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Abstract

Genetic association studies with longitudinal markers of chronic diseases (e.g.,
blood pressure, body mass index) provide a valuable opportunity to explore how
genetic variants affect traits over time by utilizing the full trajectory of longitudi-
nal outcomes. Since these traits are likely influenced by the joint effect of multiple
variants in a gene, a joint analysis of these variants considering linkage disequilib-
rium (LD) may help to explain additional phenotypic variation. In this article, we
propose a longitudinal genetic random field model (LGRF), to test the association
between a phenotype measured repeatedly during the course of an observational
study and a set of genetic variants. Generalized score type tests are developed,
which we show are robust to misspefication of within-subject correlation, a feature
that is desirable for longitudinal analysis. In addition, a joint test incorporating
gene-time interaction is further proposed. Computational advancement is made
for scalable implementation of the proposed methods in large-scale genome-wide
association studies (GWAS). The proposed methods are evaluated through exten-
sive simulation studies and illustrated using data from the Multi-Ethnic Study of
Atherosclerosis (MESA). Our simulation results indicate substantial gain in power
using LGRF when compared with two commonly used existing alternatives: (i)
single marker tests using longitudinal outcome and (ii) existing gene-based tests
using the average value of repeated measurements as the outcome.
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full trajectory of longitudinal outcomes. Since these traits are likely influenced by the joint effect of multiple variants

in a gene, a joint analysis of these variants considering linkage disequilibrium (LD) may help to explain additional

phenotypic variation. In this article, we propose a longitudinal genetic random field model (LGRF), to test the

association between a phenotype measured repeatedly during the course of an observational study and a set of genetic

variants. Generalized score type tests are developed, which we show are robust to misspefication of within-subject

correlation, a feature that is desirable for longitudinal analysis. In addition, a joint test incorporating gene-time

interaction is further proposed. Computational advancement is made for scalable implementation of the proposed

methods in large-scale genome-wide association studies (GWAS). The proposed methods are evaluated through

extensive simulation studies and illustrated using data from the Multi-Ethnic Study of Atherosclerosis (MESA).
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1. Introduction

Genome-wide association studies (GWAS) have been successful in identifying susceptibility

loci for risk factors of chronic diseases. For genetic studies of cardiovascular disease risk

factors, such as the Mulit-Ethnic Study of Atherosclerosis (MESA), observations at multiple

time points are available for each individual (Bild, et al., 2002). The longitudinal nature

of these studies results in more precise phenotypic characterization, enhancing the ability

to associate genes or chromosomal regions with the phenotypes and assess gene-time inter-

action. However, current statistical methods for testing genetic association in longitudinal

studies, in the presence of effect heterogeneity across time are limited, even for one single-

nucleotide polymorphism (SNP) at a time analysis (Fan, et al., 2012; Furlotte, Eskin and

Eyheramendy, 2012). Investigators often take a simple approach of collapsing the repeated

measurements into a single value and hence the method is not able to harness the power of the

complete information that is contained in the longitudinal trajectory. One can also apply the

standard methods available for correlated outcome models to better utilize the longitudinal

data, namely, random effects models (Fitzmaurice, Laird and Ware, 2011) and generalized

estimating equations (GEE) (Zeger and Liang, 1986). These methods are primarily proposed

for modeling and testing a limited number of SNPs, and cannot be directly applied to assess

the joint association of a longitudinally varying outcome with an entire gene or a region with

hundreds of SNPs without further modifications.

Recent studies showed the advantages of multi-marker tests over individual SNP analyses.

First, the genetic markers in LD with the causal SNP(s) carry additional information and

may enhance the power of identifying the true effect. Second, gene-based tests considerably

reduce the burden of multiple comparisons. Third, Region-based methods are appealing for

multi-ethnic cohorts due to differences in LD structure across ethnic groups and thus meta-

analysis of a region-based statistic is likely to be more consistent than meta-analysis of single
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marker tests across ethnicities. Last, gene-based tests enhance the power of identifying rare-

variant association in next generation sequencing studies (Morris and Zeggini, 2010). Two

notable existing approaches are the sequence kernel association tests (SKAT) (Wu, et al.,

2011) and similarity regression (SIMreg) (Tzeng, et al., 2009). From a random field framework

and borrowing ideas from spatial statistics, the genetic random field model (GenRF) was

recently developed for modeling and testing joint associations (He, et al., 2014; Li, et al.,

2014). So far, however, extensions of these methods are not available for longitudinal data.

It is desirable to have a multi-marker test for longitudinal studies that can incorporate the

time-dependent variation in outcome, utilize all the variants in a gene or region and boost

power in the presence of effect heterogeneity across time. Extending the GenRF method to

the longitudinal setting, we propose a longitudinal genetic random field model (LGRF) and

develop generalized score type tests to study the association between repeatedly measured

phenotypes and a set of genetic variants in a gene or region. The methods are evaluated

through extensive simulation studies and illustrated by analyzing the association between

blood pressure and 29 candidate genomic regions across four ethnic groups in MESA.

2. Method

2.1 Notation

Consider a study population of m subjects, and the i-th subject has ni repeated observations.

Each subject is sequenced in a region of interest with q variants, and measured on p additional

non-genetic covariates such as age, gender and other potential confounders. Let Yi,l be the

phenotypic value for the l-th observation on the i-th subject, measured at time ti,l; Gi =

(Gi,1, Gi,2, . . . , Gi,q)
T be the genotypes for the q variants within the region where Gi,h ∈

{0, 1, 2} for any 1 6 h 6 q, which does not change over time; X i,l = (Xi,l,1, . . . , Xi,l,p)
T be

the covariates corresponding to the l-th observation on the i-th subject, either time-varying

or time-invariant. We denote n =
∑
i ni, Y n×1 = (Y1,1, . . . , Y1,n1 , Y2,1, . . .)

