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Abstract

The study of the cell-cycle is important in order to aid in our understanding

of the basic mechanisms of life, yet progress has been slow due to the com-

plexity of the process and our lack of ability to study it at high resolution.

Recent advances in microarray technology have enabled scientists to study

the gene expression at the genome-scale with a manageable cost, and there

has been an increasing effort to identify cell-cycle regulated genes. In this

chapter, we discuss the analysis of cell-cycle gene expression data, focus-

ing on a model-based Bayesian approaches. The majority of the models we

describe can be fitted using freely available software.

8.1 Introduction

Cells reproduce by duplicating their contents and then dividing into two.

The repetition of this process is called the cell cycle, and is the fundamental

means by which all living creatures propagate. On the other hand, abnor-

mal cell divisions are responsible for many diseases, most notably cancer.

Therefore studying cell cycle control mechanisms and the factors essential

for the process is important in order to aid in our understanding of cell

replication, malignancy, and reproductive diseases that are associated with

genomic instability and abnormal cell divisions.

For decades, biologists have been studying the cell cycle, using the model

organism budding yeast Saccharomyces cerevisiae. This focus on budding

yeast is due to the fact that it exists as a free living, single cell, which

has the same general architecture and control pathways as the cells of its

highly complex, multi-cellular relatives (e.g. humans). Moreover, a number

of conditions have been identified that enable researchers to arrest yeast

cells at a specific point in the cell cycle and then release them from that
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2 Zhou, Wakefield & Breeden

state in order to follow a population of cells that are progressing through

the cell cycle in synchrony. Until technologies are available to follow the

molecular events in individual cells, synchronizing populations of cells is our

only means to follow and characterize the key events in the cell cycle.

Duplication of a complex structure like a living cell requires the organi-

zation and coordinated activity of thousands of components. These com-

ponents are built from plans coded in the genes of the cell (DNA). This

code is accessed and duplicated or transcribed into RNA and then read and

translated to generate the components, which are called proteins. As with

any assembly process, each component is required in different amounts and

at different times. One universal strategy that has evolved to simplify this

process is the regulation of transcription, which means that a gene is not

transcribed (and translated) until the component is needed. It is believed

that up to 20% of the genes of organisms as diverse as bacteria and humans

may be transcriptionally regulated during the cell cycle and many of the

components encoded by these genes participate in or control specific events

in the cell cycle. For reviews of cell-cycle regulation, see for example Kelly

and Brown (2000) [10] and Morgan (1997) [15].

Recent breakthroughs in microarray technology have enabled biologists to

measure the number of transcripts made from every gene in an organism’s

DNA. This microarray technology allows an unprecedented look at the state

of a cell at a particular time within the cell cycle. Due to the importance of

understanding the cell duplication process, studies of transcriptional regu-

lation during the cell cycle of yeast were among the first experiments to be

carried out using microarray technology. These pioneering efforts provided

far more information than had been gleaned from the previous 20 years of

research in the area. They also highlighted the need for computational meth-

ods for analyzing microarray data and for identifying statistically significant

patterns in time series gene expression.

8.2 Previous Studies

As one of the first genome-wide gene expression studies, Cho et al. (1998) [4]

used Affymetrix microarrays and visual inspection to identify 416 out of

6,000 yeast genes as cell-cycle regulated. Spellman et al. (1998) [19] con-

ducted a set of experiments using cDNA arrays and three different synchro-

nization methods to obtain three more data sets. By fitting these profiles to

sinusoidal functions and correlating those profiles with the profiles of tran-

scripts already known to be cell cycle regulated, these authors identified 800

genes as cell-cycle regulated. These data have further served as a testing
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Cell Cyle 3

ground for dozens of new computational methods; the earliest among these

were a number of clustering algorithms (Eisen et al., 1998 [6]; Quackenbush,

2002 [16]; Tamayo et al., 1999 [22]).

Recently, there has been increasing interest in developing model-based

approaches for analyzing gene expression data. The clustering algorithms

are useful exploratory tools, but they lack the ability to model the vari-

ability at various levels of the microarray experiments, the structure to take

into account covariates and external information, a distributional framework

for formal statistical inference, and also have difficulties with missing data.

As a contrast, many of the problems associated with these ad hoc clustering

algorithms can be overcome by assuming specific functional forms on the ex-

pression pattern or distributional assumptions on model parameters, leading

to more informative analysis and principled inference. Zhao, Prentice and

Breeden (2001) [27] employed a single pulse model along with generalized

estimating equation techniques to re-examine the three data sets by Spell-

man et al. (1998). Johansson, Lindgren and Berglund (2003) [9] used a

partial least squares regression approach on the three data sets individually

and in combination. Lu et al. (2004) [12] used a two-component mixture-

Beta model with an empirical Bayesian method to detect periodic genes.

