V̂i,v)}

+op{(nh)−1/2},
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where

A(u) = g0(v)


η1(u){1− η1(u)} −η1(u)η2(u) · · · −η1(u)ηK−1(u)
−η2(u)η1(u) η2(u){1− η2(u)} · · · −η2(u)ηK−1(u)
· · · · · · · · · · · ·

−ηK−1(u)η1(u) −ηK−1(u)η2(u) · · · ηK−1(u){1− ηK−1(u)}

 .

Again, following the similar arguments in Cai et al. (2008), one may show

that

n−1

n∑
i=1

wiKh(V̂i − v)

Ĝ(Ti ∧ t0)

{
Yik −

exp{m̄k(V̂i, v)}
1 +

∑K−1
k=1 exp{m̄k(V̂i, v)}

}
can be approximated by

n−1

n∑
i=1

wiKh(Vi − v)

G(Ti ∧ t0)

{
Yik −

exp{m̄k(Vi, v)}
1 +

∑K−1
k=1 exp{m̄k(Vi, v)}

}
uniformly in v up to an order of op{(nh)−1/2} for h = n−ν , ν ∈ (1/5, 1/2).

Noting that the consistent estimator for ηk(v) is

η̂k(v) =
exp{âk(v)}

1 +
∑K−1

j=1 exp{âj(v)}
,

by δ−method we have
f{η̂1(v)} − f{η1(v)}
f{η̂2(v)} − f{η2(v)}

· · ·
f{η̂K−1(v)} − f{ηK−1(v)}


=D(v)A(u)∆̂a(v)/g0(v) + op{(nh)−1/2}

=D(v)n−1
n∑
i=1

wiKh(Vi − v)
g0(v)G(Ti ∧ t0)


Yi1 − exp{m̄1(Vi,v)}

1+
∑K−1
k=1 exp{m̄k(Vi,v)}
· · ·

Yi(K−1) −
exp{m̄K−1(Vi,v)}

1+
∑K−1
k=1 exp{m̄k(Vi,v)}

+ op{(nh)−1/2},

where D(v) = diag[ḟ{η1(v)}, · · · , ḟ{ηK−1(v)}] and ḟ(·) is the derivative of

f(·). Therefore by the central limit theorem

(nh)1/2[f{η̂(v)} − f{η(v)}]→ N{0,Σ(v)},

in distribution as n→∞.
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Appendix B: The Justification of the Resam-

pling Methods

To justify the resampling-based variance estimator, note that the variance

estimator σ̃2
k(v) can be approximated by

ḟ 2{η̂k(v)}
ĝ2

0(v)
n−1

n∑
i=1

EBi

[
wiKh(V

∗
i − v)

G∗(Ti ∧ t0)
{Yik −

eâk(v)+b̂k(V ∗i −v)

1 +
∑K−1

k=1 e
âk(v)+b̂k(V ∗i −v)

}Bi

]2

=
ḟ 2{η̂k(v)}
ĝ2

0(v)
n−1

n∑
i=1

[
wiKh(V̂i − v)

Ĝ(Ti ∧ t0)
{Yik −

eâk(v)+b̂k(V̂i−v)

1 +
∑K−1

k=1 e
âk(v)+b̂k(V̂i−v)

}

]2

+ op(1),

which uniformly converges to σ2
k, the asymptotical variance of n1/2[f{η̂k(v)}−

f{ηk(v)}], in probability as n → ∞, where EBi is the expectation with re-

spect to the random weights {B1, · · · , Bn}, which are independent of the

observed data. The first approximation follows from the fact that |β̂∗− β̂|+
supt |G∗(t) − Ĝ(t)| is in the order of Op(n

−1/2) and similar arguments used

to bound the difference between Q̂k(∆a,∆b; v) and Qk(∆a,∆b; v).
To justify the proposed procedure for constructing the simultaneous con-

fidence band of ηk(v), v ∈ I, first note that we have already established that
uniformly in v,

(nh)1/2[f{η̂k(v)} − f{ηk(v)}]

=(nh)1/2 ḟ{ηk(v)}
g0(v)

n−1
n∑
i=1

wiKh(Vi − v)
G(Ti ∧ t0)

{
Yi1 −

em̄k(Vi,v)

1 +
∑K−1

k=1 em̄k(Vi,v)

}
+ op(n−δ0)

=(nh)−1/2
n∑
i=1

K

(
Vi − v
h

)
ξki + op(n−δ0),

for some δ0 > 0, where

ξki =
ḟ{ηk(Vi)}wi

g0(Vi)G(Ti ∧ t0)
{Yik − ηk(Vi)}.

