
University of Michigan School of Public
Health

The University of Michigan Department of Biostatistics Working
Paper Series

Year  Paper 

A Frailty Approach for Survival Analysis with
Error-prone Covariate

Sehee Kim∗ Yi Li†

Donna Spiegelman‡

∗University of Michigan - Ann Arbor, seheek@umich.edu
†University of Michigan - Ann Arbor
‡Harvard School of Public Health

This working paper is hosted by The Berkeley Electronic Press (bepress) and may not be commer-
cially reproduced without the permission of the copyright holder.

http://biostats.bepress.com/umichbiostat/paper102

Copyright c©2013 by the authors.



A Frailty Approach for Survival Analysis with
Error-prone Covariate
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Abstract

This paper discovers an inherent relationship between the survival model with
covariate measurement error and the frailty model. The discovery motivates our
using a frailty-based estimating equation to draw inference for the proportional
hazards model with error-prone covariates. Our established framework accom-
modates general distributional structures for the error-prone covariates, not re-
stricted to a linear additive measurement error model or Gaussian measurement
error. When the conditional distribution of the frailty given the surrogate is un-
known, it is estimated through a semiparametric copula function. The proposed
copula-based approach enables us to fit flexible measurement error models with-
out the curse of dimensionality as in nonparametric approaches, and to be ap-
plicable with an external validation study. Large sample properties are derived
and finite sample properties are investigated through extensive simulation studies.
The methods are applied to a study of physical activity in relation to breast cancer
mortality in the Nurses’ Health Study.
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Abstract

This paper discovers an inherent relationship between the survival model with covari-

ate measurement error and the frailty model. The discovery motivates our using a

frailty-based estimating equation to draw inference for the proportional hazards model

with error-prone covariates. Our established framework accommodates general dis-

tributional structures for the error-prone covariates, not restricted to a linear addi-

tive measurement error model or Gaussian measurement error. When the conditional

distribution of the frailty given the surrogate is unknown, it is estimated through a

semiparametric copula function. The proposed copula-based approach enables us to

fit flexible measurement error models without the curse of dimensionality as in non-

parametric approaches, and to be applicable with an external validation study. Large

sample properties are derived and finite sample properties are investigated through

extensive simulation studies. The methods are applied to a study of physical activity

in relation to breast cancer mortality in the Nurses’ Health Study.
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1 Introduction

In epidemiologic studies, risk factors such as nutrient intake, physical activity or air pollu-

tants are often subject to measurement error. When the error-prone risk factors are included

in a Cox (1972) survival model, the estimated e↵ects of these model covariates can be under-

or over-estimated, even for covariates that are measured without error. To address the bias

caused by the mis-measured exposure, we focus on modeling the association between the

true exposure “X” and its surrogate measure “Z”. By viewing either the true exposure X

or the surrogate Z as a function of a frailty, and by noting the structural similarity between

frailty and measurement error methodology, we develop a novel method for measurement

error correction that draws on the many years of development of frailty models in survival

data analysis. The measurement error model considered here allows the observed exposure

distribution to di↵er from the distribution of the true in a way that is unknown and to be

estimated from the data. Our research is motivated by a study of physical activity in rela-

tion to breast cancer mortality in the Nurses’ Health Study (Holmes et al., 2005). Limited

existing models are available to prescribe the relationship between the true and surrogate

measurements of physical activity. For example, the commonly used linear additive mea-

surement error model fails in this case, because the surrogate measurements have a much

heavier density around zero than the true counterpart.

In the presence of covariate measurement error, the Cox regression model has been studied

by many authors. Among them, a simple and intuitive way of handling measurement error

is the regression calibration approach (Wang et al., 1997; Spiegelman et al., 1997; Xie et al.,

2001), which replaces the unobserved true exposure X with an “estimate” of X given its

surrogate, and then obtains the standard partial likelihood estimator. Since these regression

calibration estimators are based on a linear approximation to the expectation of X given Z,

they may result in an inconsistent regression coe�cient estimator. Another approach which

does not require any distributional assumption on the measurement error is the “estimated”

partial likelihood method proposed by Zhou and Pepe (1995) and Zhou and Wang (2000).
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Unlike the regression calibration estimators, they deal with the induced relative risk func-

tion directly in a nonparametric way, and then estimate the regression coe�cients from the

resulting estimated partial likelihood function. More recently, Zucker (2005) also proposed a

method based on the partial likelihood approach, however, their partial likelihood function

is induced by a parametric specification for the true and surrogate measures. Our approach

is related to estimation problems considered by Zhou and Wang (2000) and Zucker (2005),

but is quite distinct from them through an alternative simple form of estimating equations.

Most of work to date requires subsampling within a main cohort study, i.e. an internal

validation study, (Zhou and Pepe, 1995; Wang et al., 1997; Zhou and Wang, 2000; Chen,

2002), or requires replicate measurements on at least a subset of the study population,

thereby requiring the classical additive model (Xie et al., 2001). However, in our motivating

data example, only external validation samples that are independent from the main cohort

were available, which precludes the direct use of these existing methods. Recently, Zucker

(2005) proposed a pseudo partial likelihood-based method that can be applied with an ex-

ternal validation study. However, their approach requires a known parametric measurement

error model. Distinct from existing methods, the regression coe�cient estimator proposed in

this paper does not require either linear additivity or any parametric distributional assump-

tion on the measurement error model, and yet is applicable to an external validation study.

The key feature that makes this greater flexibility possible is the use of a semi-parametric

copula-based procedure for estimating the joint distribution of the true exposure X and the

surrogate Z, greatly reducing bias due to exposure measurement error.

2 Notation and Survival and Measurement Error Mod-

els

Let T̃ = min(T , C) be the observed follow-up time, where T and C are the failure and

censoring times, respectively. A natural model that links the outcome T to the covariates is

3
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the following proportional hazards model

�c(t|X,W ) = �(t) exp(�X + �TW ), (2.1)

where �(·) is an unspecified baseline hazard function, � and � are unknown regression pa-

rameters corresponding to X, an error-prone covariate (e.g., the detailed physical activity

diary), and W , a vector of error-free covariates (e.g., age and gender), respectively. Usually,

X is the covariate of main interest and is di�cult or expensive to measure. In a typical

epidemiological study, we observe Z (e.g., the self-administered physical activity measure)

in lieu of X, and Z is often termed the surrogate for X.

Deviating from the common measurement error literature, we postulate a general frame-

work that directly deals with fX(x|z) = f(X = x|Z = z), the conditional density of the true

covariate given the observed surrogate. This is equal to a general measurement error model

X = µ(Z) + ✏, (2.2)

where µ(z) = E[X|Z = z], which represents a location shift of fX(x|z), and ✏ is a mean-zero

random error that depends on Z = z with density f✏(✏|z) = fX(µ(z) + ✏|z). This general

formulation encompasses many well-known measurement error models including the Berkson

model as special cases.

Indeed, when both X and Z are deemed as random variables, which is always the case in

observational studies, it is a matter of mathematical convenience whether the measurement

error model is specified conditional on X or on Z. Conditioning on X is more often adopted

in classical measurement error settings for ease of interpretation. However, specifying the

model in this way makes stronger transportability assumptions than the other way around.