Wakefield, Zhou and Self (2003) [24] proposed a fully Bayesian hierarchical

models for the analysis of cell cycle expression data, and their approach

was subsequently extended by Zhou and Wakefield (2005) [28]. Other ap-

proaches using mixed-effect models and smoothing techniques have also been

applied to these data, see for example, Luan and Li (2004) [13]. However,

the agreement between these methods is remarkably poor. As reported in

a comparison study by Lichtenberg et al. (2005) [11], in total nearly 1,800

different genes have been proposed to be periodic – which is almost one

third of the S. cerevisae genome. These results suggest that more powerful

statistical methods, more accurate data, or the incorporation of biological

information are required to resolve these problems.

When applying model-based approaches to the time course gene expres-

sion data, it is important to specify the model in such a way that it cap-

tures the systematic behavior of the regulation process as much as possible,

otherwise important information might be missed. The incorporation of

additional information is important due to the noise inherent in these time

series data sets with no replicates, and also from the difficulties in comparing

and combining the results from different data sets. The four experiments

reported in Spellman et al. (1998) were carried out with different synchro-

nization methods, in the hope that analysis of the combined data would

minimize the effect of artifacts due to any one synchronization method.
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4 Zhou, Wakefield & Breeden

However, it is not clear how many periodic transcript profiles would be ob-

scured by synchrony artifacts in any one data set, nor is it clear what other

complexities would arise in combining them. In addition to the cycle lengths

being different across experiments, the cycles themselves are slightly out of

phase, because the points of arrest differ. Moreover, the synchrony at release

is not perfect and it decays with time. An additional problem is that the

arrested cells continue to grow and accumulate key cell components even

during the arrest, so the first cycle after release may be shorter than the

second one.

We emphasize that these experimental artifacts should be carefully consid-

ered in the analysis, as they are often systematically reflected in the expres-

sion levels throughout experiments course. Failure to recognize them may

lead to unreliable results and erroneous conclusion. We have three major

goals for this work: first, to extend and apply the model framework proposed

in Wakefield et al. (2003) to cell-cycle time course gene expression data with

the characteristics described above; second, to provide a streamlined anal-

ysis of such data including evaluation of measurement error, filtering and

partitioning; third to demonstrate that with carefully specified models, we

can extract important biological information from such analysis.

8.3 Data

The working data is provided by Tata Pramila and Linda Breeden at the

Fred Hutchinson Cancer Research Center. It was collected from cDNA mi-

croarrays and was normalized using GenePix software (Axon Instruments,

Inc.) [1]. It has the advantages of refined microarray technology compared

to that obtained six years earlier and a shorter sampling interval. Microar-

ray experiments were also performed to directly assess measurement error.

The three cell cycle data sets we used monitor all yeast transcripts and each

involves the same α-factor method of synchronization; α-factor was used

because it is a physiological arrest of wild type cells from which cells re-

cover rapidly. Since α-factor is a natural inhibitor of the cell cycle, we can

assume that all cellular processes that might interfere with the viability or

recovery of these cells from the arrest are stopped. The quality of the syn-

chronous release can be inferred from the fact that periodic transcripts can

be followed for up to four cell cycles after release from the arrest (Breeden,

1997 [3]). The timing of release is also highly reproducible, thus enabling

multiple experiments to be compared.

The data was collected with the following design: cells were first synchro-

nized by α-factor arrest; then the cells were released to progress through
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Cell Cyle 5

the cell cycle. Gene expression levels through the cell cycle relative to asyn-

chronized cell samples were measured at 5 minutes time intervals from t = 0

to t = 120 minutes. This length covers approximately two full yeast cell

cycles. The 5 minute intervals offer finer resolution in time compared to

those of Spellman et al. (1998) and Cho et al. (1998). Two microarrays

were performed with the RNA collected from this experiment. In the first

case (referred to as 38wt), the cell cycle transcripts were labeled with red

dye, and the reference transcripts from asynchronous cells were labeled with

green dye. A second microarray (30wt) was then performed with the dyes

swapped. This dye-swapped data set is treated as a replicated experiment.

The duplicated experiment provided valuable additional information regard-

ing the variability and magnitude of the expression patterns.

Another important data set consists of six arrays with expression mea-

sures of all transcripts relative to themselves to give a so-called self-self

hybridization. Deviations from a ratio of 1 in these measurements indi-

cate measurement error. Using the fully Bayesian model-based approach,

we were able to incorporate the additional information gathered from these

data into our main analysis, using informative prior distributions.

All three data sets use the same 6216 yeast transcripts, which cover the

complete yeast genome. An initial exploratory analysis, which was confirmed

by closer examination, revealed that the mRNA sample at 105 minutes was

contaminated, therefore the data generated from that array were dropped

from subsequent analyses.