T and define Xn×p,
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Gn×q similarly for covariates and genotypes. We are interested in investigating the association

between phenotype Y n×1 and variants Gn×q, adjusted for the effect of Xn×p.

2.2 Longitudinal Genetic Random Field Model

The GenRF method (He, et al., 2014) is a gene-based association test motivated by the

general idea that, if the genetic variants in a region are jointly associated with the phenotype,

then subjects having similar genotypes in that region will have similar phenotype (Tzeng,

et al., 2009). Motivated by development in spatial statistics (Cressie, 1993) and random

field theory (Besag, 1974; Adler and Taylor, 2007), GenRF views phenotypic values as a

random field on a genetic space where the vector of genotype sequences determines the

location in the space; i.e., the phenotype at each location is a random variable and these

random variables are possibly correlated depending on their spatial location, e.g., the closer

the more similar. It directly regresses the phenotype of a given subject on that of all others,

where the contribution of other subjects is weighted by their genotype similarity with the

given subject. This leads to a conditional autoregressive model commonly used in spatial

statistics to study spatial dependence.

With repeated measurements, one has to appropriately account for the within-subject

correlation between outcomes to obtain valid inference and improve efficiency. Extending

the GenRF model to the longitudinal setting, we propose a longitudinal GenRF (LGRF)

model, where the conditional mean of each observation is modeled as a weighted sum of all

other observations, including those from the same subject. In a longitudinal setting, one may

expect that phenotypes from the same subject may be more similar due to reasons other than

the shared genetic variants of interest. To capture this, we define a within-subject similarity,

which depends on the time between two measurements on the same subject; for example, if

two observations are measured closer in time, their within-subject similarity may be larger.

Formally LGRF model is written as:

http://biostats.bepress.com/umichbiostat/paper101



4 Biometrics, March 2014

Yi,l|Y −(i,l) = XT
i,lβ +

∑
k 6=l

w(ti,k, ti,l;η)(Yi,k −XT
i,kβ) + γ

∑
(j,k)6=(i,l)

si,j(Yj,k −XT
j,kβ) + εi,l, (1)

where Y −(i,l) denotes all other phenotypic values except Yi,l; X i,l and β are, respectively,

covariates and the corresponding regression coefficients, and thus XT
i,lβ is the contribution

to outcome mean from non-genetic covariates; εi,l ∼ i.i.d. N(0, σ2); w(ti,k, ti,l;η) is the

within-subject similarity between Yi,k and Yi,l with parameters η playing the role of in-

troducing within-subject correlation between repeated measurements, similar to parameters

in a correlation matrix in a GEE framework; si,j is the genetic similarity between subjects

i and j. Possible forms can be si,j =
∑q
h=1(Gi,h − 2ph)(Gj,h − 2ph) referred to as genetic

relationship (GR) (Yang, et al., 2011) where ph is the population allele frequency of h-th

SNP in the region, and the identity-by-state (IBS) similarity: si,j =
∑q
h=1(2− |Gi,h −Gj,h|).

Parameter γ measures the magnitude of the joint association between genetic variants and the

phenotype. If none of the genetic variants are associated with the phenotype, the phenotype

of subject i will be irrelevant to the phenotypes of others regardless of their proximity

in the genetic space, i.e., γ = 0. On the contrary, a large positive γ indicates a strong

spatial dependence or equivalently genetic association. Thus, γ can be interpreted as the

magnitude of the joint association between the q genetic variants and the phenotype. Briefly,

the conditional autoregressive model relates each observation to others measured on the same

subject by within-subject similarity w(ti,k, ti,l;η), and all other observations (including other

measurements on the same subject) in the study by genetic similarity si,j.

According to the factorization theorem of Besag (1974), the conditional model (1) uniquely

determines a joint distribution of Y :

Y |X = Xβ + v,v ∼ N(0, σ2{I −W (η)− γS}−1), (2)

where I is an n × n identity matrix; W (η) and S are matrices (n × n) composed of

w(ti,k, ti,l;η) and si,j, respectively. Specifically, the within-subject similarity matrix W (η) is

block diagonal with block i (ni × ni) corresponding to subject i and the (k, l)-th element of
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block i is w(ti,k, ti,l;η) except for diagonal elements ofW (η). The genetic similarity matrix S

is composed of m×m block matrices with dimension ni×nj, i, j = 1, . . . ,m, and all elements

in the (i, j)-th block are si,j except for the diagonal elements of S. The diagonal elements

of W (η) and S are 0 as in model (1) observations are not compared with themselves. To

evaluate the joint association of multiple genetic variants with the phenotype we can test

the null hypothesis H0 : γ = 0 involving a single parameter in the precision matrix (or

equivalently in the variance matrix).

With respect to the within-subject similarity, the random field model focuses on how the

observations are related, regardless of the direction (past or future) as opposed to transition

models which condition each observation only on the past observations. However, they can

result in very similar marginal correlation structures such as the first-order auto-regressive

(AR1) correlation. Examples of plausible W (η) are given below.

Example 1: One might assume observations from the same subject to be equally similar

and sets w(ti,k, ti,l;η) = η for ∀i, k, l, and in matrix notation, W (η) = ηT , where T is a

block diagonal matrix with block i, i = 1, . . . ,m, an ni × ni matrix with 0’s in the diagonal

and 1’s off-diagonal. Under H0 : γ = 0, the corresponding covariance matrix is σ2(I−ηT )−1.

This specification is equivalent to the usual compound symmetric correlation.

Example 2: One might assume each observation conditionally depends on only the near-

est observations before and after it (Markov property): w(ti,k, ti,l;η) = η if |k− l| = 1, and 0

otherwise. This is an approximation of the usual AR1 correlation by ignoring the edge effect

(Qu, et al., 2000). Again W (η) = ηT for a block diagonal matrix T , where the (k, l)-th

element of the i-th block is 1 if |k − l| = 1 and 0 otherwise.