Let

S = sup
I

(nh)1/2|f{η̂k(v)} − f{ηk(v)}|/σ̃k(v)
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and immediately we have

S = sup
I

∣∣∣∣ 1

(nh)1/2σk(v)

n∑
i=1

K

(
Vi − v
h

)
ξki

∣∣∣∣ +op(n
−δ0).

From the strong approximation theorem, one may construct a sequence of

standard bivariate Wiener processes Wn(x, y) such that

S = sup
I

∣∣∣∣ 1

(nh)1/2σk(v)

∫
K

(
x− v
h

)
ydWn{M(x, y)}

∣∣∣∣ +op(n
−δ0)

in an appropriate probability space, where M(x, y) is the Rosenblatt trans-

formation such that M(Vi, ξi) is uniformly distributed on the unit square.

Furthermore, it follows from the similar arguments in Bickel and Rosenblatt

(1973) that

pr({−2 log(h)}1/2(S − dh) ≤ s) = exp(−2e−x) + o(1),

as n→∞, where

dh = {−2 log(h)}1/2 +
1

{−2 log(h)}1/2
log

{ ∫
K̇(t)2dt

4π
∫
K(t)2dt

}
.

Unlike the supremum value of tight processes, S itself does not converge

in distribution, since dh → ∞ as n → ∞. In parallel arguments S∗, the

resampling counterpart of S, is equivalent to

sup
I

∣∣∣∣ 1

(nh)1/2σk(v)

n∑
i=1

K

(
Vi − v
h

)
ξ̂kiBi

∣∣∣∣ +op(n
−δ0)

= sup
I

∣∣∣∣ 1

(nh)1/2σk(v)

∫
K

(
x− v
h

)
ydW ∗

n{M∗(x, y)}
∣∣∣∣ +op(n

−δ0)

for some δ0 > 0 where

ξ̂ki =
ḟ{η̂k(V̂i)}wi

ĝ0(V̂i)Ĝ(Ti ∧ t0)
{Yik − η̂k(V̂i)}
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and W ∗
n{M∗(x, y)} is a sequence of mean zero Gaussian processes, whose

covariance function is identical to that of Wn{M(x, y)} conditional on the

observed data. Let T ∗ = {−2 log(h)}1/2(S∗−dh) and T = {−2 log(h)}1/2(S−
dh). It follows that

|prB(T ∗ ≤ s)− pr(T ≤ s)| = op(n
−δ0),

which implies that we can use the conditional distribution of S∗ to approxi-

mate that of S, where prB is conditional on the observed data.
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Table 1: Coding of the covariates for the prostate cancer data

value

Variable 0 1 2
AG < 75 years 75-79 years ≥ 80 years
WT ≥ 100 80-99 < 80
PF Normal Limited
HX No Yes
HG ≥ 12g/100ml 9-11.9 g/100ml <9 g/100ml
SZ < 30 cm2 ≥ 30 cm2

SG ≥ 10 > 10
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Table 2: Regression Coefficient Estimates for Model (2.2) with the data from
the high dose groups

(a) Time point t0 = 5 years
Coefficient Estimate Std. Error p-value

Intercept -4.64 0.79 < 0.01
AG -0.07 0.31 0.81
WT 0.66 0.37 0.07
PF 0.56 0.61 0.35
HX -0.56 0.46 0.23
HG 0.46 0.42 0.27
SZ 1.76 0.50 < 0.01
SG 3.37 0.75 < 0.01

(b) Time point t0 = 2 years
Coefficient Estimate Std. Error p-value

Intercept -5.87 1.12 < 0.01
AG -0.18 0.39 0.63
WT 0.74 0.40 0.06
PF -0.15 0.69 0.82
HX 0.29 0.54 0.58
HG 1.19 0.45 < 0.01
SZ 1.12 0.55 0.045
SG 3.25 1.05 < 0.01
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Figure 1: Consistent estimates (solid curve), pointwise 0.95 confidence inter-
vals (enclosed by dotted curves) and simultaneous intervals (gray area) for
various risks ηk(v) at t0 =5 years: (a) The density function for the index
score; (b) Inference for η1(v); (c) inference for η2(v) ; (d) Inference for η3(v).
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Figure 2: Consistent estimates (solid curve), pointwise 0.95 confidence inter-
vals (enclosed by dotted curves) and simultaneous intervals (gray area) for
various risks ηk(v) at t0 =2 years: (a) The density function for the index
score; (b) Inference for η1(v); (c) inference for η2(v) ; (d) Inference for η3(v).
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