The left panel in Figure 8.1 shows expression of 100 genes which are known

to be cell cycle regulated (CCR) from previous studies. It appears that they

do demonstrate strong cyclic signals in our data set. As a contrast, a large

portion of the genes do not show strong signals as we see from the random

sample of 100 genes shown in the right panel of Figure 8.1.

8.4 Bayesian Analysis of Cell Cycle Data

8.4.1 Measurement Error

There are various sources of variation involved in microarray experiments,

and their identification and evaluation have proven to be crucial for mak-

ing accurate inference. Other than variations which we can attribute to

certain systematic sources, the remaining variability is often referred to as

measurement error. To estimate measurement error, we use data from six

microarrays with mRNAs collected at 0, 25, 35, 45, 60 and 100 minutes.

These mRNAs were copied into cDNA, split and then coupled to either Cy5

or Cy3 dyes. The two samples were mixed and hybridized to cDNA arrays.
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(b) 100 random genes

Fig. 8.1. Expression of 100 CCR genes and 100 randomly selected genes.

Fluorescence measured from each dye is expressed as a ratio and its devi-

ation from unity provides an estimate of measurement error. This is often

referred to as a same versus same measurement.

We now summarize the analysis of this reference data, based on which the

prior distribution on the measurement error was specified. Figure 8.2 shows

the boxplots of the data from these 6 chips; we can see that the average

gene expressions of these asynchronized samples are close to zero. There

were genes which exhibited large variations across time, but they did not

appear to be cyclic under closer inspection. The samples appear to be more

spread out at later times, suggesting that measurement error may increase

with time. This observation supports our speculation that using only early

data could under-estimate the measurement error. Therefore we proceeded

to carry out a Bayesian analysis using the pooled data from all six chips.

Let y = {y1, · · · , yN} denote the pooled reference data, yi denote the ith

observation. We assume a simple normal model for the data

yi |µ, σ2 ∼i.i.d. N(yi |µ, σ2). (8.1)

We assume a “non-informative” prior on (µ, σ2) with p(µ, σ2) ∝ 1/σ2,

which leads to the following posterior distribution

p(σ−2 |y) = Ga(σ−2 | a, b), (8.2)

https://biostats.bepress.com/uwbiostat/paper276
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Fig. 8.2. Boxplots for the data from each of the six chips.

where a = 1
2(N − 1), b = 1

2ns2 with ns2 =
∑n

i=1(yi − ȳ)2.

We could use the parameter values from this posterior analysis as a way

of obtaining a prior specification for later analyses, but the large sample size

from pooling the six chips leads to a highly concentrated posterior distri-

bution on the standard deviation σ. The sampling posterior median of σ is

0.151, with 95% sampling interval (0.150, 0.153). To avoid being too restric-

tive, we calibrated a and b to allow larger variation. We set the modal value

for σ to be 0.15, and an upper bound 0.5 so that Pr(0 < σ < 0.5) = 0.95.

Solving the resultant equations gave a = 1.52 and b = 0.05, under which the

95% sampling interval is (0.10, 0.68). These values were then used as priors

in subsequent filtering and partitioning analysis.

8.4.2 Filtering

In cell cycle analysis, our main interest lies in identifying and characterizing

genes that are cell-cycle regulated. For those genes which show differential

expression but do not coincide with cell cycle events, we do not consider them

as cell cycle regulated, and consequently exclude them from later analysis.

In this section, we apply a filtering procedure to cell cycle data. The aim is

to first identify candidate periodic genes, then perform more reliable analysis

Hosted by The Berkeley Electronic Press



8 Zhou, Wakefield & Breeden

on these candidates, using a more sophisticated model tuned to the cell-cycle

nature of the data.

Let yij denote gene expression at time tj for gene i, i = 1, · · · , n, j =

1, · · · , T . We assume a first order Fourier model for the data,

yij = Ri cos 2π(f0tj + φi) + ǫij, (8.3)

where ǫij ∼i.i.d. N(0, σ2
e) are the measurement errors, and (Ri, φi) are gene

specific parameters, Ri is the amplitude, i.e., the magnitude of the cyclic

signal, and φi is the phase, governing where the signal peak. The cell cycle

frequency is denoted by f0, fixed at 1/58 minutes−1, and assumed to be

common to all genes. The cell cycle span is estimated to be 58 minutes

using the known CCR genes [27].

For the purpose of filtering, we want to test the following hypothesis

independently for each gene i,

M0 : Ri = 0 v.s. M1 : Ri 6= 0.