In addition, multiple within-subject similarities can be combined for a better working preci-

sion matrix, adaptively approximating the underlying structure. Taking W (η) to be linear

in η, e.g., the two examples given above and their linear combinations, can lead to a rich
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class to accommodate many commonly used working correlation structures. A similar idea

has been studied by Qu, et al. (2000) to improve efficiency of estimation over GEE method.

As in the GEE framework, the within-subject similarity matrix W (η), or equivalently

the correlation matrix {I −W (η)}−1 under the null, is only a working assumption that

is not required to be correct for valid inference. Thus we present our test using a working

within-subject similarity matrix that is of the form ηT , as in the two examples, and note

the method applies to more general W (η). For simplicity, the matrix representation of the

LGRF model is given by:

Y |Y − = Xβ + (ηT + γS)(Y −Xβ) + ε, (3)

where Y is the n dimensional vector of all observations; Y |Y − stands for that each obser-

vation Y(i,l) is conditional on all other observations Y −(i,l); Matrices T and S have diagonal

elements equal to zero, to reflect that the mean of each element of Y only depends on other

elements but not on itself; ε = (ε1,1, . . . , ε1,n1 , ε2,1, . . .)
T is the residual vector. Since the

genetic similarities are compared across all observations, the model does not have the Markov

property, i.e., each observation has finite neighbors, typically assumed in a conditional auto-

regressive model in spatial statistics. Thus the regular likelihood-ratio test or score test

used in spatial statistics for testing spatial auto-correlation cannot be applied directly. Also,

because of the within-subject similarly, the pseudo-likelihood approach developed by He, et

al. (2014) does not apply. Instead, we propose a set of generalized score type tests.

2.3 Association Test under the Longitudinal Genetic Random Field Model

In this subsection we focus on developing a generalized score type test for testing H0 :

γ = 0 under model (3). The inference procedure is developed by treating the within-subject

correlation as a working model, leading to a test that is robust to misspecification of the

correlation structure. Model (3) states, given all other observations, the conditional mean of

each observation is linearly related to others, i.e., E(Y |Y −) = Xβ+ (ηT + γS)(Y −Xβ).

Hosted by The Berkeley Electronic Press
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Adopting the similar argument for the usual GEE method (Zeger and Liang, 1986) to our

conditional auto-regressive model, we construct the following generalized estimating function:

Uγ(β, η, γ) =
∂E(Y |Y −)

∂γ

T

{Y − E(Y |Y −)} = (Y − µ)TS(I − ηT − γS)(Y − µ), (4)

where µ = Xβ. The estimating equation is quadratic in Y because γ is a coefficient in an

auto-regressive model and corresponds to a parameter in the marginal variance as in (2).

In the Supplementary Materials section 1.1, we show that the above estimating function

is unbiased in the sense that its expectation is zero under the truth. Therefore, following

Boos (1992), we refer to it as a “generalized” score and the score evaluated at γ = 0, i.e.,

Uγ(β, η, 0) = (Y −µ)TS(I− ηT )(Y −µ), can be used to construct a generalized score type

test. Due to the unbiasedness, we show that Uγ(β, η, 0) has mean 0 under H0 and positive

mean γE{(Y − µ)TS2(Y − µ)} under H1 : γ > 0. This rationale leads to constructing a

generalized score statistic

QG =
Uγ(β̂, η̂, 0)

m
=

(Y − µ̂)TS(I − η̂T )(Y − µ̂)

m
(5)

and rejecting H0 when it is sufficiently large. In (5), µ̂ = Xβ̂ and η̂ are estimates under the

null hypothesis that γ = 0. Specifically, β̂ and η̂ are the solution to the following estimating

equations: 
Uβ(β, η, 0) = XT (I − ηT )(Y − µ) = 0

Uη(β, η, 0) = (Y − µ)TT (I − ηT )(Y − µ) = 0.

The first equation is the usual estimating equation for estimating β in GEE based on the

the joint distribution (2) as I − ηT is proportional to the inverse of a working correlation

matrix under H0. The second equation is derived by considering the estimating function

∂E(Y |Y −)
∂η

T
{Y − E(Y |Y −)} under H0. It is worth noting that the second estimating equa-

tion is linear in η. Thus the estimators β̂ and η̂ can be calculated by iteratively solving

linear equations. This property remains when we linearly combine multiple within-subject

similarities, leading to an efficient way to estimate the correlation structure.

http://biostats.bepress.com/umichbiostat/paper101
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We derive an asymptotically equivalent representation of QG under H0 and show that

this representation allows us to achieve theoretical protection against the misspecification

of within-subject correlation as well as facilitating computationally efficient implementation

suitable for large-scale studies. Specifically, we show in Supplementary Materials sections 1.2

and 1.3 that for all the genetic similarity metrics introduced previously, under H0, QG can

be represented as

QG =
1

2m
R1(η0, β̂)T

 0dq Idq

Idq 0dq

R1(η0, β̂) + c+ op(1),

where η0 is the true parameter under H0; Idq is a dq × dq identity matrix and 0dq is a zero

matrix; R1(η,β) = Z̃(η)T (Y − µ) and Z̃(η) = {(I − ηT )Z,Z}; Z is an n× dq matrix for

some integer d, and c is a constant. The exact form or value of Z, d and c depend on the

chosen genetic similarity and the details are given in the Supplementary Materials sections

1.2 and 1.4. For example, for GR similarity, Z, (n× q), is the centered genotype matrix, i.e.,

each column of the genotype matrix G is now centered by the genotype population mean

2ph. Note that R1(η0, β̂) =
∑m
i=1{Z̃i(η0)

T (Y i− µ̂i)}, which is a summation of m terms each

with expectation zero under the null regardless of the specified working correlation structure.

Therefore, the summand is an unbiased estimating function for β, and according to the theory

of M-estimators (Stefanski and Boos, 2002), 1√
m
R1(η0, β̂) is asymptotically normal with a

covariance matrix that can be robustly estimated by some sandwich covariance estimates,

leading to robustness to misspecification of working correlation.

