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Abstract The linkset model is defined for parametrizing the general 2̂n contin-
gency table. The linkset parameters are designed to represent latent influences
that promote the co-occurrences of binary events beyond that explained by chance.
Linkages involving 2 through n binary variables are included in this parametriza-
tion. The intent of this process is to elucidate the patterns of linkage, no matter
how complex they might be, rather than to fit simplifying models. The relationship
between linkset parameters and the natural parameters for a 2n table are derived,
and large sample inference methods are provided. Examples are given from medi-
cal diagnostics, survival from the Titanic sinking, and employment discrimination
in Chicago.
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Abstract 
 
The linkset model is defined for parametrizing the general 2n contingency table. The linkset parameters are designed 

to represent latent influences that promote the co-occurrences of binary events beyond that explained by chance. 

Linkages involving 2 through n binary variables are included in this parametrization. The intent of this process is to 

elucidate the patterns of linkage, no matter how complex they might be, rather than to fit simplifying models. The 

relationship between linkset parameters and the natural parameters for a 2n table are derived, and large sample 

inference methods are provided. Examples are given from medical diagnostics, survival from the Titanic sinking, 

and employment discrimination in Chicago. 
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1. Introduction 
 

The analysis of 2n contingency tables falls somewhere between the special 2×2 case and the more general field of 

rectangular tables. The 2×2 case has been exhaustively treated in the statistical literature, from a plethora of different 

viewpoints. In contrast, interest in the general 2n case has largely revolved around log-linear models or linear models, 

inspired in part by a few very influential monographs  (Bishop, Fienberg, Holland, 1975; Haberman, 1974;  Gokhale, 

Kullback, 1978). With the passage of time application of these models seems to have waned, although logistic 

regression could be considered a counter-example. 

 

The general approach to contingency table analysis has been in the direction of simplification, either by fitting 

models that impose restrictions on the cell probabilities, or by focusing on measures derived from the table, such as 

linear combinations of ln-odds ratios. One reason for this comes from the number of free parameters that are 

involved. In a Normal distribution of n variables there are n(n+3)/2 parameters, but in a distribution over a 2n 

contingency table there are 2n-1, so that parameter reduction seems a worthy aim in and of itself. 

 

The focus of this article is on reparametrizing the 2n table in such a way that all of the resulting parameters are 

interpretable, and potentially meaningful, in the context of a model for explaining co-occurrence of events. The 

linkset model will be defined, and its parameters interpreted. The challenging problem of relating the linkset 

parameters to the natural parameters on a 2n table will be resolved, and the asymptotic distribution of estimates will 

be provided. Practical examples will be given in the areas of surgical diagnostic reliability, survival in the context of 

the Titanic disaster, and employment discrimination in the United States. 

 
2. The Linkset Model 

 
The 2n contingency table consists of cells representing all possible combinations of n binary variables (ones that 

are either 0 or 1, often interpreted as no/yes or absent/present). In the examples below, each such cell will be 

represented as a string of outcome 0’s and 1’s, signifying the values of the n-variables in a standard order. Because 

each cell can be associated with the set of binary variables that “happened” (were 1), it is possible to refer to the 0/1 

pattern as a set. Thus, for example, 000 would be the empty set (because no variables happened) and 101 would be 

the set of the first and thrid variables, both of which happened, the second variable not having happened. The 

empirical frequency is the count of the number of cases in which the corresponding specific pattern happened. 

 

The linkset model provides a way of describing how these observed sets came about. It posits latent binary 

variables (linkset variables), one for each non-void subset of the variables that define the table. When it is used to refer 

to the latent variables, rather than the cells in the table, a 0/1 pattern will be called a linkset. This is done to avoid 

confusion, since the latent variables are indexed by the same symbols that are used for the cells in the table. 