To carry out the filtering procedure, we need to specify the prior distri-

butions. For measurement error, we assume σ−2 ∼ Ga(a, b), where a and b

are determined from the reference data analysis described in Section 8.4.1.

We assume models M0 and M1 are equally probable a priori. Under

M0, the parameter φi is redundant. Under M1, we assume Ri and φi are

independent with the following prior distributions,

Ri ∼i.i.d. Exp(λ) (8.4)

φi ∼i.i.d. Unif(−0.5, 0.5) (8.5)

Because the trigonometric functions in the Fourier model are periodic, φi

is restricted to (−0.5, 0.5) for identifiability, so the uniform prior on φi is

“non-informative”. We chose an exponential prior on the amplitude Ri

because it has a simple form and reasonably reflects prior belief based on

data. The parameter λ was based upon an exploratory analysis of the 100

known CCR genes. We have found that the 100 known cell cycles genes

showed consistently strong signals in both the main and the dye-swapping

experiments, and believed their expression levels were representative of genes

with strong signals. So we extracted data for the 100 known cell cycle

regulated genes from the dye-swapping experiment, transformed them into

the same format as the 38wt data set by changing the signs of the log ratios.

Model (8.3) can be re-parameterized as

yij = Ai cos(2πf0tj) + Bi sin(2πf0tj) + ǫij, (8.6)

with Ai = Ri cos 2πφi, and Bi = Ri sin 2πφ. Given f0 and tj, it is just

https://biostats.bepress.com/uwbiostat/paper276
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a simple linear model, for which we can obtain least squares estimates of

(Ai, Bi) and transform them back to (Ri, φi). We chose λ to be 1.43 so that

the mean amplitude is 0.7 with variance 0.5 on the basis of the least square

estimates. We believe that amplitudes of these known CCR genes are within

the upper range of the signals, we would expect many CCR genes to have

smaller amplitude than these genes. Figure 8.3 shows the expression of the

100 CCR genes, with fitted curves based on the least squares estimates. The

distributional and independence assumptions were checked by inspecting the

histograms and scatter plots of the parameter estimates.
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Fig. 8.3. Observed gene expression of 100 known CCR genes, and their fitted values
based on least square estimates using model (8.3).

Figure 8.4 shows 100 simulated gene expression time series from the above

priors including measurement error. It suggests our prior choices are reason-

able, as we see patterns in the simulated data match quite closely to what

we see in the main data (as seen in Figure 8.1).

We sampled parameter values from the prior distributions and used im-

portance sampling technique to estimate the posterior probabilities pi =

Pr(M1 |yi), then ordered genes based on these probabilities. Figure 8.5

displays the 100 highest ranked genes and the 100 lowest ranked genes. It

appears that the filter was able to pick out genes with large variations. Be-

cause the model (8.3) allows cyclic oscillation in the data, genes showing

cyclic patterns tend to be ranked higher than genes that are not cyclic even

though they may show differential expression. So the higher a gene is ranked

by this filtering procedure, the more likely it is cyclic and thus a candidate

for cell cycle regulation.
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Fig. 8.4. N = 100 simulated gene expression time series based on the following
priors: Ri ∼ Exp(1.43), φi ∼ Unif(−0.5, 0.5), σ2

e
= 0.22.
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Fig. 8.5. Expression of the 100 highest ranked genes (left panel) and lowest ranked
genes (right panel).

At this point, we can either pick a cutoff point subjectively, and proceed

with genes above the threshold, or we can choose the cutoff point based
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on some more formal criteria, such as controlling the false discovery rate

(FDR) and false negative rate (FNR). The concepts of FDR and FNR,

and Bayesian procedures for controlling them have been discussed in Storey

(2002) [21]. Note FDR and FNR are two competing concepts, optimal results

for minimizing both error rates cannot be achieved at the same time. We

would miss nothing by rejecting all hypotheses and concluding all genes are

cell-cycle regulated, so FNR=0, but clearly FDR would be high in this case,

and vice versa. Therefore some compromise has to be made, depending on

the scientific question and our subsequent preference for making the two

types of errors. In our analysis, we feel we are in a “discovery” mode, and

therefore a certain amount of false discovery is tolerable as long as we do

not miss too many cell-cycle genes.

Figure 8.6 illustrates various thresholds from minimizing the loss function

cFDR+FNR, where c is a positive number chosen to reflect our preference

in controlling FDR and FNR. For example, if we are twice as concerned

with FDR as with FNR, we could set c = 2 and consider the top 1340 genes

(bottom left panel). Of course, choosing an appropriate value c is not a

trivial task.

As an alternative Figure 8.7 shows the optimal number of rejections for

minimizing Bayesian FNR while controlling Bayesian FDR at the 0.05 level.