In Results 2 and 3 of Supplementary Materials, using the theory of M-estimation as well

as distributions for quadratic forms, we show that QG has an asymptotic distribution

1

2

2dq∑
k=1

λkχ
2
k + c

under H0, where c is a constant which does not affect the inference; χ2
k’s are i.i.d. Chi-square

distributions with degree of freedom one; λk are eigenvalues of a 2dq × 2dq matrix

Hosted by The Berkeley Electronic Press
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 0dq Idq

Idq 0dq

Σ,

where Σ can be consistently estimated by a sandwich covariance estimate Σ̂, defined in Result

2 of the Supplementary Materials. Moreover, the null distribution of QG only depends on

the eigen-values of a 2dq × 2dq matrix. As the number of variants in a target gene q is

relatively small, it is computationally efficient and hence suitable for large scale GWAS. To

obtain the p-value, Davies’ method (1980) can be used as a computationally efficient way

to analytically calculate the tail probability of a mixture of chi-squares by inverting the

corresponding characteristic function.

2.4 Testing for the Joint Effect of Gene and Gene-time Interaction

As in a regression framework interaction effect is typically modeled using new variables

defined as the product of two interacting factors, similarly, we can define interaction terms,

Giti,l = (Gi,1ti,l, Gi,2ti,l, . . . , Gi,qti,l)
T , and treat them the same way as Gi. Therefore the

modified LGRF is given by:

Yi,l|Y −(i,l) = XT
i,lβ +

∑
k 6=l

w(ti,k, ti,l;η)(Yi,k −XT
i,kβ) + γ1

∑
(j,k)6=(i,l)

si,j(Yj,k −XT
j,kβ)

+ γ2
∑

(j,k)6=(i,l)

sGTil,jk(Yj,k −XT
j,kβ) + εi,l,

where sGTil,jk is the similarity generated by gene-time interaction terms, similar to the genetic

similarity; and γ1 and γ2 represent the genotype main effect and gene-time interaction

effect, respectively. The IBS similarity is not suitable for the interaction terms because it

is specifically designed for genetic variants/imputed dosage lying between 0 and 2. In the

spirit of genetic relationship similarity, we define sGTil,jk = ψ(Giti,l,Gjtj,k) =
∑q
h=1(Gi,hti,l −

Ght)(Gj,htj,k − Ght), where Ght = 1
n

∑
(i,l)Gi,hti,l. Considering a working within-subject

similarity matrix ηT as before, in matrix form the model is written as

Y |Y − = Xβ + (ηT + γ1S + γ2SGT )(Y −Xβ) + ε, (6)
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where SGT is the similarity matrix of the interaction terms with the (l, k)-th element of the

(i, j)-th block (ni × nj) equal to sGTil,jk except for the diagonal of SGT . Under this model, we

can evaluate the joint effect of gene and gene-time interaction by testing HJ
0 : γ1 = γ2 = 0.

Denoting γ = (γ1, γ2)
T , following previous development, we construct two estimating

function with respect to γ1 and γ2:
Uγ1(β, η,γ) = (Y − µ)TS(I − ηT − γ1S − γ2SGT )(Y − µ)

Uγ2(β, η,γ) = (Y − µ)TSGT (I − ηT − γ1S − γ2SGT )(Y − µ).

As before, evaluating the corresponding estimating functions at HJ
0 : γ1 = γ2 = 0 leads to

the following generalized score statistics
QG = Uγ1(β̂, η̂,0)/m = (Y − µ̂)TS(I − ηT )(Y − µ̂)/m

QGT = Uγ2(β̂, η̂,0)/m = (Y − µ̂)TSGT (I − ηT )(Y − µ̂)/m.

We propose to combine these two by:

QJ = αGQG + αGTQGT = (Y − µ̂)T (αGS + αGTSGT )(I − ηT )(Y − µ̂)/m,

where αG =

√
v2GT

v2GT+v2G
and αGT =

√
v2G

v2GT+v2G
; v2G = 2tr(S2) and v2G = 2tr(S2

GT ) are pro-

portional to the variance of Uγ1 and Uγ2 respectively. Though the choice of weights can be

arbitrary depending on the need of assessing marginal or interaction effect, our weights

are defined such that αGQG and αGTQGT have approximately equal variance. Defining

ZGT as the centered gene-interaction matrix, i.e., each gene-interaction term Gi,hti,l is

centered by the its mean Ght, Z̃J(η) = {α
1
2
G(I − ηT )Z, α

1
2
GT (I − ηT )ZGT , α

1
2
GZ, α

1
2
GTZGT}

and RJ1(η,β) = Z̃J(η)T (Y −µ), we can rewrite the joint test statistic as a quadratic form:

QJ =
1

2m
RJ1(η0, β̂)T

 0(d+1)q I(d+1)q

I(d+1)q 0(d+1)q

RJ1(η0, β̂) + cJ + op(1),

where d is a constant depending on the chosen genetic similarity for the marginal genetic

effect as in Section 2.4 and cJ is a constant similar to c. Although more complex, QJ

has an identical form as QG in Section 2.4. The inference follows directly from previous
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development and therefore we omit the details. The proposed method does not test the

gene-time interaction separately; instead, it improves the power of LGRF test by exploiting

the potential interaction effect if exists.

