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SUMMARY

For modern evidence-based medicine, a well thought-out risk scoring system for predicting

the timing of the occurrence of a clinical event plays an important role in selecting prevention and

treatment strategies. Such an index system is often established based on the subject’s “baseline”

genetic or clinical markers via a working parametric or semi-parametric model. To evaluate the

adequacy of such a system, C-statistics are routinely used in the medical literature to quantify the

capacity of the estimated risk score in discriminating among subjects with different event times.

When the event time is possibly censored, however, the commonly used C-statistics estimate

parameters which may depend on the study-specific censoring distribution. In this article, we

present a simple C-statistic without this shortcoming. The new procedure consistently estimates

a conventional concordance measure which is free of censoring. We provide a large sample

approximation to the distribution of this estimator for making inferences about this measure.

Numerical studies are also conducted to investigate the performance of the new procedure.

Keywords: AUC; Cox’s proportional hazards model; Framingham risk score; ROC.
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1. INTRODUCTION

For modern clinical medicine, risk prediction procedures are valuable tools for disease pre-

vention and management. Pioneered by the Framingham study, risk score systems have been

established for assessing individual risks of developing cardiovascular diseases (CVD), cancer or

many other conditions within a certain time period (Anderson et al., 1991; D’Agostino et al.,

2008; Shariat et al., 2008; Parikh et al., 2008). A key component in the assessment of risk algo-

rithm performance is its ability to distinguish subjects who will develop an event (“cases”) from

those who will not (“controls”). This concept, known as discrimination, has been well studied

and quantified using, for example, the estimated AUC, the area under the observed Receiver

Operating Characteristics (ROC) curve, which is also referred as a “C-statistic” (Bamber, 1975).

Such a statistic is an estimated conditional probability that for any pair of “case” and “control”,

the predicted risk of an event is higher for the “case” (Hanley & McNeil, 1982).

If the primary response variable is the time to a certain event, the aforementioned procedure

for binary outcomes can be used to quantify the ability of the risk score system to differentiate

cases from controls at a time point t. If one is not interested in a particular time point, a standard

concordance measure may be used to evaluate the overall performance of the risk scoring system.

Specifically, let T be the event time, Z be a p× 1 covariate vector, and g(Z) be the theoretical

counterpart of the estimated risk score for the subject with Z. Consider two independent copies

{(T1, Z1, g(Z1))
′, (T2, Z2, g(Z2))

′} of (T, Z, g(Z))′. A commonly used concordance measure is

C = pr(g(Z1) > g(Z2) | T2 > T1) (1.1)

(Heagerty & Zheng, 2005). When T is subject to right censoring, as discussed in Heagerty &
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Zheng (2005) one would typically consider a modified Cτ with a fixed, prespecified follow-up

period (0, τ), where

Cτ = pr(g(Z1) > g(Z2) | T2 > T1, T1 < τ). (1.2)

Estimation of (1.1) or (1.2) when the event time may be censored, however, is not straightforward

(Harrell et al., 1996; Pencina and D’Agostino, 2004; Gönen & Heller, 2005; Chambless & Diao,

2006).

The estimator for C or Cτ proposed by Heagerty & Zheng (2005) is derived under a propor-

tional hazards model. If this parametric working model is not correctly specified, the resulting

estimator may be biased. A popular nonparametric C-statistic for estimating C was proposed

by Harrell et al. (1996), which was extensively studied by Pencina & D’Agostino (2004). Note

that this generalization is a weighted average of the time-dependent AUCs, which corresponds

to the “incident/dynamic” ROC curve (Heagerty & Zheng, 2005; Cai et al., 2006) with weights

depending on the study-specific censoring distribution.

When the study individuals had differential follow-up times, the C-statistic studied by Harrell

et al. (1996) converges to an association measure, which depends on the study-specific censor-

ing distribution. In this article, under the general random censorship assumption, we provide

a simple, purely non-parametric estimator for (1.2), which is free of the censoring distribution.