This is similar to the frequentist practice of maximizing the power while

controlling the significance level. Based upon this result, we decided to

identify the top 1680 genes as candidates for cell cycle regulation, and the

cutoff for marginal posterior probability Pr(M1 |yi) was set to be 0.78†.

More sophisticated Bayesian methods for differential gene expression have

been proposed, see for example Do, Müller and Tang (2005) [5].

8.4.3 Model-based Partitioning

This first-order Fourier model requires model refinement since it does not

account for the attenuation in the cell-cycle data. This synchronization

causes an intrinsic difficulty in a cell-cycle study. To effectively observe the

cell-cycles, yeast cells have to be initially synchronized. In addition, our

ability to observe the true cell-cycle span is impeded because the cell-cycle

can be altered by the synchronization. This fact has long been recognized

by biologists, and has been addressed in gene expression analyses as well

(Lu et al., 2004 [12]). α-factor synchronization is considered as a better

choice compared to other synchronization methods because of its relative

ease, sensitivity and gentleness to cells. α-factor is a mating pheromone

† The discrepancy of 5 is due to the rounding error in 0.78.
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Fig. 8.6. Optimal solutions to different loss functions in the form of cFDR+FNR.

that is secreted by haploid S. cerevisiae cells of the α mating type. It blocks

cell division in G1 and induces mating-specific gene expression. Even when

transcriptions are held at START‡, during this time cell mass increases and

cell wall growth continues, resulting in enlarged and frequently distorted

cells. After the release the large size of cells leads to near elimination of the

G1 phase and hence an abbreviated cell cycle. This is consistent with our

observation that there tends to be shortened cell-cycle span early on after

release, but the difference decreases over time. Breeden (1997) recommends

that with α-factor arrest, the first cycle after release should be considered

a recovery cycle, which may differ from the normal mitotic cycle in specific

ways. Any oscillating activity that persists through the second and third

cycles after recovery is most likely to be a property of the normal mitotic

cell cycle.

There are drug-induced cell cycle arrests, which are unnatural and poten-

‡ An important checkpoint in the eukaryotic cell cycle. Passage through START commits the
cells to enter S phase.
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Fig. 8.7. Optimal solutions to minimizing FNR, subject to FDR ≤ 0.05.

tially toxic and non-specific. Genetically induced arrests using cdc mutants

are more specific and two such arrests (cdc28, cdc15) have been used by

Spellman et al. (1998). However, the arrests evoked by these mutations are

abnormal in the sense that they are caused by the loss of a critical gene

product. The cells arrest in an apparently uniform state, but it cannot be

assumed that all cell-cycle specific progresses are halted, or that recovery

from the arrest occurs under balanced growth conditions. Even with the

elutriation synchronization, which collects G1 cells based on size and intro-

duces minimal perturbation, cells need some time before they resume normal

mitotic cell cycles. With these synchronization methods, the first cell cycle

should also be considered a recovery cycle, as with α-factor synchronization.

So if the first cycle cannot be trusted, why not run the experiments longer

and only look at later cell cycles? This brings up a second point: the num-

ber of observable cell cycles is limited. Most of the time the cyclic signals

dissipate after three or four cycles. There are several factors that could con-

tribute to this phenomenon. One is how well the cells are synchronized. But
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14 Zhou, Wakefield & Breeden

even with a perfect synchrony, after two doublings only one of four of the

cells experienced the initial conditions. This, in addition to random fluctu-

ation in the transcription of each gene, means that soon the cells become

asynchronous and we are unable to observe the cyclic patterns any more.

To make the matter even more complicated, certain signals we observe

could be artifacts of the synchronization. Even with a perfect release from

the arrest, this budding yeast divides asymmetrically yielding a new daugh-

ter cell that is smaller than the mother cell. This daughter cell must grow

during the next G1 before it can enter S phase. The mother cell has no

growth requirement and as a result has a shorter G1 interval. This asymme-

try precludes perfect synchronization. For example, in the case of α-factor

synchrony, because α-factor is a mating pheromone, it will induce mating-

specific gene expression. As a consequence, many mating-related genes will

either be induced or repressed, leading to increased or decreased transcript

levels. In some extreme cases, the changes in expression level are so dramatic

that the cyclic signals are totally obscured.

In the following we extend the first-order Fourier model to allow variable

frequency and time-dependent amplitude. Let yij denote the expression

level of gene i measured at time tj , and let yi = (yi1, · · · , yiTi
) denote the

expression profile for gene i measured across Ti time points, so that genes

are allowed to be measured at different sets of time points or have missing

values under our model.

• Stage 1: We assume each observed gene expression profile follow a mul-

tivariate normal distribution,

yi | θi,Si ∼ NTi
(θi,Si), (8.7)

where θi is the Ti×1 mean vector, and Si is the Ti×Ti covariance matrix,

for i = 1, · · · , n.