 

For example, the linkset variable associated with 101 indicates the event that the first and third variables 

happened for an underlying reason. This reason is not further defined; the point of the linkset model is to allow such 
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underlying reasons to be portrayed in the model, irrespective of their character. Note that the table cell 101 can 

happen in two distinct ways. First, the two variables might have simply chanced to happen together. Secondly, the 

linkset variable associated with 101 might have happened, causing them to be linked. Likewise, linkset 110 indexes 

the linkset variable which causes the first two variables to happen for cause (instead of by chance), and the linkset 

111 corresponds to all three variables happening for cause. Note especially in this latter case that the observed event 

111 is completely different from the linkset 111, since the former event can happen as a consequence of several 

different combinations of linkset events (such as 110 and 001, or 110 and 011, and so on). It is the fact that an 

observed event can happen so many different ways in terms of linkset events that makes the model computations 

challenging. 

 

The stochastic assumption behind the linkset model is that the latent linkset variables are independent. Each 

one has a probability in the population, which is denoted by β, and indexed by the corresponding linkset. A 

tranformation of these parameters, λn(β) = -ln(1-β) is important for reasons having to do with both the sampling 

distribution of the maximum likelhood estimates, and the theoretical computations, as described in the theory 

sections below, which follow the examples. Note that it is possible for some of the maximum likelihood estimates of 

the β’s to be negative, which will be discussed below. 

 

One of the computations that can be derived from the model is an attribution probability. This is the probability 

that an occurrence in a given cell was due to the linkset variable for that cell, and thus it is the conditional probability 

of co-occurrence for cause, as opposed to chance. Both the estimates of the β-parameters and the attribution 

probabilities are given in the examples. Finally, for a given subset of variables, one can compute the probability that 

they will ever be linked in the table (which could include linkage with other variables. This is called the link association 

and is also used in two of the examples. 

 
3. Example: Diagnostic Reliability 

 
The dataset in Table 1 represents the recommendation for (1) or against (0) carotid endarterectomy on the part 

of five clinicians, using a standard diagnostic scheme (Uebersax & Grove, 1989). The layout of this table will be used 

for subsequent examples. The “Set” column gives a 0/1 representation of the binary table cells, while the “Empirical 

Probability” column gives the sample fraction in each cell. The “Linkset Parameter” columns contains the β-

estimates, with the one-sided p-value for the null hypothsis β=0, and the standard deviation of the estimate ( )βλ ˆn . 

(see the theory sections below). Simulations have found that the asymptotic Normal approximation works better for 

this transformed parameter. Finally the “Attributable Probability” is the probability that the linkset on the 

corresponding row was responsible for occurrences in the set on that row.  
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Table 1. Recommendations for heart surgery by 5 clinicians (n=859). 

Set 
Empirical 
Probability 

Linkset 
Parameter 

P-value SDE 
Attributable 
Probability 

00000  

10000  

01000  

00100  

00010  

00001  

.4494   

.0477   

.0000   

.0093   

.0326   

.0570   

.0000 

.0960  

.0000  

.0203  

.0676  

.1126  

 .  
0.000  
 .  
0.002  
0.000  
0.000 

.   

.0158  

.0000  

.0073  

.0132  

.0171 

. 

. 

. 

. 

. 

. 

11000  

10100  

01100  

10010  

01010  

00110  

10001  

01001  

00101  

00011  

.0000   

.0093   

.0000   

.0279   

.0000   

.0000   

.0489   

.0000   

.0093   

.0058   

.0000  

.0161  

.0000 

.0439  

.0000  
-.0014  
.0710  
.0000  
.0155  
.0031  

 .  
0.006  
 .  
0.000  
 .  
 .  
0.000  
 .  
0.007  
0.273  

.0000  

.0065  

.0000  

.0106  

.0000  

.0006  

.0133  

.0000  

.0064 

.0051  

. 

.894 
. 

.876 
. 
. 

.876 
. 

.873 

.289 

11100  

11010  

10110  

01110  

11001  

10101  

01101  

10011  

01011  

00111  

.0012   

.0012   

.0047   

.0000   

.0000   

.0268   

.0000   

.0780   

.0000   

.0058   

.0023  

.0021  

.0055  

.0000  

.0000  

.0339  

.0000  

.0921  

.0000  

.0091  

0.159  
0.159  
0.090  
 .  
 .  
0.000  
 .  
0.000  
 .  