Furthermore, we study the large sample properties of the new estimation procedure. Our pro-

posal is illustrated with two real examples. The performance of the new proposal under various

practical settings is also examined via a simulation study.
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2. INFERENCE PROCEDURES FOR DEGREE OF ASSOCIATION BETWEEN

EVENT TIMES AND ESTIMATED RISK SCORES

In this section, we consider a non-trivial case that at least one component of the covariate

vector Z is continuous. For the survival time T, let D be the corresponding censoring variable.

Assume that D is independent of T and Z. Also, let {(Ti, Zi, Di) , i = 1, . . . , n} be n independent

copies of {(T, Z,D)}. For the ith subject, we only observe (Xi, Zi,∆i) , where Xi = min (Ti, Di),

and ∆i equals 1 if Xi = Ti and 0 otherwise.

Suppose that we fit the data with a working parametric or semi-parametric regression model,

for example, a standard Cox proportional hazards model (Cox, 1972):

ΛZ(t) = Λ0(t) exp(β′Z), (2.1)

where ΛZ(·) is the cumulative hazard function for subjects with covariate vector Z, Λ0(·) is the

unknown baseline cumulative hazard function and β is the unknown p× 1 parameter vector. Let

the maximum partial likelihood estimator for β be denoted by β̂. Note that even when the model

(2.1) is not correctly specified, under a rather mild non-separable condition that there does not

exist vector ζ such that pr(T1 > T2 | ζ ′Z1 < ζ ′Z2) = 1, β̂ converges to a constant vector, say, β0,

as n→∞. This stability property is important for deriving the new inference procedure.

For a pair of future patients with covariate vectors {Z0
k , k = 1, 2} and the potential survival

times {T 0
k , k = 1, 2}, their corresponding risk scores are {β̂′Z0

k , k = 1, 2}. To evaluate this risk

score system, one may use the concordance measure discussed in Section 1:

Cn = pr(β̂′Z0
1 > β̂′Z0

2 | T 0
1 < T 0

2 ),

4
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where the probability is evaluated with respect to the data, and (T 0
1 , Z

0
1) and (T 0

2 , Z
0
2). Note that

Cn depends on the sample size. Let the limit of Cn be denoted by

C = pr(β′0Z
0
1 > β′0Z

0
2 | T 0

1 < T 0
2 ). (2.2)

Now, since the support of the censoring variable D is usually shorter than that of the failure

time T, the tail part of the estimated survival function of T is rather unstable. Therefore, we

consider a truncated version of C in (2.2), that is,

Cτ = pr(β′0Z
0
1 > β′0Z

0
2 | T 0

1 < T 0
2 , T

0
1 < τ),

where τ is a prespecified time point such that pr(D > τ) > 0.

It follows from an “inverse probability weighting” technique proposed by Cheng et al. (1995)

for dealing with a completely different problem in survival analysis that Cτ can be consistently,

nonparametrically estimated by

Ĉτ =

∑n
i=1

∑n
j=1 ∆i{Ĝ(Xi)}−2I(Xi < Xj, Xi < τ)I(β̂Zi > β̂Zj)∑n
i=1

∑n
j=1 ∆i{Ĝ(Xi)}−2I(Xi < Xj, Xi < τ)

, (2.3)

where I(·) is the indicator function and Ĝ(·) is the Kaplan-Meier estimator for the censoring

distribution G(t) = pr(D > t). Heuristically, the consistency of the above estimator follows from

the fact that as n→∞, the denominator of (2.3) divided by n2 converges to

E

{
∆1I(X1 < X2, X1 < τ)

G2(X1)

}
= E

[
E

{
I(T1 < T2, T1 < τ)I(D1 ∧D2 > T1)

G2(T1)

∣∣∣∣T1

}]

= pr(T1 < T2, T1 < τ),

and the numerator of (2.3) divided by n2 converges to pr(β′0Z0
1 > β′0Z

0
2 , T

0
1 < T 0

2 , T
0
1 < τ).
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In the Appendix, we show that

W = n
1
2 (Ĉτ − Cτ )

is asymptotically normal with mean 0. Moreover, in the Appendix, we show how to use a

perturbation-resampling method to approximate the distribution ofW. Specifically, we show that

the asymptotic distribution of W̃ given in (5.2) is the same as that of W. The realizations of W̃

can be generated easily by simulating a large number, M, of random samples from, for instance,

the unit exponential. Inferences about Cτ can then be made via the normal approximation to the

distribution of Ĉτ and these realizations of W̃ . For instance, a two-sided 0.95 confidence interval

for Cτ would be Ĉτ ± 1.96n−1/2σ, where σ2 is the standard sample variance or a robust version

thereof based on the above M realizations of W̃ .