• Stage 2: We introduce partition label zi, which indicates the partition

that gene i belongs to. We assume the mean vector is a context specific

function of covariates Xi and partition specific parameter vector µk, with

θi = h(X i,µk) if zi = k. For the cell cycle data, the covariate is time,

and the mean structure has the form

h(tj ,µk) = e−γktj
{

Ak cos[2πftj (φk)tj ] + Bk sin[2πftj (φk)tj ]
}

, (8.8)

where ftj (φk) = f0(
tj

tmax
)φk , with µk = (Ak, Bk, γk, φk) characterizing

the mean trajectory, parameters Ak and Bk account for the amplitude

and phase of the cyclic pattern, γk accounts for the attenuation in the

amplitude, and φk is a time stretching factor for varying cell-cycle length.
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We assume the covariance matrix is also characterized by partition specific

parameter(s) so that Si = S(ξk) if zi = k. If Ti = T for all i, and there is

no restriction on the covariance structure, we can assume Si = Σk, e.g.,

σ2
kI given zi = k.

• Stage 3: We assume the partition label zi’s are independent and iden-

tically distributed, conditional on the total number of partitions K and

mixing proportion π = (π1, · · · , πK),

Pr(z1, · · · , zn) =

n
∏

i=1

Pr(zi |K,π), (8.9)

with

Pr(zi = k |K,π) = πk, (8.10)

for k = 1, · · · ,K, and i = 1, · · · , n.

• Stage 4: At this stage, we specify the prior distributions for the partition

specific parameters. Assume

µk |K,m,V ∼i.i.d. Nq(m,V ), (8.11)

Σ−1
k |K, g,R ∼i.i.d. Wishart(g, (gR)−1), (8.12)

π |K, δ ∼ Dirichlet(δ), (8.13)

with priors on {ξk} if they are present in the model. We also include a

“zero” partition with Ak = Bk = 0. Genes showing no cyclic pattern will

be included in this partition.

• Stage 5: The hierarchy is completed with specification of prior constants

and hyper-priors. Throughout the analysis, we choose δ to be a K-vector

of 1’s for the Dirichlet prior. We assume the total number of partitions

K follows a Poisson distribution with parameter λ if it is considered un-

known. We choose g = p, the dimension of Σk, for it is the least infor-

mative in the sense that the distribution is the flattest while being proper

(Wakefield, et al., 1994 [25]).

When K is known, this hierarchical model has a partitioning-by-features

interpretation, and posterior computations can be carried out using standard

Markov chain Monte Carlo (MCMC) software such as WinBUGS (Spiegel-

halter et al.,2002 [18]). When K is unknown, it can be treated as a random

variable and inferred from the data. More sophisticated techniques such as

reversible-jump MCMC (Richardson and Green, 1997 [17]) or birth-death

MCMC (Stephens, 2000 [20]) are required to deal with the changing dimen-

sion. For more details on computation, see Wakefield, et al. (2003) and

Zhou and Wakefield (2005).
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16 Zhou, Wakefield & Breeden

8.4.4 Results

We now report the results from applying our enhanced hierarchical mixture

model to the cell-cycle expression data.

Among all 6309 genes (including controls) on each of the 24 microarrays

(t = 105 was dropped due to mRNA contamination), 6141 had no missing

data across all chips, 75 had one missing value, 25 had two missing values,

and 68 had three or more. A close inspection reveals genes with many

missing values tend to be highly unreliable thus genes with three or more

missing values were dropped. Some of the measurements were flagged as

unreliable at the data processing stage, we still decided to include them in

subsequent analysis because of the ad hoc nature of flagging.
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Fig. 8.8. Observed expression of the 100 known cell-cycle regulated genes, and their
fitted values based on non-linear least squares estimates using Model (8.8).

We first identified 1680 genes as candidates for cell cycle regulation using

the filter described in Section 8.4.2. Next we evaluate the extension to the

mean structure. Figure 8.8 shows the observed curves and the fitted curves

based on non-linear least square estimates from Model (8.8). Compared

to Figure 8.3, the improvement in the attenuation adjustment and time

stretching is clear.

We have found that the number of partitions K is highly sensitive to the

prior specification, not only the Poisson prior, but also other priors on the

variance parameters which could affect the size and shape of partitions. This
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is in agreement with Stephens (2000) [20]. In addition, our enhanced model

allows genes to be classified at a finer scale (with more features), which led to

a large number of partitions. Given there is no clear definition regarding the

underlying regulation pathways during the cell cycle, we found this number

hard to interpret and highly variable depending on the prior choices, so

we decided to restrict our attention to the analyses with K fixed. Figure

8.9 displays the classification and estimated mean profiles from fitting the

enhanced model to the 38wt data with K fixed at 16. There is an inherit

unidentifiability problem with Bayesian mixture modeling so that re-labeling

needs to be carried out, see Stephens (2000) for discussion. Here we re-

labelled the partitions on the basis of time to the first peak. This decision

is based on the fact that the cell cycle events are regulated in an orderly

fashion, the early activation or deactivation of transcription factors are often

responsible for the next wave of gene expression, so this re-labelling has an

appealing biological interpretation.