0.024 

.0023  

.0021  

.0041  

.0000  

.0000  

.0089  

.0000  

.0137  

.0000 

.0046  

.999 

.999 

.683 
. 
. 

.832 
. 

.882 
. 

.891 

11110  

11101  

11011  

10111  

01111  

.0023   

.0047   

.0023   

.0955   

.0000   

.0036  

.0065  

.0026  

.0903  

.0000  

0.099  
0.034  
0.127  
0.000  
 .  

.0028  

.0036  

.0023  

.0126  

.0000 

.915 

.931 

.830 

.858 
. 

11111 .0803 .0763 0.000 .0102 .950 

Each set represents recommedations for (1) or against (0) surgery by five clnicians. P-
values and attributable probabilities are not available for cases where the linkset 

parameter is 0. SDE = estimate of standard deviation of the estimate of λnβ. 
 
Due to the nature of the data, one expects linkage among the clinician recommendations, and in fact only the 

linkage for clinicians 3 and 4 was estimated to be slightly negative. Note that the parameter on the top row is 0 by 

definition, and consequently the other columns in that row are not meaningful. For pairwise linkages, there is 

evidence for clinicians (1,3), (1,4), (1,5), (2,5), and (3,5). These would be interpreted as recommendation linkages 

between these pairs, without being linked to any of the other clinicians. Among the triplets there is evidence for 

linkage among (1,2,3), (1,3,5), (1,4,5), and (3,4,5), with a similar interpretation. The apparently significant quartets are 

(1,2,3,5), and (1,3,4,5). The quintet of all five is also significant. 

 

The linkset parameters in this example can be considered to pertain to the population of patients considered for 

heart surgery. The singleton linkset probabilities indicate the fraction of the population that will be recommended 

for surgery by each clinician, without linkage with the other clinicians. The value of 0 for clinician 2 is odd, in that it 

indicates no willingness to recommend for surgery without some kind of linkage with the other clinicians. Of the 

multiple linkage probabilities, that pertaining to (1,2,3,4,5) stand out (8% of the population), along with (1,4,5) at 

9%, and (1,5) at 7%. 
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It may be noted in this example that not all possible combinations of recommendations appear. For this anaysis 

it was taken that a zero empirical frequency was a “chance zero”, rather than a “structural zero” which would have 

implied that the cell was not logically possible.  

 

Part of the intent of this example is to provide an assessment of the five clinicians. Clinician 1 appears in 9 of 

the 12 significant linksets, suggesting that perhaps this person employs information or guidance from the individual 

cases which is used in some shared manner by the others. Indeed, clinician 1 is in both of the significant quartets, 

the other quartet in which that clinician appears has marginal p-value 0.10, and the quartet in which he/she plays no 

role never occurs. Another potentially interesting finding is that clinicians 2 and 4 appear never to be linked (except 

in the (1,2,3,4,5) linkset). 

 

Another important use of this dataset is to estimate the reliability of the surgery recommendation procedure, at 

least for this sample of five clinicians. We may interpret the attributable probability as a measure of reliability, in the 

sense that it is the fraction of times, when the clinicians agree, that they do so for some underlying reason, hopefully 

based on the patient’s record and the recommendation guidelines, rather than simply by chance. Here the reliability 

of a 5-clinician recommendation is 0.95. Since this comprises such a small fraction of cases, it is of interest to note 

that reliability is also very high for all 4-clinician recommendations, and most of the 3-clinician recommendations, 

with the possible exception of (1,3,4). Perhaps somewhat surprisingly, the reliability remains high for 2-clinician 

recommendations, with the exception of (4,5). Note that there is no information in Table 1 concerning the reliability 

of recommendations against surgery. For this we simply reverse the coding of all recommendations, so that 1 

becomes a recommendation against rather than for. Instead of repeating the entire analysis, the reliability results are 