Specifically, for an external validation study, the estimated fZ(z|x) in the validation study

may not be transportable to the main study. This happens because fZ(z|x) may not en-

tirely be identifiable over the support of X as X may distribute di↵erently across the main
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and external validation samples. On the other hand, working directly with fX(x|z) may

circumvent such a di�culty as Z’s are fully observed in both main and external validation

samples.

Suppose we have i.i.d. observations on n individuals in the main cohort study. Using

the counting process notation, let Yi(t) = I(T̃i � t) be the at-risk process, and Ni(t) =

I(T̃i  t, Ti  Ci) be the counting process, where I(·) is the indicator function. The main

cohort study consists of {T̃i, Yi(t), Ni(t), Zi, Wi; 0  t  ⌧} (i = 1, . . . , n), where ⌧ is the

duration of study. We assume that Zi is independent of outcome Ti given Xi and Wi, and

Xi is independent of Wi given Zi. The former assumption representation corresponds to the

non-di↵erential measurement error assumption, while the latter is assumed for notational

ease and can easily be relaxed without loss of generality of the methods proposed. Finally,

we assume that Ci and Ti are conditionally independent given observed Zi and Wi, that is

a non-informative censoring condition commonly used in survival analysis.

Under these assumptions, the hazard function for Ti, conditional on the observed covari-

ates {Zi, Wi} and a frailty term ✏, takes the form

�c(t|Zi,Wi, ✏) = �(t) exp{�µ(Zi) + �TWi + �✏},

under models (2.1) and (2.2).

Such a formulation has important implications. First, it clearly establishes the link-

age between the frailty concept and the measurement error framework, facilitating cross-

fertilization between the two well-studied fields for methodological innovation and applica-

tions. Second, this new formulation advances the standard frailty models because the frailty

term is not restricted to follow a certain parametric distribution (e.g. Gamma, log-normal

etc.) or to be independent of the surrogate Z, as commonly assumed.

Following Prentice (1982) and Zucker (2005), we specify S⇤
i (t) the expected survival
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function given the observed data only, i.e.,

S⇤
i (t) = Pr[Ti > t|Zi,Wi]

=

Z

exp
⇥

�⇤(t) exp
�

�µ(Zi) + �TWi + �✏
 ⇤

f✏(✏|Zi) d✏,

where ⇤(t) is the cumulative baseline hazard function. The corresponding conditional hazard

function is given by

d⇤⇤
i (t) = �(t)

R

 i(✏; �, �) exp{�⇤(t) i(✏; �, �)}f✏(✏|Zi) d✏
R

exp{�⇤(t) i(✏; �, �)}f✏(✏|Zi) d✏
(2.3)

= �(t)E[ i(✏; �, �)|Zi,Wi, Ti > t]

⌘ �(t) ⌘i(�, �,⇤(t)),

where  i(✏; �, �) = exp{�µ(Zi) + �TWi + �✏}. The derivation holds because f✏(✏|Zi,Wi) =

f✏(✏|Zi) under the assumption that ✏ is independent of Wi given Zi.

3 Frailty-copula Estimator

3.1 When fX(x|z) is known up to a parametric form

The treatment of the conditional density f✏(✏|z) is the key to this development. We approach

it by estimating fX(x|z), which is equivalent to f✏(✏|z) in distribution since µ(z) is simply the

location shift. We first develop the case where fX(x|z) is known in Section 3.1. When fX(x|z)

is unknown, we propose to estimate it using a copula framework as discussed in Section 3.2,

with the remaining inference procedures following Section 3.1 by replacing fX(x|z) with its

estimated counterpart.

Suppose fX belongs to a family of parametric models indexed by a vector parameter ⇠ in

Rp, which is denoted by fX(x|z; ⇠). We denote the true value of � by �0, the true vector of

� by �0, and the true ⇤(t) by ⇤0(t). Let Mi(t; �, �,⇤) = Ni(t) �
R t

0 Yi(s) d⇤⇤
i (s) = Ni(t) �
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R t

0 Yi(s)⌘i(�, �,⇤(s)) d⇤(s). With non-informative censoring, Mi(t) ⌘ Mi(t; �0, �0,⇤0) (i =

1, . . . , n) is a martingale process with respect to the filtration �{Ni(s�), Yi(s),Wi, Zi, 0 

s  t}. As such, we propose the following estimating equations:

0 =
n
X

i=1

Z ⌧

0

µ(Zi) dMi(t; �, �,⇤), (3.1)

0 =
n
X

i=1

Z ⌧

0

Wi dMi(t; �, �,⇤), (3.2)

0 =
n
X

i=1

[dNi(t)� Yi(t) ⌘i(�, �,⇤(t)) d⇤(t)] . (3.3)

Similar estimating equations have been proposed by Pipper and Martinussen (2004) in a

parametric frailty setting, in the absence of measurement problems. To our knowledge, this

is the first attempt to adopt such estimating equations in a measurement error framework.

The equation (6) yields a Breslow-type estimator for ⇤0(t)

⇤̂(t) =
n
X

i=1

Z t

0

dNi(u)
Pn

i=1 Yi(u) ⌘i(�, �, ⇤̂(u�))
, or

�̂(um) =
dm

Pn
i=1 Yi(um) ⌘i(�, �, ⇤̂(um�1))

,

for um  t < um+1, where u1, u2, . . . , uM are the ordered observed event times, dm is the

number of events at um, and ⇤̂(0) = 0. A similar estimate ⇤̂(t) was obtained by Zucker

(2005) in a di↵erent context based on a pseudo-partial likelihood function. Define Qi =

(µ(Zi), W T
i )

T as a vector of the observed covariates and ✓0 = (�0, �T0 )
T as the vector of

corresponding true regression coe�cients. By substituting ⇤̂(t) for ⇤(t) in Mi(t; �, �,⇤),

the estimating equations for ✓0 in (3.1) and (3.2) become

U(✓, ⇤̂) =
n
X

i=1

Z ⌧

0

(

Qi �
S(1)(t; ✓, ⇤̂)

S(0)(t; ✓, ⇤̂)

)

dNi(t), (3.4)

where S(k)(t; ✓,⇤) = n�1
Pn

i=1 Yi(t)Q
⌦k
i ⌘i(✓,⇤(t)) (k = 0, 1, 2), a⌦0 = 1, a⌦1 = a, and
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a⌦2 = aaT . Then, ✓̂ is the solution to U(✓, ⇤̂) = 0, which can be found numerically using

the Newton-Raphson algorithm, for example. Our estimating equations have a much simpler

form than Zucker’s (2005) score functions because Zucker (2005) had @{log ⌘i}/@� in the

first term of (3.4), which can be very computationally involved.