Our model was able to identify some interesting cell-cycle gene partitions,

and the effect of model enhancement is obvious. From Figure 8.9, we can see

that partitions 3, 6, 8, 13 and 16 are partitions with strong cyclic signals, and

they all show the dissipation of synchrony over time. In particular, partition

3 has a greatly heightened first peak, which is large enough to obscure the

later cyclic pattern. Without the improvement to the model, we may not be

able to identify this group of genes. We suspect these genes are related to

the mating process, so their expression is induced by the pheromone. Several

partitions appear to have shortened first cycles, such as partition 2, 3 and

11. These are G1 or G2 phase genes, confirming our speculation that the

synchronization may shorten the growth phase. At least 9 out of the 13 genes

classified into partition 8 are the S-phase histone coding genes. The products

of these genes form a single complex that is used for DNA condensation.

These genes are coordinately regulated and have been well characterized.

A closer inspection reveals that many genes in partition 2 are M–G1 genes

and share a promoter element called ECB; many genes in partition 5 and 6

are late G1 genes and share MCB and/or SCB promoter elements; partition

9 consists of G2-phase genes and many of them also share the MCB/SCB

promoter elements; and many genes in partition 13 appear to share MCM1

and FKH sites. Partition 11 contains many genes involved in ribosome

biogenesis. Their promoters are enriched for two sequence motifs referred to

as PAC and RRPE (Wade et al., 2001 [23]; Hughes et al., 2000 [8]). Our data

indicate that these transcripts are modestly periodic and peak ten minutes

after the histones peak.

Note that the time to first peak in partition 16 is larger than 58 minutes,
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Fig. 8.9. Final partitioning with K = 16 fixed, note different vertical scales.
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the normal cell cycle span we used. This is because the attenuation at the

beginning of the experiment is so large that the first peak of this partition

is obscured. If we shift the time to peak by 58 minutes, we can see that this

group actually coincide with partition 2, except with much larger amplitude.

Under the Bayesian mixture models, specific partitions are susceptible to

the re-labelling problem. But as suggested in Wakefield et al. (2003) [24],

we can examine the probabilities of co-expression p(zi = zi′ |y), which are

invariant to re-labelling. A good visual display of co-expression is the heat-

map. Due to space limitation, we select a sub-sample of the partitions to

display. Figure 8.10 shows the co-expression, with dark areas indicating

high co-expression, and as expected, shaded areas are close to the diagonal,

suggesting strong co-expression within partitions. There is some overlap

between partition 1 and 2, which is not surprising given our previous dis-

cussion.
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Fig. 8.10. Heat-map of probabilities that two genes share a common label, for
partitions 2, 3, 5, 6, 8, 13, 15, and 16. Shaded blocks correspond to pairwise
probabilities larger than the chosen cutoff.

The posterior classification probability of each gene p(zi = k |y) provides a

natural measure of uncertainty concerning the partitioning of each individual

gene. However, it is also of interest to measure the strength of the partitions,

such as how tight genes are within a partition, and how much overlap there

is between different partitions. So we examine the sensitivity and specificity
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of the partitions where, sensitivity is the probability of co-expression, given

labelling in the same partition, and specificity is the probability of non-co-

expression, given labelling in different partitions. Such functions cannot be

evaluated with traditional partitioning approaches.

The sensitivity of partition k is estimated by

sensitivity =
∑

i,i′∈Ck

p(zi = zi′ = k |y)/Nk1, (8.14)

where Ck denotes partition k, and Nk1 is the number of distinct gene pairs

classified into Ck. The specificity of partition k is estimated by

specificity =
∑

i∈Ck ,i′∈Ck′ ,k
′ 6=k

p(zi = k, zi′ = k′ |y)/Nk2, (8.15)

where Ck and Ck′ are different partitions, and Nk2 is the number of distinct

gene pairs with only one gene classified into Ck. The sensitivity and speci-

ficity of the 16 partitions are shown in Figure 8.11. Partition 1 is the “zero”

partition for non-cyclic genes, so it is not surprising to see it has the lowest

sensitivity. Partitions 11 and 12 only have weak signals and there is overlap

between genes in these partitions, hence their sensitivity and specificity are

low. Partition 8 contains a tight group of histone genes which have strong

cyclic signals, and it is ranked the highest in terms of sensitivity and speci-

ficity. Other high quality partitions include partitions 3, 6, 13 and 16, as was

evident from Figure 8.9. The sensitivity and specificity estimates provide

a natural quantitative measure of the quality of partitions, based on which

we can focus on the high quality partitions, and proceed with validation or

more sophisticated analysis such as motif discovery.