It is important to note that the C-statistic proposed by Harrell et al. (1996) is

∑
i6=j ∆iI(Xi < Xj)I(β̂Zi > β̂Zj)∑

i6=j ∆iI(Xi < Xj)
, (2.4)

which converges to a quantity which involves the study-specific censoring distribution:

pr(β0
′Z0

1 > β0
′Z0

2 | T 0
1 < T 0

2 , T
0
1 ≤ D0

1).

Pencina & D’Agostino (2004) formulated C-statistic by allowing various τ. Their C-statistic is

∑
i6=j ∆iI(Xi < Xj, Xi < τ)I(β̂Zi > β̂Zj)∑

i6=j ∆iI(Xi < Xj, Xi < τ)
, (2.5)

which converges to

pr(β0
′Z0

1 > β0
′Z0

2 | T 0
1 < T 0

2 , T
0
1 ≤ D0

1, T
0
1 < τ).
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3. NUMERICAL STUDIES

First, we illustrate the new estimation procedure with two data sets. The first one is from the

Framingham Heart Study. For this data set, there were 3087 study participants whose baseline

covariate vectors Z’s were obtained at their study entry times between 1991 and 1995. Here,

each Z consists of age, gender, smoking status (SMK), total cholesterol (TC), HDL cholesterol

(HCD), systolic blood pressure (SBP) and use of medication for high blood pressure (TxBP).

These individuals were then followed until Year 2006. Here, the event time T is the first time that

the subject had a cardiovascular disease event (coronary death, myocardial infarction, coronary

insufficiency, angina pectoris, fatal and non-fatal stroke, intermittent claudication or congestive

heart failure). For this data set, there are 377 such events observed during the entire follow-up

period, and 282 of which occurred in the first 10 years. The Kaplan-Meier estimates for the

survival distributions of the event time T and the censoring D are given in Figure 1. Note that

most study subjects were followed more than ten years, but less than 13 years.

We fitted the data with a Cox proportional hazards model (2.1). The resulting risk score

β̂′Z0 is

0.54× (AGE/10)− 0.41× I(Male) + 0.53× I(SMK=Yes)

+0.40× (TC/102[mg/dL])− 0.21× (HDL/10[mg/dL])

+0.15× (SBP/10[mmHg]) + 0.33× I(TxBP=Yes).

In Table 1, for various τ, we present point estimates for our C-statistics and their corresponding

0.95 confidence intervals for Cτ . When τ = 8, 10, 12 (years), our results are very similar to those

7
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based on the conventional C-index (2.4) procedure with a point estimate of 0.75 and a 0.95

confidence interval of (0.73, 0.77). Note that all the τ -specific C-statistics (2.5) give us similar

point and interval estimates. When τ = 14, our estimated standard error for the new C-statistic

is markedly larger than that of the conventional method. For this case, study subjects did not

have similar follow-up times and it is known that the existing methods in the literature may

not work well (Pencina & D’Agostino, 2004). Note that all the results reported in Table 1 were

based on M = 500 independent realizations of a random sample with n = 3087 from the unit

exponential for (5.2).

The second data set for illustration is from a recent cancer study (Chang et al., 2005). This

study was designed to evaluate the prognostic value of a new gene signature constructed from

the patient’s microarray gene expression data to predict the time of the future patient’s death or

metastasis. The data set consists of 295 breast cancer patient records from the Netherlands Can-

cer Institute. The details of participants of the study are given in van’t Veer et al. (2002) and van

de Vijver et al. (2002). One of the clinical implications for establishing a risk score system is to

identify future patients who may benefit from adjuvant systemic, but potentially toxic, therapies.