To compute the covariance matrix of ✓̂, we further define

S
(k)
✓ (t; ✓,⇤) = n�1

n
X

i=1

Yi(t)Q
⌦k
i ⌘̇✓i(✓,⇤(t)),

S
(k)
⇤ (t; ✓,⇤) = n�1

n
X

i=1

Yi(t)Q
⌦k
i ⌘̇⇤i(✓,⇤(t)),

where

⌘̇✓i = @⌘i(✓,⇤(t))/@✓

=
EX|Z

h

Q̃i i(Xi; ✓)e�⇤(t) i(Xi;✓) �  2
i (Xi; ✓)e�⇤(t) i(Xi;✓){Q̃i⇤(t) + @✓⇤(t)}

i

EX|Z [e�⇤(t) i(Xi;✓)]

+
EX|Z

⇥

 i(Xi; ✓)e�⇤(t) i(Xi;✓)
⇤

EX|Z

h

 i(Xi; ✓)e�⇤(t) i(Xi;✓){Q̃i⇤(t) + @✓⇤(t)}
i

�

EX|Z [e�⇤(t) i(Xi;✓)]
 2 ,

and

⌘̇⇤i = @⌘i(✓,⇤(t))/@⇤(t)

= �
EX|Z

⇥

 2
i (Xi; ✓)e�⇤(t) i(Xi;✓)

⇤

EX|Z [e�⇤(t) i(Xi;✓)]
+

(

EX|Z
⇥

 i(Xi; ✓)e�⇤(t) i(Xi;✓)
⇤

EX|Z [e�⇤(t) i(Xi;✓)]

)2

at a fixed time t, where Q̃i = (Xi,W
T
i )

T , EX|Z denotes the conditional expectation with

respect to X given Z, and

@✓⇤(t) = �
n
X

i=1

Z t

0

(

X

i

Yi(u)⌘̇✓i(✓,⇤(u�))

)(

X

i

Yi(u)⌘i(✓,⇤(u�))

)�2

dNi(u).

The theorem below stipulates that the covariance matrix of n1/2 ✓̂ can be consistently
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estimated by D̂�1 + D̂�1ĤD̂�1, where

D̂ = n�1
n
X

i=1

Z ⌧

0

n

S
(1)
✓ /S(0)(t; ✓̂, ⇤̂)� S(1)S

(0)
✓ /(S(0))2(t; ✓̂, ⇤̂)

o

dNi(t),

Ĥ = n�1
n
X

i=1

Z ⌧

0

G(t; ✓̂, ⇤̂)⌦2 R̂(t�)2

{
Pn

i=1 Yi(t) ⌘i(✓̂, ⇤̂(t))}2
dNi(t),

G(t; ✓̂, ⇤̂) =
n
X

i=1

Z ⌧

t

{S(1)S
(0)
⇤ /(S(0))2(u; ✓̂, ⇤̂)� S

(1)
⇤ /S(0)(u; ✓̂, ⇤̂)}/R̂(u) dNi(u),

R̂(t) =
Y

ut

(

1 +
n
X

i=1

nS
(0)
⇤ /(S(0))2(u; ✓̂, ⇤̂) dNi(u)

)

.

Theorem 1 Under regularity conditions (C1) - (C6), ✓̂ is a consistent estimator of ✓0 and

n1/2(✓̂ � ✓0) is asymptotically normally distributed with mean 0 and variance-covariance

matrix D�1 +D�1HD�1.

The asymptotic covariance is given by replacing the sample quantities in D̂�1+D̂�1ĤD̂�1

with their corresponding population quantities. The regularity conditions and proofs of

Theorems 1 - 3 (Theorems 2 and 3 appear below) are given in the Web Appendices.

When ⇠ is unknown, ⇠ can be estimated from an external validation study using a

likelihood-based approach. The external data consist of {Xj, Zj; j = 1, . . . , nv}, where nv is

the sample size of the validation study. The following theorem establishes the asymptotic

normality of the estimator ✓̂ when ⇠ is unknown. Condition (C7) is added to guarantee

identifiability of ⇠.

Theorem 2 Under regularity conditions (C1) - (C7), ✓̂ is a consistent estimator of ✓0 and

n1/2(✓̂� ✓0) is asymptotically normally distributed with mean 0 and variance-covariance ma-

trix D(✓0)�1+D(✓0)�1[H+V (⇠0)⌦V (⇠0)T ]D(✓0)�1, where ⌦ is the variance of the maximum

likelihood estimator ⇠̂ and V (⇠0) is the limit of n�1@U(✓0, ⇤0, ⇠0)/@⇠.

The asymptotic variance-covariance matrix can be consistently estimated by replacing fX(x|z; ⇠0)

9
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with fX(x|z; ⇠̂) in D̂ and Ĥ, along with the consistent estimator for V (⇠0)

V̂ = n�1
X

i

Z ⌧

0

"

Q̇⇠i(⇠̂) +

P

i Yi(t) ⌘i(✓̂, ⇤̂, ⇠̂)Qi(⇠̂)
P

i Yi(t) ⌘̇⇠i(✓̂, ⇤̂, ⇠̂)T

{
P

i Yi(t) ⌘i(✓̂, ⇤̂, ⇠̂)}2

#

dNi(t)(3.5)

�n�1
n
X

i=1

Z ⌧

0

"

P

i Yi(t)Qi(⇠̂) ⌘̇⇠i(✓̂, ⇤̂, ⇠̂)T
P

i Yi(t) ⌘i(✓̂, ⇤̂, ⇠̂) Q̇⇠i(⇠̂)
P

i Yi(t) ⌘i(✓̂,⇤0, ⇠̂)

#

dNi(t),

where Q̇⇠i and ⌘̇⇠i are the partial derivatives of Qi(⇠) and ⌘i(✓,⇤, ⇠) with respect to ⇠.

3.2 When the parametric form of fX(x|z) is unknown

Given the availability of a validation study where bothX and Z are observed, fX(x|z) can be,

in theory, estimated non-parametrically. However, when the sample size in the validation

data set is moderate or small and when X and Z are continuous, as in our motivating

example, estimation of fX(x|z) non-parametrically would be unstable, which would further

deteriorate the performance of the proposed method through the propagation of further

error in the estimating process. As a remedy, we propose a semi-parametric method that

utilizes a copula framework for estimating fX(x|z). The motivation stems from the fact that

fX(x|z) can be viewed as a functional of FX and FZ , the marginal distributions of X and Z

respectively, in a copula setting.

Specifically, by invoking the Sklar (1959) theorem, it follows that

fX(x|z) =
fXZ(x, z)

fZ(z)
= C 0

⇠(FX(x), FZ(z)) fX(x),

provided that fZ(z) > 0, where C 0
⇠ is a copula density function with a dependence parameter

⇠ in R. Furthermore, if FX and FZ are continuous as in our case, then the copula distribution

function C⇠ is uniquely determined (Sklar, 1959).

We propose to estimate fX(x|z) as follows:

Step 1. Estimate fX(x) and fZ(z) separately in the validation study through kernel density

estimation (Wand and Jones, 1995). Suppose (Xj, Zj) is the jth sample in the
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validation study. The kernel density estimator of fX at the point x is given by

f̂X(x) = n�1
v

nv
X

j=1

b�1K

✓

x�Xj

b

◆

,

where the kernelK satisfies
R

K(x) dx = 1 and the bandwidth b controls the degree

of smoothness of the density function.

Step 2. Compute F̂X(xj) and F̂Z(zj) at {(xj, zj); j = 1, . . . , nv} from the validation study

samples.

Step 3. Given a specific copula form C⇠, estimate its dependence parameter ⇠ by maxi-

mizing the likelihood of the validation study, i.e.,
Qnv

j=1 C⇠(F̂X(xj), F̂Z(zj)). The

estimate of fX(x|z) is computed as f̂X(x|z) = C 0
⇠̂
(F̂X(x), F̂Z(z)) f̂X(x).