Studying the co-expression can also provide important information about

relationship between partitions. For example, Figure 8.12 shows several

genes identified from the heat-map which had high co-expression with genes

in partition 16 though they were classified into partition 2. Examination

of the mean trajectories reveals the peaks of one trajectory appear to coin-

cide with the other, suggesting these two partitions could be co-regulated,

although the magnitude of the signals differs. Some would argue that these

genes should be considered co-regulated as long as the peaks and troughs

of their oscillations concur, regardless of their magnitude. Here we distin-

guish these genes, for we speculate that genes with higher amplitude may

contain more promoting elements, or some other element(s) responsible for

increased expression levels, or the low amplitude profiles may be from genes

with unstable mRNAs. In fact, a sequence search reveals that partition

16 and partition 2 do share common MCM1 elements. The relevant motif
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Fig. 8.11. Strength of co-expression within and between partitions, measured
through sensitivity and specificity.

is TTTCCNNNNNNGGAAA, a flanking palindrome to which two MCM1 proteins

bind (N=A or C or G or T). Such binding is required for transcriptional acti-

vation at the M/G1 boundary. And as we thought, the partition 16 genes

have multiple elements and a larger consensus sequence, and the partition

2 genes have only one site. Many partition 2 genes do not have the MCM1

site at all. This causes us to suspect that there may be new element(s) in

partition 2 genes which have similar properties as MCM1. We will continue

investigation of these speculatives.

8.5 Discussion

As explained above, the changing cell-cycle span and magnitude of signals

are systematic and correspond to actual biological phenomena. Although a

large number of research papers have been published on the topic of cell-cycle

gene expression, few have taken these systematic variations into account.

Zhao et al. (2001) [27] considered the issue of decreasing signals in their

single-pulse model (SPM), in which they allowed the precision to decrease

over time. Bar-Joseph (2002) [2] mentioned both issues, but used semi-
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Fig. 8.12. Selected genes partitioned into group 2, but with co-expression with
partition 16.

parametric models instead of directly modeling the phenomena. Here we

advocate a science motivated, model-based approach towards cell-cycle gene

expression analysis. We believe that it is less appropriate to rely totally on

data-driven approaches, regardless of the biological context and scientific

questions waiting to be addressed.

Because every synchronization protocol has its limitations, a prudent

strategy for determining if a specific process is cell cycle regulated is to

employ at least two different synchrony methods. If the oscillation can be

observed through two or more mitotic cycles in two different synchrony ex-

periments, it is unlikely the oscillation is induced by the arrest (Breeden,

1997 [3]). But combining analyses from different experiments is a difficult

task, and has not been fully addressed by researchers. We leave it as future

research, and do not attempt this problem here.

Our approach of assuming a mixture model with flexible mean structures

is crucially different from the “model-based” clustering approach of [26], who

analyzed similar data but simply assumed that the data arose from a mixture

of T -dimensional normal distributions and hence did not acknowledge the

time-ordering of the data (the analysis would be unchanged if the time

ordering were permuted). In particular it would be desirable to allow serial

dependence, within such an approach, but the MCLUST software [7] that
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is used by Yeung et al. (2001) [26] does not allow for this possibility, and it

does not perform well when the dimension T gets large. In their approach,

missing data and unbalanced design also cause complications whereas in our

model no such problems arise. Medvedovic and Sivaganesan (2002) [14] also

proposed a Bayesian hierarchical model for clustering microarray data, but

again they failed to take the time ordering into account in their approach.

We have demonstrated that our enhanced model can provide further in-

sight into our understanding of cell-cycle transcription programs. In our

enhanced model, each partition is characterized by a set of four parameters.

Intuitively speaking, the finer we characterize the mean model, the easier

to distinguish different features and we see more partitions. So we were

not surprised to find that a large number of partitions were being identified

under our refined model. Although many numerical methods for detecting

underlying clusters based on gene expression data have been published, none

of them are satisfactory. From our experience we have found that without

plausible interpretation and biological validation, the number of partitions

produced by numerical analysis is highly unreliable, and sometimes even

misleading. The partitions are defined by the model, which in turn is mo-

tivated by the biology. The ultimate validation of the partitioning should

be based on scientific investigation, with data analysis providing numerical

support and further hypotheses. In other words, the conclusion should be

based on science, not just on data analysis.
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