For illustrating our proposal, we let T be the patient’s survival time. The Kaplan-Meier estimates

for the survival functions of the event and the censoring are given in Figure 2. Note that at Year

15, the survival rate is 0.61, the size of the risk set is 19, and there were no deaths beyond this

time point. The patient’s baseline covariates consist of the new gene score and other conventional

markers such as age, number of positive lymph-node, estrogen receptor status, diameter of tu-

mor, histologic grade, vascular invasion, chemotherapy, hormonal therapy, mastectomy or breast
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conserving surgery et al. (http://microarray-pubs.stanford.edu/wound_NKI/explore.html).

We first fitted the data with the clinical variables only via the standard stepwise procedure

with Cox’s proportional hazards model. The covariate vector Z for the final model consists of

age, estrogen receptor (ER: positive or negative) and tumor grade (GR: 1, 2, 3). The resulting

risk score β̂′Z is

−0.42× (AGE/10)− 0.74× I(ER=positive) + 1.53× I(GR=2) + 2.01× I(GR=3).

In Table 2, with various τ, based on our C-statistic, we report the point estimates and the

corresponding 0.95 confidence intervals for Cτ . Our standard error estimates tend to be larger

than that from the conventional C-statistic. When τ = 15, our interval is much wider than the

conventional one by taking care of the unstable inverse weighting probability estimate Ĝ(·) at

the tail part of the curve. The conventional C-statistic gives a biased estimator for Cτ and its

interval estimator may not have the adequate coverage level.

Now, if we fit the data with a Cox model, which includes the gene score variable (GS) and

the above three conventional variables, the risk score is

2.43× (GS)− 0.56× (AGE/10)− 0.55× I(ER=positive) + 1.25× I(GR=2) + 1.52× I(GR=3).

We also report the results in Table 2, which are similar to those without using gene score.

To examine the performance of the new proposal, for example, the interval estimation proce-

dure, we conducted an extensive numerical study under various practical settings. To be specific,

we first created a true survival regression model to relate T to Z and also a censoring distribution

for D. For example, for one case in our study, we generated the model by fitting the above cancer

9

Hosted by The Berkeley Electronic Press



data with a Weibull regression survival model that has four baseline covariates: age, estrogen

receptor status, tumor grade and gene score. We then fitted the data with a one-sample Weibull

distribution (with two unknown parameters) for the censoring distribution G(·). For this case,

the resulting censoring is heavy (about 70% censoring by Year 15). To simulate a data set sim-

ilar to the cancer data, the covariate vector Z with the aforementioned four components was

randomly generated from its empirical distribution based on the above observed gene-expression

cancer data. For each selected Z, we generated T via the above Weibull regression model and

also an independent censoring D from the one-sample Weibull. The resulting data point is

(X,∆, Z)′. With one million of such simulated data points, we obtain the “true” C15, which is

0.75. Next, to examine the adequacy of the coverage probabilities of our 0.95 confidence inter-

val estimator for C15, for a given sample size n, we generated 1000 independent realizations of

{(Xi,∆i, Zi)
′, i = 1, · · · , n} under the above simulation setting. We then fitted each simulated

data set with a working Cox regression model (not necessarily the correct model) and obtained

estimated risk scores. With this scoring system, we constructed a 0.95 confidence interval for

C15 in (2.3). We repeated this process and obtained 1000 realized confidence intervals with the

nominal level of 0.95. With various working models and n = 300, the empirical coverage levels

of our interval estimators are around 0.97. With n = 500 and various working Cox’s models,

the empirical levels are about 0.95. We also considered a case when the censoring is relatively

light (about 60% censoring at Year 15) by multiplying the above censoring variable by 2.7, the

empirical coverage levels are from 0.94 to 0.95. Based on the results of the extensive simulation

study, we find that the new interval estimation procedure performs well, that is, the empirical
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coverage levels are practically identical to their nominal counterparts.