In Step 1, the kernel K can be chosen to be a unimodal probability density function

symmetric about zero, satisfying the conditions:
R

xK(x) dx = 0 and
R

x2K(x) dx > 0. Our

method can be applied with any choice ofK. However, we consider particularly the two most

popular choices for K: the Gaussian kernel (Eubank, 1988) KG(u) = (2⇡)�1/2 exp(�u2/2)

and the Epanechnikov kernel (Eubank, 1988) KE(u) = 3/4 (1 � u2)I(|u|  1). In Step

2, a numerical integration algorithm such as Gaussian quadrature can be used. When the

Gaussian kernel is specified in Step 1, Gaussian quadrature with the Hermite polynomials

is used for approximating the integral over (�1,1), while Legendre polynomials are used

for approximating the integral over the finite support [�1, 1] when the Epanechnikov kernel

is specified. In Step 3, there are many parametric copula families available to control the

structure and the strength of dependence. Hutchinson and Lai (1990) and Nelsen (2006,

Chap 4.3) provide a thorough coverage of bivariate copulas and their properties. Among

them, we investigated three types of copula families: Gaussian copulas, Clayton copulas,

and Gumbel copulas. These copula families encompass a variety of dependence structures:

the Gaussian copula describes symmetric dependence, while Clayton and Gumbel are suited
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Hosted by The Berkeley Electronic Press



for stronger negative and positive tail correlations, respectively. The maximum likelihood

estimator for the dependence parameter ⇠ of the copula is obtained, and then the best

copula family for the data at hand is selected using a likelihood-based criterion such as the

Akaike Information Criterion (Genest et al., 2009). More detail on other copula families and

guidance on how to choose them can be found in Nelsen (2006).

Once f̂X(x|z) is available, the frailty-copula estimator of ✓ can be obtained as described

in Section 3.1. The next theorem summarizes the asymptotic properties of the resulting

estimator ✓̂.

Theorem 3 Under regularity conditions (C1) - (C11), ✓̂ is a consistent estimator of ✓0,

and n1/2(✓̂ � ✓0) weakly converges to a distribution with mean 0 and asymptotic covariance

D(✓0)�1+D(✓0)�1[H+Vf ]D(✓0)�1, where Vf is the variance of U 0
f (M), U 0

f is the Hadamard

derivative of U(✓, ⇤, fX|Z) at fX|Z, and M is a random variable following a mean-zero

normal random variate with covariance matrix {C 0
⇠0
(FX , FZ)}2fX

R

K2(u) du.

However, the variance estimator based on the formula given in Theorem 3 requires knowledge

of the exact forms of the functional and the kernels, which is not realistic in practice. A

more practical alternative approach to variance estimation is a non-parametric bootstrap,

which we found to perform well as demonstrated in Section 4.

4 Numerical Results

4.1 Simulation Studies

Extensive simulations were conducted to evaluate the finite sample properties of the proposed

estimator in various settings representative of what may occur in practice. We considered

the proportional hazards model with two covariates, the error-prone covariate X and the

error-free covariate W ⇠ N(0, 1). To generate the error-prone covariate and surrogate (X,

Z), we considered two models: (Model A) (X, Z) were from a normal density with mean
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(0, 0) and variance (1, 1.5) and correlation 0.8, and (Model B) (X, Z) were generated from

the same distribution as in Model A, but Z was truncated at -1. The former simulated the

common classical measurement error model, while the latter simulated a nonlinear relation-

ship between the true exposure and surrogate, mimicking the setting of our motivating data

example.

To generate right-censored failure time data, we used an exponential baseline hazard with

mean ⌫ and fixed the censoring time to be 1. The constant hazard ⌫ was varying according

to the desired censoring rates of 40% and 90%, reflecting the relatively high censoring rates

typically found in epidemiologic applications. We considered sample sizes n = 500 and

nv = 100 for the common disease setting, and n = 3000 and nv = 200 for the rare disease

setting as in our motivating example.

To estimate fX(x), we considered the Gaussian kernel and Epanechnikov kernel functions

with a bandwidth b = 0.9min(�̂X , IQR(X)/1.34)n�1/5
v , where �̂X is the sample standard

deviation of X and IQR is the interquartile range (Silverman, 1986, Chap 3.4), satisfying

the bandwidth conditions in Theorem 3. The nonparametric bootstrap was used to estimate

the variance of �̂FCG and �̂FCE with 100 replacement resamples.

Table 1 summarizes the main results of estimating the regression coe�cient �0 = 1, based

on 1000 replicates. The naive Cox estimator, �̂NC , was always biased toward the null. The

ordinary regression calibration estimator, �̂ORC , yielded smaller bias, but had larger variance

compared to �̂NC . The bias in �̂ORC became larger when the truncated surrogate model

(Model B) was considered (see Table 1). In addition, in the common disease case, �̂ORC did

not perform as well as in the rare disease case. On the other hand, the proposed frailty-copula

estimators, �̂FCG and �̂FCE, performed consistently well in all scenarios studied. With both

linear and non-linear measurement error, the proposed estimators were virtually unbiased.

Although the variances of �̂FCG and �̂FCE were larger than those for �̂ORC , by the mean-

squared error (MSE) criterion, the frailty-copula estimators were among the best in all the

scenarios considered. Finally, we note that the coverage probabilities for the frailty-copula
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estimators under both the common and rare diseases scenarios lay in a reasonable range

around the nominal 0.95.

4.2 Motivating Example

We applied our method to a study of the e↵ect of physical activity on survival after breast

cancer diagnosis in the Nurses’ Health Study (NHS) (Holmes et al., 2005). The key features

of this study are very similar to the simulation study described in Section 4.1, especially for

Model B and the rare disease case shown in Table 1. The NHS is a prospective observational

study, following 121,700 female registered nurses since 1976 who were 30-55 years of age at

the start of follow-up. Our analysis focused on the 2987 women who were diagnosed with

breast cancer in stages I, II or III between 1984 and 1998. These women were followed until

death or June 2002, with a median follow-up time of 8 years, and 280 women (9.4%) died

from breast cancer during the follow-up period. Physical activity, the primary exposure, was

assessed as metabolic equivalent task (MET) hours per week at least 2 years after cancer

diagnosis (a median of 3.2 years) to avoid bias due to declining physical activity immediately

prior to and after cancer diagnosis.

An external validation study was conducted in the Nurses’ Health Study II cohort, where

the validity of the self-administered physical activity measure based on questionnaires (i.e.,

surrogate) was assessed using a detailed activity diary (i.e., the gold standard). The val-

idation data from these 149 women were available to build the measurement error model

(Wolf et al., 1994). Because preliminary analyses revealed that there was larger variation

in the surrogate than the true measure, we used a functional measurement error model

as in Section 4.1. The challenge is two-fold: the assessment of physical activity based on

self-reported questionnaires was subject to measurement error, and based on the validation

study, the relationship between the true physical activity and its surrogate measure could

not be described by a simple linear function; hence, the classical error model would not be

appropriate to correct the measurement error.
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Table 1: Simulation results (� = 1)

Model A Model B

Common1 Rare2 Common1 Rare2

�̂NC Bias -0.412 -0.357 -0.351 -0.318
SSD 0.054 0.048 0.059 0.048
SEE 0.054 0.047 0.059 0.047
CP (%) 0.0 0.0 0.1 0.0
MSE⇥102 17.3 13.0 12.7 10.4

�̂ORC Bias -0.114 -0.032 -0.158 -0.115
SSD 0.104 0.085 0.105 0.080
SEE 0.105 0.086 0.105 0.081
CP (%) 75.7 91.5 60.9 67.0
MSE⇥102 2.4 0.8 3.6 2.0