3. Illustration in MESA

We refer to the LGRF test for the marginal effect of a gene as LGRF-G and the joint test

as LGRF-J. We illustrate the proposed methods using data from the Multi-Ethnic Study of

Atherosclerosis (MESA). MESA is a collaborative longitudinal study initiated in July 2000

to investigate the prevalence, correlates, and progression of subclinical cardiovascular disease

(CVD) (Bild, et al., 2002). From 2000 to 2007, four examinations of blood pressure (BP) were

conducted over 18- to 24-month periods. We aimed to replicate the findings (29 significant

SNPs associated with blood pressure) of the International Consortium for Blood Pressure

(ICBP) (International Consortium for Blood Pressure Genome-Wide Association Studies,

2011) by a region based analysis. A total of 6361 subjects consisting of 2526 Caucasians

(CAU), 1611 African Americans (AFA), 1449 Hispanics (HIS) and 775 Asian of Chinese

descent (CHN) with genome-wide genotype data, systolic blood pressure (sBP) and diastolic

blood pressure (dBP) outcomes were considered in the current analysis. The longitudinal

summaries and characteristics of the study population, descriptive statistics are provided in

Supplementary Tables 8 - 11. For this analysis, we used SNPs that have been directly geno-

typed using the Affymetrix Genome-Wide Human SNP Array 6.0 or imputed as per MESA

protocol. Imputation was performed using the IMPUTE 2.1.0 program (Marchini, et al.,

2007) in conjunction with HapMap Phase I and II reference panels (CEU+YRI+CHB+JPT,

release 22 - NCBI Build 36 for African-, Chinese- and Hispanic-American participants; CEU,

release 24 - NCBI Build 36 for European Americans). We selected genomic regions around

the 29 index SNPs that have demonstrated significant (p-value < 10−9) by the ICBP. Each

genomic region was defined according to the following criteria: when the index SNP fell
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within a gene, we selected all SNPs within the gene +/- 5kb and adopted the gene’s name.

When the index SNP fell outside of a gene, we selected the index SNP plus all SNPs +/- 50kb

and name the region after the index SNP. All SNPs are included in the analysis without any

minor allele frequency filters. We applied LGRF-G and LGRF-J using longitudinal outcomes

and SKAT using the average value of repeated measures to test the association between each

candidate region and BPs (sBP and dBP) for the four ethnic groups separately, adjusting for

age, gender, BMI and top two principal components (PCs) to correct for potential within-

ethnicity stratification. Since only the first two principal components were associated with

either systolic or diastolic blood pressure in any ethnicity at p < 0.01 (Supplementary Table

7), we only included these two principal components as adjustment variables. We adjusted

the measured blood pressures for participants taking anti-hypertension medications using the

standard procedure of adding 10 mmHg to systolic blood pressure and 5 mmHg to diastolic

blood pressure (Cui, et al., 2003). The SKAT was implemented with a linear kernel and

equal weights on the SNPs. Based on the p-values of the stratified analysis, a meta-analysis

was done by Fisher’s method.

We analyzed 29 regions with details summarized in the Supplementary Tables 12 - 21. The

LGRF-G test results in comparable or smaller p-values than SKAT using average outcomes in

most cases. We expect LGRF-J to have higher power than LGRF-G when there exists gene-

time interaction, but lower power when there is no such interaction. In the MESA example,

the LGRF-J test has smaller p-values than LGRF-G in relatively few instances (for example

association of C10orf107 with diastolic blood pressure in Table 1), but larger p-values than

LGRF-G in general. This may indicate that gene-time interaction does not have sufficient

contribution to the marginal gene-level association in most cases. Table 1 shows the results

of the top two associations between sBP/dBP and candidate regions. The top two regions

were selected according to the p-values of LGRF-G in meta-analysis using Fisher’s combined
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probability test. The region indexed by rs13082711 emerged as the most strongly associated

region. The meta-analysis p-values of LGRF-G are 8.69× 10−4 for sBP and 6.25× 10−4 for

dBP. Another suggestive association identified by LGRF-G that is consistent with the ICBP

analysis is between dBP and C10orf107 (p-value= 9.71 × 10−4), and LGRF-J exhibited a

smaller p-value for this association (p-value= 8.64× 10−4).

[Table 1 about here.]

4. Simulation Studies

We evaluated three classes of methods: (a) the proposed multi-marker tests for longitudi-

nal data: LGRF-G, LGRF-J; (b) a multi-marker test in cross-sectional studies using the

average of the repeated measures as a single outcome: SKAT; and (c) single-marker tests

for longitudinal outcomes: namely, GEE, adjusted by the Bonferroni correction. Specifically,

in LGRF-G, LGRF-J and GEE, a working compound symmetric correlation structure was

used, and SKAT was implemented with equal weights on the SNPs. Classes (b) and (c)

represent two commonly used strategies in practice as currently no multi-marker tests are

available for longitudinal data and the specific method (SKAT and GEE) is chosen to be

the representative in each class, recognizing that multiple other alternatives in each class

exist. Additional simulation studies with respect to the impact of different genetic similarity

measures, further evaluation of the power gain using a longitudinal design, use of LGRF in a

meta-analysis, and evaluation of type-I error rate and power at lower significance levels are

showed in the Supplementary Tables 2 - 7.

For each replicated dataset, subjects were randomly selected from the Caucasian (CAU)

ethnic group in MESA, and the variants commonly existing in all four ethnicities (154 SNPs)

in genotype region C10orf107 are included as the target region. We varied the number

of repeated measurements to be 4, 6 and 8, and number of subjects 600, 400 and 300
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respectively, keeping total number of observations as 2400. Assuming missing completely

at random, we first simulated the complete data, and then a missingness indicator with fixed

drop-out rate of 4% at each exam was applied approximating what is observed in the MESA

study.

4.1 Type-I Error Simulations

We evaluated the type-I error rate at level α = 0.05, 0.01, and 0.001 using 100000 replicates.

Data are generated from the model:

Yi,l = α0ti,l + εi,l, ti,l = 1, . . . , r, (7)

where α0 = 12
r

; r is the number of measurements per subject; εi = (εi,1, . . . , εi,r)
T indepen-

dently follows multivariate normal distribution with four types of covariance matrices:

• Independent (Ind.): εi ∼ N(0, σ2
indIr).