4. REMARKS

In this article, we show that an over-all performance of predicting the subject-level survival

over the entire interval (0, τ) based on a parametric or semi-parametric model can be evaluated

via a simple, unbiased estimation procedure for Cτ . Based on our extensive numerical study,

generally we find that the new estimation procedure is robust with respect to the choice of τ.

However, if the pre-specified τ is “too” large such that very few events were observed or very few

study subjects were followed beyond this time point, the standard error estimate for Ĉτ can be

quite large, reflecting a high degree of uncertainty of our inferences about Cτ . For this case, one

should cautiously utilize the fitted model for prediction over this large time interval.

There are various C-statistics proposed in the literature. With the same technique utilized

in this article, one may modify these statistics accordingly so that they estimate concordance

measures which are free of the study-specific censoring distribution. The computer code for imple-

menting the new inference procedure can be downloaded from (http://bcb.dfci.harvard.edu/˜huno).

When the dimension of the covariate vector Z is greater than one, the estimated risk scoring

system may not perform well based on a purely nonparametric function estimation procedure.

A feasible alternative is to construct a risk index system via a parametric or semi-parametric

model as we did in this article. One may then use this scoring system to group future subjects,

but calibrate the corresponding stratum-specific risk estimates via a univariate nonparametric

function estimation procedure (Cai et al., 2009). In any event, to obtain an efficient and reliable

final product, it is crucial to examine the adequacy of the parametric risk index system. Recently
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alternative quantification methods other than using C-statistics for evaluating the performance

of risk prediction procedures have been proposed (Pencina et al., 2008; Cai et al., 2008). Further

research along this line is warranted.

5. APPENDIX: LARGE SAMPLE PROPERTIES OF Ĉτ

Throughout, we assume that the non-separable condition for (T, Z) given in section 2 holds

and thus β0 is the unique solution to the limiting of the following partial likelihood score equation,

U(β) = n−1

n∑
i=1

Ui(β) = n−1

n∑
i=1

∫ τ

0

{
Zi −

∑
j Yj(t) exp(β′Zj)Zj∑
j Yj(t) exp(β′Zj)

}
dNi(t) = 0,

where Ni(t) = I(Xi ≤ t,∆i = 1), Yi(t) = I(Xi ≥ t). We assume that β0 lies in a compact param-

eter space and the joint density of (T, Z) is continuous and bounded. To show the consistency

of Ĉτ , we first note that

n1/2(β̂ − β0) = n−1/2

n∑
i=1

A(β0)Ui(β0) +Op(n
−1) (5.1)

where A(β) = −{∂E(U(β))/∂β}−1 (Hjort, 1992).

Now, for a fixed β, let

Cτ (β) = pr(β′Z0
1 > β′Z0

2 | T 0
1 < T 0

2 , T
0
1 < τ).

It follows from the uniform consistency of Ĝ(·), the convergence of β̂ to β0, and a uniform law of

large numbers for U -processes (Nolan & Pollard, 1987), that Ĉτ converges to Cτ (β0) in probability

as n→∞. On the other hand, it follows from the asymptotic expansion of β̂ given in (5.1) that

Cτ (β0)− Cτ = O(n−1). Thus, Ĉτ − Cτ → 0 in probability.

12
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To approximate the distribution of

W = n
1
2

{
Ĉτ (β̂)− Cτ

}
,

we first obtain asymptotic expansions for W (β) = n1/2{Ĉτ (β)−Cτ (β)}, where Ĉτ (β) is obtained

by replacing β̂ in Ĉτ of (2.3) with β. To this end, we write W (β) = Wa(β) +Wb(β), where

Wa(β) = n1/2

∑n
i=1

∑n
j=1 Iij(τ)G(Xi)

−2{I(β′Zi > β′Zj)− Cτ (β)}∑n
i=1

∑n
j=1 Ĝ(Xi)−2Iij(τ)

,

Wb(β) = n1/2

∑n
i=1

∑n
j=1{Ĝ(Xi)