�̂FCG Bias -0.026 -0.024 -0.002 -0.019
SSD 0.153 0.102 0.169 0.106
SEE 0.166 0.109 0.160 0.101
CP (%) 93.6 93.0 91.9 92.0
MSE⇥102 2.4 1.1 2.8 1.2

�̂FCE Bias -0.031 -0.016 0.027 -0.003
SSD 0.164 0.112 0.172 0.116
SEE 0.204 0.131 0.169 0.104
CP (%) 95.8 95.2 94.7 92.1
MSE⇥102 2.8 1.3 3.0 1.3

1 Common disease setting: n = 500, nv = 100, 60% event rate
2 Rare disease setting: n = 3000, nv = 200, 10% event rate
NOTE: �̂NC is the naive Cox estimator; �̂ORC is the ordinary re-
gression calibration estimator; �̂FCG and �̂FCE are the proposed
frailty-copula estimators, using the Gaussian and Epanechnikov
kernel smoothings, respectively; SSD is the sample standard de-
viation; SEE is the standard error estimate; CP is the coverage
probability of the 95% confidence interval; MSE is the mean
squared error.

15

Hosted by The Berkeley Electronic Press



Table 2 shows the estimated e↵ect of physical activity on breast cancer survival using

the new frailty-copula estimators, compared to the naive Cox approach. The univariate

analysis results were from a model with exposure only, and the multivariate analysis results

were adjusted for possible other confounders, including age at diagnosis, body mass index

(BMI) and cancer stage. In both analyses, increasing average daily physical activity had a

significant protective e↵ect on breast cancer survival, and the magnitude of the e↵ect was

attenuated (i.e., hazard ratio closer to 1) when the surrogate measure was used without

adjusting for the measurement error (see results for �̂NC). In contrast, the proposed frailty-

copula approach substantially corrected for the attenuation e↵ect (see results for �̂FCG and

�̂FCE). Measurement error in physical activity had minimal impact on the estimated e↵ect of

age and BMI because they were not confounders. In some cases where the variables measured

with error are more highly correlated with other covariates, however, measurement error will

induce bias on the other estimated model coe�cients too.

5 Conclusion

This paper reveals a previously undisclosed inherent relationship between the survival model

with covariate measurement error and the frailty model. We have exploited this relationship

to propose a frailty-copula approach for consistent estimation of the e↵ect of an error-prone

covariate in the Cox model through the derivation of simple unbiased estimating equations.

The proposed approach is applicable both when the distribution of the frailty term given

the surrogate is known up to a parametric form and when this distribution is unknown.

When a parametric distribution for the frailty can be assumed, measurement error model

parameters can be estimated by maximum likelihood. When the parametric form for the

frailty distribution is unknown, a semi-parametric density estimator arising from the copula

is used to estimate it. Our proposed framework is general – it accommodates flexible general

measurement error models, including the commonly used classical measurement error model
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Table 2: Analysis results for the study of physical activity in relation to breast cancer
mortality in the Nurses’ Health Study

Univariate Analysis Multivariate Analysis

E↵ect HR (95% CI) P HR (95% CI) P

Naive Cox Estimator (�̂NC)
Physical activity 1 0.788 (0.645, 0.963) .019 0.794 (0.651, 0.970) .024
Age at diagnosis (10 year) 2 1.107 (0.946 1.295) .210
Overweight (BMI � 25) 2 1.043 (0.819, 1.327) .740
Cancer stage II or III 2 3.815 (2.934, 4.961) <.001

Frailty-copula estimator using the Gaussian kernel (�̂FCG)
Physical activity 1 0.445 (0.201, 0.986) .023 0.453 (0.201, 1.020) .028
Age at diagnosis (10 year) 2 1.099 (0.933, 1.295) .129
Overweight (BMI � 25) 2 1.023 (0.799, 1.310) .429
Cancer stage II or III 2 3.846 (2.949, 5.015) <.001

Frailty-copula estimator using the Epanechnikov kernel (�̂FCE)
Physical activity 1 0.433 (0.229, 0.818) .005 0.448 (0.236, 0.849) .007
Age at diagnosis (10 year) 2 1.102 (0.934, 1.301) .124
Overweight (BMI � 25) 2 1.023 (0.799, 1.312) .427
Cancer stage II or III 2 3.844 (2.953. 5.003) <.001
1 error-prone covariate; per 20 MET-hrs/wk
2 error-free covariate
3 HR = Hazard Ratio; P = p-value
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as a special case.

Other attractive features of the method include its applicability to external validation

studies, for which very few existing methods are available. Moreover, compared to the

alternative methods such as regression calibration, this new frailty approach shows good

performance.

While the method has been restricted to a univariate error-prone covariate, extending

the methodology to allow multiple mis-measured exposures is straightforward, if the multi-

dimensional distribution of exposures is known or can be estimated from validation or reli-

ability data. Future e↵orts will be devoted to estimating the multi-dimensional conditional

distribution of the exposures given the surrogates using approaches for conditional copulas,

for example. To save computation time, we have studied several types of copulas without

considering model selection. However, it is worth considering methods for optimal copula se-

lection, such as goodness-of-fit tests based on the empirical copula (Durrleman et al., 2000),

the Kendall process (Genest and Rivest, 1993; Genest et al., 2009), and kernel density esti-

mation (Fermanian, 2005). Based on our simulation investigation, results were robust to the

choice of kernel function and its bandwidth, in terms of the mean squared errors of �̂. For

example, regardless of whether Gaussian, Epanechnikov or biweight kernel functions were

applied with di↵erent bandwidths b = c⇥min(�̂X , IQR(X)/1.34)n�1/5
v , where c = 0.9, 2.34,

or 2.78, the MSEs of �̂ changed by no more than 0.004. However, it will be worthwhile

to investigate whether e↵orts to reduce the asymptotic mean integrated squared error of

the frailty distribution function itself via bandwidth selection tools such as cross-validation

would appreciably improve the overall performance of � estimation.

This novel frailty-copula approach for solving the covariate measurement error problem

in Cox regression models establishes a previously unnoticed linkage between the frailty con-

cept and the measurement error framework, facilitating cross-fertilization between these two

fields. With this formulation, we have simultaneously advanced standard frailty models by

eliminating the restriction of the frailty term to a parametric distribution or to an assumed
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independence from model covariates. Future research will investigate the application of these

new developments to frailty models in survival data analysis.

Finally, although we mainly work on fX(x|z) in the paper, with the identity fZ(z|x) =

fX(x|z)fZ(z)/fX(x), our Copula-based approach can also handle fZ(z|x) when both X and

Z are continuous variables. This way, our formulation would encompass almost all the major

measurement error models.

6 Supplementary Materials

Web Appendices referenced in Section 3 are available from the corresponding author.
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Proofs of Asymptotic Properties

This section proves the asymptotic properties of the inference procedures proposed in Section

3. Let ✓ be the vector of (�, �T ) and let (✓0, ⇤0(·)) be the true parameter values of (✓, ⇤(·)).

We impose the following regularity conditions:

(C1) The parameter value of ✓0 belongs to the interior of a compact set ⇥ in the domain of

✓.