collected in Table 2.  The reliabilities appear uniformly high and relatively free of the number of clinicians 

recommending against, with the possible exceptions of (2,5) and (1,2,3). Interestingly (2,3,4,5) has only medium 

reliability, and while this might suggest that the agreement of clinician 1 is important for a negative recommendation, 

there is a mixed message from the 3-clinican cases in which he/she recommends against. It is also odd that (1,2) has 

perfect reliability, whereas (1,2,3) is second worst. This may be a hint that there are two or more potentially 

ambiguous aspects to the surgery recommendation guidelines, although if there is it certainly does not show up 

uniformly. 
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Table 2. Reliability of 
recommendations 
against heart surgery 

Set 
Attributable 
Probability 

11000 

01100 

01010 

01001 

00101 

00011 

1.000 

 .965 

 .793 

 .406 

 .942 

 .884 

11100 

11010 

01110 

01101 

01011 

 .543 

 .888 

 .716 

 .805 

 .719 

11110 

11101 

11011 

01111 

 .861 

 .961 

 .895 

 .647 

11111  .880 

Sets in this table are 
complements of the sets in 
Table 1. 

 
 

4. Example: Survival on the Titanic 
 
Two-thirds of the people on the RMS Titanic died when it struck an iceberg and sank in April 1912. The loss of 

life was charged mainly to the lack of lifeboats, but stories from the survivors also suggested that the available 

lifeboats were not fully utilized, due to a “women and children first” ethic, and also to issues involving the different 

passenger classes. Table 3 shows a linkset analysis of the factors survived, passenger (as opposed to crew), and female. 

(Children are not included in the analyses here.) 

 
 

Table 3.  Survival on the Titanic, Adults Only (n=2092). 

Set 
Empirical 
Probability 

Linkset 
Parameter 

P-value SDE 
Attributable 
Probability 

Link 
Association 

000 

100 

010 

001 

.320 

.092 

.315 

.001 

0 

.223 

.496 

.004 

 .  

0.0000  

0.0000  

0.0416 

.  

.018  

.027  

.003  

. 

. 

. 

. 

. 

.115 

.161 

.200 

110 

101 

011 

.070 

.010 

.051 

-.026 

.022 

.072 

 .  

0.0000  

0.0000 

.012  

.005  

.008  

. 

.957 

.972 

.096 

.137 

.181 

111 .141 .119 0.0000 .009 .839 .119 

Sets are in order: survival, passenger, female. SDE = estimate of standard deviation of the estimate of λnβ. 
 
 
 
Largest linkage (12%) occurs among all three factors, and there it appears that they were linked in 84% of cases. 

Survival was also linked to female (2%) and in these cases 96% was due to linkage. The link between female and 

passenger is due to there being relatively few women among the crew. The negative linkage between survival and 
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passenger is hard to explain, and has not been advanced in the historical record as a hypothesis. The total linkage (link 

association) between survived and passenger was 10%, and was only slightly higher (14%) between survived and female. 

 

There are several different ways to look at survival among the passengers, and here we just take one view in 

Table 4. The largest linkset parameter is 0.36 linking died and male, with 99% of such cases being linked. This 

provides substantial evidence for the contention that there was a bias in favor of rescuing the women first. The 

second most notable linkage is between died and third-class, substantiating part of the assertions that have been made 

about third-class passengers not being given the same access to lifeboats. Note that the linkage between died and 

second-class is significant, if somewhat modest. But in both cases the attributable probability is very high. Finally, note 

that both the gender and class stories are bolstered by the triple-linkages of died, male, second-class, and died, male, third-

class. The appreciable negative linkage between male and second-class reflects the composition of the passenger list, as 

does the positive linkage between male and third-class. 

 

Table 4. Death on the Titanic, Adult Passengers Only (n=1207) 

Set 
Empirical 
Probability 

Linkset 
Parameter 

P-value SDE 
Attributable 
Probability 

Link 
Association 

0000 

1000 

0100 

0010 

0001 

.115 

.003 

.047 

.066 

.062 

0 

.0277 

.2893 

.3636 

.3518 

.      