−2 −G(Xi)
−2}Iij(τ){I(β′Zi > β′Zj)− Cτ (β)}∑n

i=1

∑n
j=1 Ĝ(Xi)−2Iij(τ)

and Iij(τ) = I(Xi < Xj, Xi < τ)∆i. Now, it follows from the standard asymptotic theory for the

Kaplan Meier estimator (Kalbfleish & Prentice, 2002),

ŴG(t) =
n1/2{G(t)− Ĝ(t)}

G(t)
≈ n−1/2

n∑
i=1

ψi(t)

and ŴG(t) converges weakly to a zero-mean Gaussian process indexed by t for t ≤ τ , where

ψi(t) =
∫ t

0
dMi(u)/πX(u), πX(t) = pr(Xi ≥ t) and Mi(t) = I(Xi ≤ t,∆i = 0) −

∫ t
0
I(Xi ≥

u)dΛD(u), ΛD(·) is the cumulative hazard function for the common censoring variable. Also,

it follows from the uniform consistency of Ĝ(·) and a functional central limit theorem for U -

processes (Nolan & Pollard, 1988) that

Wa(β) = n−3/2p(τ)−1

n∑
i=1

n∑
j=1

G(Xi)
−2Iij(τ){I(β′Zi > β′Zj)− Cτ (β)}+ op(1),

where p(τ) = P (T1 < T2, T1 < τ). Furthermore,

Wb(β) =

∫ τ

0

n1/2

{
G(t)2

Ĝ(t)2
− 1

}
dγ̂(t, β)

13
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where

γ̂(t, β) =

∑n
i=1

∑n
j=1G(Xi)

−2I(Xi ≤ t)Iij(τ){I(β′Zi > β′Zj)− Cτ (β)}∑n
i=1

∑n
j=1 Ĝ(Xi)−2Iij(τ)

.

By a uniform law of large numbers for U -processes (Nolan & Pollard, 1987) and the uniform

consistency of Ĝ(·), we have

sup
t∈[0,τ ],β

|γ̂(t, β)− γ(t, β)| → 0, in probability

where

γ(t, β) =
p(t) {pr(β′Zi > β′Zj | Ti < Tj, Ti < t)− Cτ (β)}

p(τ)
.

This, coupled with the weak convergence of ŴG(t), implies that

Wb(β) = 2

∫
ŴG(t)dγ(t, β) + op(1) = n−1/2

n∑
i=1

2

∫
ψi(t)dγ(t, β).

Therefore,

W (β) =

(
n

2

)−1∑
i<j

{Vij(β) + φij(β)}+ op(1),

where Vij(β) = (Vij(β) + Vji(β))/2,

Vij(β) = p(τ)−1G(Xi)
−2Iij(τ){I(β′Zi > β′Zj)− Cτ (β)},

and φij(β) =
∫
{ψi(t) + ψj(t)} dγ(t, β). It then follows from a functional central limit theorem

for U -processes that W (β) converges weakly to a zero-mean Gaussian process. This, together

with the continuity of Cτ (β) and the asymptotic expansion of n1/2(β̂ − β0), implies that

W = W (β0) + Ċτ (β0)n
1/2(β̂ − β0) + op(1) =

(
n

2

)−1∑
i<j

Wij + op(1),

14
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where Ċτ (β) = ∂Cτ (β)/∂β and

Wij = Vij(β0) + φij(β0) + Ċτ (β0)A(β0){Ui(β0) + Uj(β0)}/2.

This, together with the standard asymptotic theory of U -statistics, W is asymptotically normal

with mean 0 and variance E(W12W13).