(C2) The function ⇤0(t) is strictly increasing and continuously di↵erentiable with derivative

�0(t) > 0 for every t 2 [0, ⌧ ], where ⌧ is the duration of the study. The baseline hazard

function �0(t) is bounded above by some constant �
max

for all t 2 [0, ⌧ ].

(C3) X, Z, and W are bounded.

(C4) With probability 1, there exists a positive constant �0 such that P (C � ⌧) > �0.

(C5) The limiting valueD(✓0) of �n�1 @U(✓, ⇤0)/@✓|✓=✓0 is positive definite with probability

1.

(C6) The function @f
X

(x|z; ⇠)/@⇠ is absolutely integrable.

1
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(C7) The density function f
X

(x|z; ⇠) = f
X

(x|z; ⇠0) almost surely if and only if ⇠ = ⇠0. In

addition, if ⌫T ḟ
Xz

(x|z; ⇠0) = 0 holds for any vector ⌫ almost surely, then ⌫ = 0, where

ḟ
Xz

denotes the derivative of f
X

(x|z) with respect to ⇠.

(C8)

lim
nv!1

n
v

b = 1, lim
nv!1

n
v

b5 = 0, and lim
nv!1

b log n
v

= 0.

(C9) ⇠̂ is an estimator for ⇠0 satisfying

k⇠̂ � ⇠0k = O(
p

log n
v

/n
v

) a.s. and E(⇠̂ � ⇠0)
2 = O(n�1

v

log n
v

).

(C10) C 0
⇠

is bounded on [0, 1]2 and

|C 0
⇠1
(u1, v1)� C 0

⇠2
(u2, v2)|  C1(|u1 � u2|+ |v1 � v2|+ |⇠1 � ⇠2|),

where u
j

= F
X

(x
j

), v
j

= F
Z

(z
j

), (u
j

, v
j

) 2 J ⇢ [0, 1]2 and ⇠
j

belongs to a compact

set D̃ ⇢ R for j = 1, 2. Here C1 > 0 is a constant and J is the intersection of an open

set and [0, 1]2.

(C11) (n
v

b)/n ! C3 for a constant C3 > 0.

In Condition (C8), the assumption that the lim
nv!1 n

v

b5 = 0 is used to make the bias in

f̂
X

(x) asymptotically negligible. Conditions (C9) - (C10) guarantee the consistency of the

copula parameter estimator ⇠̂, and Condition (C11) establishes the weak convergence of the

semi-parametric estimator
p
n(✓̂ � ✓0) in Theorem 3.

For simplicity, we rewrite the proposed estimating equation (7) as

U(✓, ⇤0) =
nX

i=1

Z
⌧

0


Q

i

�
P

n

i=1 Yi

(t) ⌘
i

(✓,⇤0(t))QiP
n

i=1 Yi

(t) ⌘
i

(✓,⇤0(t))

�
dN

i

(t), (A.1)
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and simple algebraic manipulation yields

U(✓0, ⇤0) =
nX

i=1

Z
⌧

0


Q

i

�
P

n

i=1 Yi

(t) ⌘
i

(✓0,⇤0(t))QiP
n

i=1 Yi

(t) ⌘
i

(✓0,⇤0(t))

�
dM

i

(t), (A.2)

where Q
i

= (µ(Z
i

), W T

i

)T .

Web Appendix A. Consistency of ✓̂

We introduce the notation

S(k)(t; ✓,⇤) = n�1
nX

i=1

Y
i

(t)Q⌦k

i

⌘
i

(✓,⇤(t)),

S(k)
✓

(t; ✓,⇤) = n�1
nX

i=1

Y
i

(t)Q⌦k

i

⌘̇
✓i

(✓,⇤(t)),

S(k)
⇤ (t; ✓,⇤) = n�1

nX

i=1

Y
i

(t)Q⌦k

i

⌘̇⇤i(✓,⇤(t)),

for k = 0, 1, 2, where a⌦0 = 1, a⌦1 = a, a⌦2 = aaT , ⌘̇
✓i

= @⌘
i

(✓,⇤(t))/@✓ and ⌘̇⇤i =

@⌘
i

(✓,⇤(t))/@⇤(t) at a fixed time t. In addition, we define s(0)(t), s(1)(t), s(0)
✓

(t), s(1)
✓

(t),

s(0)⇤ (t), and s(1)⇤ (t) as the corresponding expected values at (✓, ⇤) = (✓0, ⇤0). It then follows

that n�1 U(✓, ⇤0) converges a.s. uniformly in ✓ 2 ⇥ to its limit u(✓, ⇤0). We can show that

sup
✓2⇥||n�1 U(✓, ⇤̂)�n�1 U(✓, ⇤0)|| ! 0 as n ! 1 from the uniform convergence of ⇤̂(t) to

⇤0(t) in t, as proven by Zucker (2005, A.3), together with the uniform Lipschitz continuity

of ⌘(✓,⇤), ⌘̇
✓

(✓,⇤), and ⌘̇⇤(✓,⇤) with respect to any fixed continuous ⇤, which consists of

monotone and bounded functions. Hence, we have that sup
✓2⇥||n�1 U(✓, ⇤̂)�u(✓, ⇤0)|| ! 0

almost surely. Moreover, we can show that �n�1 @U(✓, ⇤̂)/@✓ converges in probability to

�@u(✓, ⇤0)/@✓ = D(✓) uniformly in ✓, which is positive definite at ✓ = ✓0 by Condition

(C5). Finally, since

u(✓0, ⇤0) = E

Z
⌧

0

⇢
Q1 �

S(1)(t; ✓0,⇤0(t))

S(0)(t; ✓0,⇤0(t))

�
Y1(t) ⌘1(✓0,⇤0(t))d⇤0(t)

�
= 0,
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and n�1 U(✓0, ⇤̂) ! 0 as n ! 1, by applying arguments in Foutz (1977), there exists a

unique consistent solution ✓̂ such that U(✓̂, ⇤̂) = 0 with probability one.

Web Appendix B. Weak convergence of ✓̂ when fX(x|z) is completely

known

Here, we derive the asymptotic normality of ✓̂ when f
x

(x|z) is completely known.

By a Taylor series expansion of U(✓̂, ⇤̂) at U(✓, ⇤̂) and the consistency of ✓̂, we obtain

D(✓0)
p
n (✓̂ � ✓0) = n�1/2 U(✓0, ⇤0) + n�1/2 [U(✓0, ⇤̂)� U(✓0, ⇤0)] + o

p

(1), (A.3)

where D(✓0) ⌘ E [
R

⌧

0 {s
(1)
✓

/s(0)(t)�s(1)s(0)
✓

/(s(0))2(t)} dN1(t)], which is consistently estimated

by

D̂ = �n�1 @U(✓, ⇤̂)/@✓ |
✓=✓̂

= n�1
nX

i=1

Z
⌧

0

{S(1)
✓

/S(0)(t; ✓̂, ⇤̂)� S(1)S(0)
✓

/(S(0))2(t; ✓̂, ⇤̂)} dN
i

(t).

It follows from the martingale representation of U(✓0, ⇤0) in (A.2) and from the multi-

variate central limit theorem that n�1/2 U(✓0, ⇤0) is asymptotically zero-mean normal with

covariance matrix D(✓0).