• Auto-regressive of order 1 (AR1): εi ∼ N(0,ΣAR), where ΣAR is an r × r matrix and its

(l, k) element is ρ|l−k|σ2
AR.

• Compound symmetry (CS): εi,l = bi + ε∗i,l, ε
∗
i,l ∼ N(0, σ2

error), bi ∼ N(0, σ2
CS), where ε∗i,l and

bi are independent.

• Mixed model with a random intercept and a random slope (RR): εi,l = b1i + b2iti,l/r+ ε∗i,l,

ε∗i,l ∼ N(0, σ2
error), b1i, b2i ∼ N(0, σ2

RR), where ε∗i,l, b1i and b2i are independent.

Where σ2
ind=16; σ2

AR = 6, ρ = 0.6; σ2
error = 2.25; σ2

CS = 2.25; σ2
RR = 1. The missingness

indicator was then applied to the simulated data with 4% drop-out rate. The empirical

type-I error rates are presented in Table 2. LGRF-G and LGRF-J both have well controlled

type-I error rates under all scenarios, even if the true correlation is not the assumed working

correlation “CS”. The tests also have valid type-I error rates at low α-levels (0.01 and 0.001).

The simulation results demonstrate that, consistent with the asymptotic result, the proposed

methods are robust to misspecification of within-subject correlation in finite samples. We
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note that the proposed methods tend to be slightly conservative at lower significance levels

(Supplementary Table 5) due to the use of sandwich estimator as in regular GEE.

[Table 2 about here.]

4.2 Power Simulations

In the first set of power simulations, one out of 154 SNPs was randomly set to be causal.

We evaluated two distinct scenarios where the effect of the single causal SNP is manifested

through: 1. its marginal association with outcome, without any gene-time interaction; 2. its

interaction with time (SNP × Time interaction). The data was generated respectively:

1. Gene marginal effect : Yi,l = α0ti,l + α1Gi + εi,l, ti,l = 1, . . . , r, (8)

2. Gene-time interaction : Yi,l = α0ti,l + α2Giti,l + εi,l, ti,l = 1, . . . , r, (9)

where Gi is the genotype of subject i for the randomly selected causal SNP; α0 = 12/r,

α1 = 0.4 and α2 = 0.6/r; r is the number of measurements per subject. To mimic the

real data scenario, α1 and α2 were elicited based on fitting single SNP models with and

without gene-time interaction to MESA data. We chose a large α0 in our simulation studies

to illustrate the power gain that can be expected from a longitudinal design with strong time

trend in the mean outcome levels compared to using the average of repeated measures. We

recognize that smaller values of α0 will lead to smaller power differences.

In the second set of simulations, ten out of 154 were randomly set to be causal each time.

Among them, six SNPs have only marginal effects, three have both marginal and interaction

effects and the remaining one has only an interaction effect. The true model is of the form:

Yi,l = α0ti,l + α∗1
∑

16k69

Gi,k + α∗2
∑

76k610

Gi,kti,l + εi,l, ti,l = 1, . . . , r.

Where Gi,k is the genotype of subject i on the k-th randomly selected causal SNP. The

coefficients are proportional to α1 and α2: α
∗
1 = α1/10 = 0.04 and α∗2 = α2/10 = 0.06/r,

such that the empirical powers are differentiable.
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Two important points are illustrated by this simulation: 1. the advantage of incorporating

longitudinal information over using only the average outcome; 2. The use of multi-marker

tests over single-marker tests. The proposed multi-marker tests using the longitudinal out-

come have larger power than SKAT using the average of outcomes, as the proposed tests

use the whole trajectory of longitudinal outcomes as opposed to only information contained

in the average. When the number of repeated measurements increases, the power becomes

more distinct. Not surprisingly, LGRF-J test has slightly lower power than LGRF-G because

gene-time interaction does not exist in these scenarios.

[Table 3 about here.]

When the causal SNP has only an interaction effect (Table 4), the relative performance

of the methods using repeated measures compared with the one using average outcome

is more distinct. In addition, the joint test LGRF-J is able to further enhance power in

these scenarios because it incorporates the gene-time interaction explicitly. We note that the

power difference between LGRF and SKAT using average outcome is mainly attributed to

the longitudinal design rather than the difference between genetic random field model and

SKAT (Supplementary Table 4).

[Table 4 about here.]

We also note that the proposed multi-marker tests have larger power than single-marker

tests using GEE with Bonferroni correction (Tables 3-5), consistent with results found in

cross-sectional studies where advantages of multi-marker tests over single-marker tests have

been demonstrated repeatedly. The advantage in power is more substantial when there are

multiple causal SNPs (Table 5) than when there is only one causal SNP (Tables 3-4).

[Table 5 about here.]
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5. Discussion

We extended the genetic random field model to the longitudinal setting and developed

generalized score type tests to test the joint association between a set of genetic variants and

a repeatedly measured phenotype. Besides the advantages of region-based tests over single-

marker tests in cross-sectional studies, the LGRF model is able to utilize all the repeated

measurements, incorporate gene-time interaction explicitly and result in higher power. As

in GenRF, LGRF models the joint association using a single parameter by considering

the similarity in phenotype induced by genetic similarity. A main challenge in modeling

longitudinal data is to account for within-subject correlation and correlation is conceptually

viewed and modeled in a unified way as the joint genetic association in LGRF. Furthermore,

the specified correlation structure is treated as a working assumption in inference and the

resulting LGRF tests are robust to misspecification.

LGRF tests are generalized score tests that only need to fit the model under the null

hypothesis, which is irrelevant to the target region. Users can fit the null model once and

test all regions without repeatedly fitting the model. In addition, the computational cost of

LGRF mainly depends on the fixed number of variants in the region but not the sample size.

This property improves the computational efficiency dramatically (see Supplementary Table

1) especially when the target region is small, for example if investigators are only interest in

the exon.