To estimate the variance of W, we utilize a perturbation-resampling method which has been

successfully used for handling numerous inference problems in survival analysis (Lin et al., 1993;

Lin et al., 1994). To be specific, let {Ξi, i = 1, . . . n} be a sets of n iid random variable from a

known distribution with mean 1 and variance 1. For large n, we can approximate W with the

conditional distribution (conditional on the data) of

W̃ =

(
n

2

)−1∑
i<j

V̂ij(β̂)ΞiΞj + n1/2{K̂(G∗)− K̂(Ĝ)}+ n1/2{Ĉτ (β∗)− Ĉτ (β̂)}, (5.2)

where

K̂(G) = p̂(τ)−1

(
n

2

)−1∑
i<j

G(Xi)
−2Iij(τ){I(β̂′Zi > β̂′Zj)− Ĉτ (β̂)},

p̂(τ) = n−2
∑n

i=1

∑n
j=1 Ĝ(Xi)

−2Iij(τ), and G∗(·) and β∗ are the corresponding perturbed version

of Ĝ(·) and β̂. Specifically, G∗(t) is generated by

G∗(t) = Ĝ(t)− Ĝ(t)

(
n

2

)−1∑
i<j

∫ t

0

π̂−1
X (u)

{
dM̂i(u) + dM̂j(u)

}
ΞiΞj/2

where π̂X(u) = n−1
∑n

i=1 I(Xi ≥ u), M̂i(t) = I(Xi ≤ t,∆i = 0) −
∫ t

0
I(Xi ≥ u)dΛ̂D(u) and

Λ̂D(·) is a consistent estimator of the cumulative hazard function for the censoring variable. We

generate β∗ as

β∗ = β̂ +

(
n

2

)−1∑
i<j

[
Â(β̂){Ui(β̂) + Uj(β̂)}/2

]
ΞiΞj.
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Note that only the random quantity in W̃ is {Ξi, i = 1, . . . , n}. The unknown quantities are

replaced with their empirical counterparts. The distribution of W̃ (and therefore the distribution

of W ) can be approximated by generating a large number of realized random samples from

{Ξi, i = 1, . . . n} .
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Table 1. Point estimates (Est), standard error estimates (SE) and 0.95 confidence intervals

(CI) for Cτ with Framingham study Data

C-index New Method Conventional

τ Est SE CI Est SE CI

8 0.76 0.02 (0.73, 0.79) 0.76 0.01 (0.73, 0.79)

10 0.75 0.01 (0.72, 0.78) 0.75 0.01 (0.73, 0.78)

12 0.75 0.01 (0.72, 0.77) 0.75 0.01 (0.73, 0.78)

14 0.75 0.02 (0.70, 0.80) 0.75 0.01 (0.73, 0.78)

∞ NA NA NA 0.75 0.01 (0.73, 0.77)
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Table 2. Point estimates (Est), standard error estimates (SE) and 0.95 confidence intervals

(CI) for Cτ with breast cancer data

C-index New Method Conventional

τ Est SE CI Est SE CI

Without Gene Score Model

6 0.75 0.04 (0.68, 0.82) 0.76 0.03 (0.70, 0.82)

8 0.74 0.03 (0.67, 0.81) 0.76 0.03 (0.70, 0.81)

10 0.74 0.03 (0.68, 0.81) 0.75 0.03 (0.70, 0.81)

15 0.68 0.05 (0.58, 0.78) 0.75 0.03 (0.70, 0.81)

∞ NA NA NA 0.75 0.03 (0.70, 0.81)

With Gene Score Model

6 0.77 0.03 (0.71, 0.84) 0.78 0.03 (0.72, 0.83)

8 0.77 0.03 (0.71, 0.83) 0.78 0.03 (0.72, 0.83)

10 0.77 0.03 (0.71, 0.83) 0.77 0.03 (0.72, 0.82)

15 0.71 0.05 (0.61, 0.81) 0.77 0.03 (0.72, 0.82)

∞ NA NA NA 0.77 0.03 (0.72, 0.82)
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Figure 1. Estimates for survival functions for CV events and censoring variables with Framing-

ham study data.

0 2 4 6 8 10 12 14

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(a) Kaplan−Meier curve for CV events

Year

P
ro

ba
bi

lit
y

0 2 4 6 8 10 12 14

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(b) Kaplan−Meier curve for the censoring

Year

P
ro

ba
bi

lit
y

23

Hosted by The Berkeley Electronic Press



Figure 2. Estimates for survival functions for CV events and censoring variables with breast

cancer data.
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