We derive the limiting distribution of n�1/2 [U(✓0, ⇤̂)�U(✓0, ⇤0)] by following arguments

similar to those given by Zucker (2005, A.4-A.5). Applying the mean value theorem, we

obtain

U(✓0, ⇤̂)� U(✓0, ⇤0) =
nX

i=1

Z
⌧

0

�(t; ✓0,⇤0) {⇤̂(t)� ⇤0(t)} dNi

(t) (A.4)

+O(sup
t2[0,⌧ ]||⇤̂(t)� ⇤0(t)||),

where �(t; ✓,⇤) = S(1)S(0)
⇤ /(S(0))2(t; ✓,⇤) � S(1)

⇤ /S(0)(t; ✓,⇤). Now, from the Taylor series
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expansion and the fact that dM
i

(t) = dN
i

(t) � Y
i

(t) ⌘
i

(✓0,⇤0(t)) d⇤0(t), {⇤̂(t) � ⇤0(t)} can

be approximated by

n�1
nX

i=1

Z
t

0

dM
i

(u)

S(0)(u; ✓0,⇤0)
� S(0)

⇤

(S(0))2
(u; ✓,⇤){⇤̂(u)� ⇤0(u)} dNi

(u),

which has the solution (Yang & Prentice, 1999)

⇤̂(t)� ⇤0(t) ⇡
1

R0(t)

nX

i=1

Z
t

0

R0(u�)

nS(0)(u; ✓0,⇤0)
dM

i

(u), (A.5)

where

R0(t) =
Y

ut

(
1 +

nX

i=1

nS(0)
⇤ /(S(0))2(u; ✓0,⇤0) dNi

(u)

)
.

Since sup
t2[0,⌧ ]||⇤̂(t)� ⇤0(t)|| = o

p

(1), replacing {⇤̂(t)� ⇤0(t)} in (A.4) with (A.5) yields

n�1/2 [U(✓0, ⇤̂)� U(✓0, ⇤0)] = n�1/2
nX

i=1

Z
⌧

0

G(u; ✓0,⇤0)R0(u�)

nS(0)(u; ✓0,⇤0)
dM

i

(u) + o
p

(1),

where G(u; ✓0,⇤0) =
P

n

i=1

R
⌧

u

�(t; ✓0,⇤0)/R0(t) dNi

(t). This is a sum of n independent

mean-zero random vectors plus an asymptotically negligible term. Therefore, by the central

limit theorem, we can show that n�1/2 [U(✓0, ⇤̂)� U(✓0, ⇤0)] converges in distribution to a

mean-zero normal random vector with covariance matrix H, where

H = E

Z
⌧

0

G(t; ✓0,⇤0)R0(t�)

{
P

n

i=1 Yi

(t) ⌘
i

(✓0,⇤0(t))}2
dM1(t)

�⌦2

,

which can be consistently estimated by

Ĥ = n�1
nX

i=1

Z
⌧

0

G(t; ✓̂, ⇤̂)⌦2 R̂(t�)2

{
P

n

i=1 Yi

(t) ⌘
i

(✓̂, ⇤̂(t))}2
dN

i

(t).

Finally, since the first and second terms in (A.3) are asymptotically independent by an

argument similar to that given by Zucker (2005, A.5), the desired asymptotic distribution

5
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of
p
n (✓̂� ✓0) can be established as a zero-mean normal distribution with covariance matrix

D�1 +D�1HD�1.

Web Appendix C. Weak convergence of ✓̂ when fX(x|z) is known up

to a parametric form

We now study the case in which f
X

(x|z) belongs to a parametric family indexed by a vector

parameter ⇠ in Rp. That is, the conditional density f
X

(x|z) may be written as

f
X

(x|z; ⇠) = C 0
⇠3
(F

X

(x; ⇠1), FZ

(z; ⇠2)) fX(x; ⇠1),

where ⇠ = (⇠T1 , ⇠
T

2 , ⇠
T

3 )
T , the margins F

X

and F
Z

and their corresponding univariate densities

f
X

and f
Z

are indexed by parameter vectors ⇠1 and ⇠2, respectively, and C 0
⇠3

denotes the

copula density function with an unknown parameter ⇠3.

Suppose we observe {Z
i

; i = 1, . . . , n} in the main study and {X
j

, Z
j

; j = 1, . . . , n
v

} in

the external validation study. Under our assumptions, {Z
i

} and {X
j

, Z
j

} are i.i.d. random

vectors, and since the log-likelihood of the measurement error model is

`(⇠) =
nX

i=1

log f
Z

(z
i

; ⇠2)+
nvX

j=1

{logC 0
⇠3
(F

X

(x
j

; ⇠1), FZ

(z
j

; ⇠2))+log f
X

(x
j

; ⇠1)+log f
Z

(z
j

; ⇠2)},

⇠̂ is the maximizer of `(⇠). Then, following standard maximum likelihood theory, the con-

sistency of ⇠̂ to the true value ⇠0 as well as the asymptotic normality of
p
n (⇠̂ � ⇠0) with

covariance matrix ⌦ follows.

The estimating equation for ✓ with unknown parameter ⇠ is denoted by U(✓,⇤0, ⇠),

which can be obtained by replacing µ(Z
i

), Q
i

and ⌘
i

(✓, ⇤0(t)) with µ(Z
i

; ⇠), Q
i

(⇠) and

⌘
i

(✓, ⇤0(t), ⇠), respectively, in (A.1).

By the functional delta method and the fact that ✓̂ ! ✓0 in probability, the estimating

6
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equation n�1/2 U(✓̂, ⇤̂, ⇠̂) can be expressed as

0 = n�1/2 U(✓̂, ⇤̂, ⇠̂)

= n�1/2 U(✓0, ⇤̂, ⇠̂) +
1

n

@U(✓0, ⇤̂, ⇠̂)

@✓

p
n (✓̂ � ✓0) + o

p

(1),

and by ⇠̂ ! ⇠0,

n�1/2 U(✓0, ⇤̂, ⇠̂) = n�1/2 U(✓0, ⇤̂, ⇠0) +
1

n

@U(✓0, ⇤̂, ⇠0)

@⇠

p
n (⇠̂ � ⇠0) + o

p

(1). (A.6)

We can demonstrate the consistency of n�1@U(✓0, ⇤̂, ⇠̂)/@✓ and n�1@U(✓0, ⇤̂, ⇠0)/@⇠ in the

same way as shown in Web Appendix B, and hence we can show that �n�1@U(✓0, ⇤̂, ⇠̂)/@✓

converges in probability to D(✓0), and that n�1@U(✓0, ⇤̂, ⇠0)/@⇠ converges in probability to

V (⇠0), which can be consistently estimated by

V̂ = n�1
nX

i=1

Z
⌧

0

"
Q̇

⇠i

(⇠̂) +

P
i

Y
i

(t) ⌘
i

(✓̂, ⇤̂, ⇠̂)Q
i

(⇠̂)
P

i

Y
i

(t) ⌘̇
⇠i

(✓̂, ⇤̂, ⇠̂)T

{
P

i

Y
i

(t) ⌘
i

(✓̂, ⇤̂, ⇠̂)}2

#
dN

i

(t)

�n�1
nX

i=1

Z
⌧

0

"P
i

Y
i

(t)Q
i

(⇠̂) ⌘̇
⇠i

(✓̂, ⇤̂, ⇠̂)T
P

i

Y
i

(t) ⌘
i

(✓̂, ⇤̂, ⇠̂) Q̇
⇠i

(⇠̂)
P

i

Y
i

(t) ⌘
i

(✓̂, ⇤̂, ⇠̂)

#
dN

i

(t),

where Q̇
⇠i

and ⌘̇
⇠i

are partial derivatives of Q
i

(⇠) and ⌘
i

(✓,⇤, ⇠) with respect to ⇠. Finally,

since the first term and the second term in (A.6) are asymptotically independent, we have

just proven that the limiting distribution of
p
n (✓̂ � ✓0) is a mean-zero normal distribution

with covariance matrix D�1(✓0) +D�1(✓0)[H + V (⇠0)⌦V (⇠0)T ]D�1(✓0).