0.0227 

0.0000 

0.0000 

0.0000 

  .   

.0140 

.0454 

.0509 

.0501 

. 

. 

. 

. 

. 

. 

.693 

.584 

.136 

.480 

1100 

1010 

0110 

1001 

0101 

.097 

.010 

.011 

.073 

.062 

.3648 

.0452 

-.0638 

.2809 

.1266 

0.0000 

0.0025 

 .      

0.0000 

0.0000 

.0431 

.0164 

.0233 

.0365 

.0338 

.9861 

.8241 

. 

.9756 

.5874 

.552 

.188 

.095 

.404 

.276 

1110 

1101 

.127 

.320 

.1490 

.1715 

0.0000 

0.0000 

.0315 

.0433 

.5615 

.4192 

.149 

.172 

Sets are in the order: died, male, second class, third class. SDE = estimate of standard deviation of the 

estimate of  λnβ. 
 
Table 4 is an example of a situation in which the total linkage probabilities (link association) are quite a bit 

higher than the individual linkset probabilities. Thus died and male were linked in 55% of the sample, died and second-

class were linked in 19%, and died and third-class were linked in 40%. Thus, substantial fractions of the sample were 

linked in ways suggested by the historical record. 
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5. Example: Employment Discrimination 
 
The data in Table 5 are from an innovative study of labor market discrimination (Bertrand & Mullainathan 

2004). The authors created fictional resumés which they then sent out in response to requests for job applications. 

For the data used here, the characteristics of the resumés were accepted (meaning that there was follow-up by the job 

offeror), white, male, and high-quality, meaning indications of better experience. Gender and ethnicity were indicated by 

the names of the pseudo-applicants. The full sample had Chicago and non-Chicago subsamples, but here we use just 

the Chicago subsample. 

 

Table 5. Job follow-up, gender, ethnicity, and quality. (n=2704) 

Set 
Empirical 
Probability 

Linkset 
Parameter 

P-value SDE 
Link 
Association 

0000  

1000  

0100  

0010  

0001  

.2067 

.0096 

.2026 

.0273 

.2085 

  0     

 .0444 

 .4950 

 .1169 

 .5022 

.     

0.0000 

0.0000 

0.0000 

0.0000 

  .   

.0089 

.0297 

.0144 

.0299 

. 

.023 

.009 

.011 

.004 

1100  

1010  

0110  

1001  

0101  

0011  

.0144 

.0040 

.0273 

.0122 

.2004 

.0303 

 .0115 

 .0112 

 .0011 

 .0057 

-.0049 

 .0057 

0.0493 

0.0135 

0.4547 

0.1954 

 .     

0.2912 

.0070 

.0051 

.0102 

.0066 

.0210 

.0104 

.014 

.004 

.000 

.004 

. 

.001 

1110  

1101  

1011  

0111  

.0033 

.0184 

.0011 

.0292 

-.0028 

 .0019 

-.0070 

-.0005 

.     

0.3569 

 .     

 .     

.0034 

.0052 

.0029 

.0073 

.000 

.005 

. 

. 

1111 .0040  .0035 0.0649 .0023 .003 

Sets are ordered: accepted, white, male, high-quality. SDE = estimate of standard 

deviation of the estimate of λnβ. 
 
The linksets that actually link events have rather small probabilities, even though two of them are formally 

significant; accepted and white, and accepted and male. Given the expectations that one might have had for this 

experiment, and the relatively large sample size, it is noteworthy how small the linkages are. On the supposition that 

individual linkset probabilities might be hiding an overall linkage effect, the link association probabilities are given in 

Table 5. Each probability here is the fraction of the population that has the specific linkset factors linked, but 

including linkages with other factors as well. The results, however, substantiate the message of the linkset 

probabilities themselves, that all linkages are very small. 