We note that not only the longitudinal outcomes precisely describe the phenotype progres-

sion, considering time varying exposure and its interaction with genotype may also improve

the discovery process. However, an analysis using the average outcome and a single measure

of exposure will lose the longitudinal features of the time varying exposure variables and

their correlations, reducing the rich exposure and outcome data to an aggregate summary

measure. In the spirit of multi-marker based tests for gene-environment interaction, such as
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GESAT (Lin, et al., 2013), we expect that a potential future extension of LGRF towards

separately testing gene-time or gene-environment interaction in longitudinal studies with

time dependent covariates may enhance the discovery process. Finally, the proposed test is

only valid when the data is missing completely at random as in GEE (Zeger and Liang,

1986). Future work extending the method to cases other than this will be of interest.

6. Supplementary Materials

Web Appendices referenced in Sections 2, 3, 4 and 5, and the R code implementing the

method are available with this paper at the Biometrics website on Wiley Online Library. The

code and an illustrative example are also available at: http://sitemaker.umich.edu/statzihuai/

longitudinal genetic random field lgrf .
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Table 1
Analysis of Multi-Ethnic Study of Atherosclerosis (MESA) data: top two regions associated with systolic blood

pressure/diastolic blood pressure. Each cell shows the p-value. CAU: Caucasians; AFA: African Americans; HIS:
Hispanics; CHN: Asians of Chinese descent. Meta: Meta-analysis combining the results of four ethnic groups using
Fisher’s combined probability test. LGRF-G: the LGRF test for the marginal effect of a gene. LGRF-J: the LGRF
test for the joint effect of gene and gene-time interaction. The working correlation assumed in LGRF is compound

symmetric. SKAT-Avg.: cross-sectional SKAT using the average value of repeated measurements as the outcome.The
column “SNPs” shows the total number of typed and imputed SNPs in each ethnic group.

Systolic Blood Pressure

Region Indexed by rs13082711 Region Indexed by rs1378942

SNPs LGRF-G LGRF-J SKAT-Avg. SNPs LGRF-G LGRF-J SKAT-Avg.

CAU 111 0.0052 0.0078 0.0047 84 0.0019 0.0023 0.0019
AFA 82 0.6750 0.6315 0.6806 70 0.1894 0.2047 0.1929
HIS 82 0.0267 0.0453 0.0307 70 0.5269 0.3446 0.4094

CHN 79 0.0191 0.0496 0.0302 70 0.8798 0.9364 0.8969

Meta - 0.0009 0.0036 0.0013 - 0.0258 0.0248 0.0222

Diastolic Blood Pressure

Region Indexed by rs13082711 C10orf107

SNPs LGRF-G LGRF-J SKAT-Avg. SNPs LGRF-G LGRF-J SKAT-Avg.

CAU 111 0.1774 0.1185 0.1704 190 0.0283 0.0412 0.0202
AFA 82 0.0263 0.0222 0.0233 157 0.0129 0.0106 0.0152
HIS 82 0.0086 0.0349 0.0058 157 0.0104 0.0081 0.0234

CHN 79 0.0292 0.0713 0.0308 154 0.5361 0.4998 0.4757

Meta - 0.0006 0.0024 0.0004 - 0.0010 0.0009 0.0015
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Table 2
Type-I Error Rate Corresponding to Different Within-Subject Correlation Structures. Each cell represents the

empirical type-I error rate evaluated at α=0.05, 0.01 and 0.001 based on 100000 replicates. The total number of
observations is 2,400 and repeated measurements per subject were generated in the same follow-up period according

to different correlation structures. Ind.: the repeated measurements are independent. CS: the correlation is compound
symmetric. AR1: the repeated measurements follow a first-order auto-regressive model. RR: observations follow a
mixed model with a random intercept and a random slope. LGRF-G: the LGRF test for the marginal effect of a
gene. LGRF-J: the LGRF test for the joint effect of gene and gene-time interaction. The working correlation

assumed in LGRF is CS.

Type-I Error Rate

Four Repeated Measurements (600 Subjects)

LGRF-G LGRF-J
α = 0.05 0.01 0.001 0.05 0.01 0.001

Ind. 0.0495 0.0096 0.0008 0.0493 0.0097 0.0008
CS 0.0493 0.0099 0.0009 0.0491 0.0096 0.0009

AR1 0.0499 0.0097 0.0009 0.0507 0.0097 0.0009
RR 0.0497 0.0094 0.0009 0.0498 0.0096 0.0008

Six Repeated Measurements (400 Subjects)

LGRF-G LGRF-J
α = 0.05 0.01 0.001 0.05 0.01 0.001

Ind. 0.0501 0.0096 0.0009 0.0501 0.0093 0.0010
CS 0.0501 0.0097 0.0009 0.0488 0.0089 0.0008

AR1 0.0485 0.0093 0.0009 0.0494 0.0097 0.0008
RR 0.0497 0.0096 0.0010 0.0500 0.0095 0.0009

Eight Repeated Measurements (300 Subjects)

LGRF-G LGRF-J
α = 0.05 0.01 0.001 0.05 0.01 0.001

Ind. 0.0488 0.0091 0.0008 0.0483 0.0091 0.0007
CS 0.0484 0.0092 0.0010 0.0488 0.0090 0.0007

AR1 0.0474 0.0090 0.0008 0.0471 0.0089 0.0009
RR 0.0492 0.0095 0.0008 0.0485 0.0091 0.0008
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Table 3
Power comparisons when one randomly selected SNP is causal and has a marginal effect. Each cell represents the

empirical power from 500 replicates at level α=0.05. The total number of observations is 2,400 and repeated
measurements were recorded in the same follow-up period. Ind.: the repeated measurements are independent. CS: the
correlation is compound symmetric. AR1: the repeated measurements follow a first-order auto-regressive model. RR:

observations follow a mixed model with a random intercept and a random slope. LGRF-G: the LGRF test for the
marginal effect of a gene. LGRF-J: the LGRF test for the joint effect of gene and gene-time interaction. The

working correlation assumed in LGRF is CS. SKAT-Avg.: cross-sectional SKAT using the average value of repeated
measurements as the outcome. GEE-G: test the marginal association by GEE. GEE-J: jointly test the marginal

association and gene-time interaction by GEE. These single-marker tests were implemented by testing every SNP in
the region and adjusting the minimum p-value by the Bonferroni correction.