Web Appendix D. Weak convergence of ✓̂ when a parametric form

of fX(x|z) is unknown

When the parametric form of f
X

(x|z) is unknown, we propose to use a semi-parametric

estimator f̂
X

(x|z) = C 0
⇠̂

(F̂
X

(x), F̂
Z

(z)) f̂
X

(x) as described in Section 3.2. We rewrite the

7
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estimating equation for ✓ to emphasize that it is a function of f̂
X

(x|z) as follows:

0 = U(✓̂, ⇤̂, f̂
X|Z) (A.7)

= {U(✓̂, ⇤̂, f̂
X|Z)� U(✓, ⇤̂, f̂

X|Z)}+ {U(✓, ⇤̂, f̂
X|Z)� U(✓, ⇤, f̂

X|Z)}

+ {U(✓, ⇤, f̂
X|Z)� U(✓, ⇤, f

X|Z)}+ U(✓, ⇤, f
X|Z).

The asymptotic properties of ✓̂ can be established by analyzing the four terms of (A.7).

If we can establish the asymptotic properties of the third term of (A.7), the asymptotic

properties of the remaining terms can be found as in Web Appendices A and B, and using

Lemma 1 which we will prove later. First, we focus on deriving the asymptotic properties of
p
n [U(✓, ⇤, f̂

X|Z)� U(✓, ⇤, f
X|Z)].

We start by proving the consistency of f̂
X

(x|z).

Lemma 1 Let f
X

(x|z) be a continuous and bounded probability density function. Under

Conditions (C8) - (C10), for any compact set D ⇢ {(x, z) 2 R2 : (F
X

(x), F
Z

(z)) 2 J},

sup
(x,z)2D

|f̂
X

(x|z)� f
X

(x|z)| ! 0 a.s. as n
v

! 1.

For ease of notation, we let F
X

(x) = F1, FZ

(z) = F2, and f
X

(x) = f1. Then,

f̂
X

(x|z)� f
X

(x|z) = C 0
⇠̂

(F̂1, F̂2)f̂1 � C 0
⇠0
(F1, F2)f1 (A.8)

= {C 0
⇠̂

(F̂1, F̂2)� C 0
⇠0
(F1, F2)}f̂1 + C 0

⇠0
(F1, F2)(f̂1 � f1).

Under the continuity of the distribution functions F1 and F2, we have sup
x,z2R |F̂j

� F
j

| =

O(
p
log(log n

v

)/n
v

) (j = 1, 2) almost surely (see Shorack & Wellner, 2009, Chap 13). Then,

by Conditions (C9) - (C10),

sup
(x,z)2D

|C 0
⇠̂

(F̂1, F̂2)� C 0
⇠0
(F1, F2)| = O(n�1/2

v

p
log n

v

) a.s.

8
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For x in a compact set D̃,

sup
x2D̃

|f̂1 � f1| = O((n
v

b)�1/2
p

log n
v

+ bp) a.s.

for p times continuously di↵erentiable f1 on R for some p � 2 (Newey, 1994, see). Then,

from (A.8),

sup
(x,z)2D

|f̂
X

(x|z)� f
X

(x|z)| = O((n
v

b)�1/2
p

log n
v

+ bp).

Therefore, by Condition (C8), Lemma 1 holds.

We next establish the asymptotic normality of f̂
X

(x|z).

Lemma 2 Suppose that f
X

is twice continuously di↵erentiable at x 2 R. Under Conditions

(C8) - (C10), for any compact set D ⇢ {(x, z) 2 R2 : (F
X

(x), F
Z

(z)) 2 J}, we have

p
n
v

b (f̂
X

(x|z)� f
X

(x|z)) D�! N(0, ⌃),

where ⌃ = C 02
⇠0
(F

X

, F
Z

) f
X

R
K2(u) du.

From Conditions (C9) - (C10) and using the consistency of the density estimator f̂1, we have

|{C 0
⇠̂

(F̂1, F̂2)� C 0
⇠0
(F1, F2)}f̂1| = O

p

(n�1/2
v

p
log n

v

). Thus, from (A.8),

f̂
X

(x|z)� f
X

(x|z) = C 0
⇠0
(F1, F2)(f̂1 � f1) +O

p

(n�1/2
v

p
log n

v

). (A.9)

The next step is to show the asymptotic normality of
p
n
v

b (f̂1 � f1). Let wj

= b�1/2K((x�

X
j

)/b) � b�1/2EK((x � X
j

)/b). Under the assumptions that n
v

b ! 1 and
p
n
v

b5 ! 0 as

9
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n
v

! 1, we can show

p
n
v

b (f̂1 � f1) = n�1/2
v

nvX

j=1

{b�1/2K((x�X
j

)/b)� b�1/2EK((x�X
j

)/b)}

+
p

n
v

b {b�1EK((x�X1)/b)� f
X

(x)}

= n�1/2
v

nvX

j=1

w
j

+O
p

((n
v

b)1/2 b2)

= n�1/2
v

nvX

j=1

w
j

+ o
p

(1),

since b�1EK((x�X
j

)/b)� f
X

(x) = O(b2). Now, we can show that as n
v

! 1,

Ew2
j

= b�1EK2((x�X
j

)/b)� b�1{EK(x�X
j

)/b)}2

= b�1

Z
K2((x� u)/b) f

X

(u) du� b�1{b
Z

K(u) f
X

(x� ub) du}2

=

Z
K2(u) f

X

(x� ub) du+O(b)

�! f
X

(x)

Z
K2(u) du

by the dominated convergence theorem. We can further show that for independent w0
j

s (j =

1, . . . , n
v

), Ew
j

= 0 and n��̃/2
v

E|w
j

|2+�̃ ! 0 for some �̃ > 0. Therefore, by the Lyapunov

central limit theorem, we obtain

p
n
v

b (f̂1 � f1)
D�! N(0, f1

Z
K2(u) du).

Hence, from (A.9), we have proved that
p
n
v

b (f̂
X

(x|z)�f
X

(x|z)) follows a mean-zero normal

distribution with covariance matrix C 02
⇠0
(F1, F2) f1

R
K2(u) du.

Finally, using the functional delta method, we can show
p
n [U(✓, ⇤, f̂

X|Z)�U(✓, ⇤, f
X|Z)]

weakly converges to U 0
f

(M), where U 0
f

is the Hadamard derivative of U(✓, ⇤, f
X|Z) at fX|Z ,

and M is a random variable following the same distribution as the limiting distribution of
p
n
v

b {f̂
X

(x|z)� f
X

(x|z)}, i.e., a mean-zero normal with the covariance matrix ⌃, assuming

10
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(n
v

b)/n ! C3 for a constant C3 > 0. Thus, the proof of the Theorem 3 is completed by

combining this result with the asymptotic normality that have been proven for the other

terms in (A.7).
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