Power: Single SNP Marginal Effect

Four Repeated Measurements (600 Subjects)

LGRF-G LGRF-J SKAT-Avg. GEE-G GEE-J

Ind. 0.42 0.39 0.34 0.26 0.19
CS 0.53 0.49 0.43 0.41 0.33

AR1 0.46 0.45 0.38 0.32 0.28
RR 0.58 0.55 0.46 0.50 0.43

Six Repeated Measurements (400 Subjects)

LGRF-G LGRF-J SKAT-Avg. GEE-G GEE-J

Ind. 0.48 0.47 0.31 0.29 0.26
CS 0.40 0.41 0.28 0.28 0.23

AR1 0.41 0.38 0.29 0.26 0.21
RR 0.51 0.48 0.35 0.42 0.37

Eight Repeated Measurements (300 Subjects)

LGRF-G LGRF-J SKAT-Avg. GEE-G GEE-J

Ind. 0.40 0.39 0.25 0.29 0.23
CS 0.36 0.35 0.25 0.22 0.18

AR1 0.36 0.36 0.22 0.23 0.21
RR 0.49 0.45 0.24 0.34 0.30
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Table 4
Power comparisons when one randomly selected SNP is causal and has only a gene-time interaction effect.
Each cell represents the empirical power from 500 replicates at level α=0.05. The total number of observations is
2,400 and repeated measurements were recorded in the same follow-up period. Ind.: the repeated measurements are

independent. CS: the correlation is compound symmetric. AR1: the repeated measurements follow a first-order
auto-regressive model. RR: observations follow a mixed model with a random intercept and a random slope.

LGRF-G: the LGRF test for the marginal effect of a gene. LGRF-J: the LGRF test for the joint effect of gene and
gene-time interaction. The working correlation assumed in LGRF is CS. SKAT-Avg.: cross-sectional SKAT using

the average value of repeated measurements as the outcome. GEE-G: test the marginal association by GEE. GEE-J:
jointly test the marginal association and gene-time interaction by GEE. These single-marker tests were implemented

by testing every SNP in the region and adjusting the minimum p-value by the Bonferroni correction.

Power: Single SNP×Time Effect

Four Repeated Measurements (600 Subjects)

LGRF-G LGRF-J SKAT-Avg. GEE-G GEE-J

Ind. 0.38 0.39 0.29 0.21 0.20
CS 0.48 0.54 0.36 0.33 0.46

AR1 0.41 0.49 0.34 0.27 0.34
RR 0.53 0.57 0.39 0.42 0.50

Six Repeated Measurements (400 Subjects)

LGRF-G LGRF-J SKAT-Avg. GEE-G GEE-J

Ind. 0.38 0.43 0.20 0.21 0.23
CS 0.33 0.44 0.19 0.17 0.37

AR1 0.31 0.39 0.21 0.16 0.21
RR 0.42 0.50 0.25 0.27 0.38

Eight Repeated Measurements (300 Subjects)

LGRF-G LGRF-J SKAT-Avg. GEE-G GEE-J

Ind. 0.32 0.36 0.16 0.16 0.19
CS 0.25 0.36 0.16 0.12 0.30

AR1 0.25 0.35 0.14 0.13 0.16
RR 0.35 0.44 0.16 0.16 0.31
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Table 5
Power comparisons when randomly selected multiple SNPs are causal and have both marginal and interaction

effects. Each cell represents the empirical power from 500 replicates at level α=0.05. The total number of
observations is 2,400 and repeated measurements were recorded in the same follow-up period. Ind.: the repeated

measurements are independent. CS: the correlation is compound symmetric. AR1: the repeated measurements follow
a first-order auto-regressive model. RR: observations follow a mixed model with a random intercept and a random

slope. LGRF-G: the LGRF test for the marginal effect of a gene. LGRF-J: the LGRF test for the joint effect of gene
and gene-time interaction. The working correlation assumed in LGRF is CS. SKAT-Avg.: cross-sectional SKAT

using the average value of repeated measurements as the outcome. GEE-G: test the marginal association by GEE.
GEE-J: jointly test the marginal association and gene-time interaction by GEE. These single-marker tests were

implemented by testing every SNP in the region and adjusting the minimum p-value by the Bonferroni correction.

Power: Multiple SNPs Combined Effect

Four Repeated Measurements (600 Subjects)

LGRF-G LGRF-J SKAT-Avg. GEE-G GEE-J

Ind. 0.36 0.36 0.25 0.13 0.09
CS 0.50 0.49 0.37 0.19 0.18

AR1 0.43 0.42 0.35 0.19 0.17
RR 0.60 0.60 0.46 0.36 0.29

Six Repeated Measurements (400 Subjects)

LGRF-G LGRF-J SKAT-Avg. GEE-G GEE-J

Ind. 0.37 0.36 0.21 0.15 0.11
CS 0.33 0.35 0.21 0.12 0.10

AR1 0.32 0.32 0.22 0.13 0.10
RR 0.46 0.43 0.24 0.22 0.15

Eight Repeated Measurements (300 Subjects)

LGRF-G LGRF-J SKAT-Avg. GEE-G GEE-J

Ind. 0.30 0.30 0.17 0.11 0.11
CS 0.27 0.29 0.18 0.09 0.11

AR1 0.26 0.28 0.14 0.08 0.08
RR 0.40 0.41 0.20 0.19 0.15

http://biostats.bepress.com/umichbiostat/paper101
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