 
 
6. Statistical Theory 

 
There are two complementary ways to look at a 2n contingency table. The first employs a random vector 

(x1,…,xn) of binary (or Boolean) variables. The sample space in this case is the set of all possible n-vectors of 0’s and 

1’s. The second approach focuses on the random set of subscripts for which the corresponding x’s happened, S = {i 

: xi = 1}. In this case the sample space is the set of all subsets of N = {1,2,…,n}. Since xi = 1 if and only if i∈S, the 

two viewpoints are equivalent. The second approach is more useful for defining the linkset model. 
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Let S denote a subset of the collection of all subsets of N. For each nonvoid L∈S  let b(L) denote a binary 

random variable, such that {b(L) : L∈S} are independent. The subsets L are called linksets, for reasons that will 

become apparent. Further define the set function β on S by E[b(L)] = β(L). We define β(∅) = 0 for completeness. 

These values are the linkset parameters. The linkset model can then be very simply defined in terms of the random set 

of subscripts S by 

 

{ }U 1)L(b:LS =∈= S  

 
Two tasks must be carried out to use this model effectively. The first is to understand the meaning of the linkset 

parameters, and this will be done with unitary algebra. The second is to determine a 1-1 correspondence between the 

linkset parameters and the conventional table probabilities, and to derive large sample estimates, and this will be 

done by employing elements of the theory of random variables taking values in partially ordered sets. 

 
 
6.1 Unitary Algebra 
 

Unitary algebra is designed to facilitate probability computations for binary random variables. For u and v in the 

unit interval [0,1] (unitary numbers), the definitions are 

 

u∨v = u + v – uv 

u* = 1-u 

u\v = (u-v)/v* (=0 if v=1) 

λn(u) = -ln(u*) 

εxp(r) = 1 – exp(-r) (r ≥ 0) 

 

The following basic facts are easily shown 

 

(1) ∨ is commutative and associative; u∨0 = u, u∨1 = 1 

(2) λn(u∨v) = λn(u) + λn(v) 

(3) εxp is the inverse of λn, and εxp(r+s) = εxp(r) ∨ εxp(s) 

(4) (u∨v)* = u*v* 

(5) (u\v)* = u*/v* (v<1) 

 

(1) makes it possible to define the ∨ operation over finite collections, and then (2)-(4) can be extended to the ∨-sum 

of any finite collection. It is obvious that ∨ is the Boolean “or” operation when restricted to binary variables. When 

u and v are independent unitary variables, then E[u∨v] = E[u]∨E[v], which indicates why one wants the Boolean 

“or” to be extended to unitary numbers. This result also extends to ∨-sums of independent unitary variables. The \ 
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operator corresponds to subtraction, since (u∨v)\v = u. Sheps was the first to understand the importance of this 

operation for comparing probabilities; u\v is her measure of excess occurrence (Sheps, 1959). Finally, (4) is 

DeMorgan’s rule and (5) is another version of DeMorgan’s rule. 

 

The connection between unitary algebra and the linkset model is 

 

( ){ }Li:Lbx i ∈=∨  

 

For a pair of variables, 

 

( ) ( ){ } ( ){ }Lj,i:LbI\Jj,J\Ii:JbIbxx ji ∈∨∈∈= ∨∨  

 

In this expression, each b(I)b(J) indicates an event from which xi happens and xj happens, but their co-occurrence is 

taken to be due to chance. Thus, the first ∨-sum consists of all events where this chance co-occurrence happens. 

The second ∨-sum consists of all events indicated by b(L) in which both i and j are in the linkset L, and thus their 

co-occurrence is taken to be linked. This shows the sense in which the occurrence of an indicator like b(L) causes a 

linked occurrence of all the x’s with subscripts in L. The linkset model itself does not define what this linking 

relationship is, it simply provides a set of latent variables (the b’s) which can account for it. 

 
 

6.2 Identifiability and Estimation of Linkset Parameters 
 
The basic analytic problem with the linkset model is that the cell probabilities become very complicated 

expressions of the β-parameters. In order to derive relatively simple relations, we turn to the theory of partially 

ordered sets. First, let π denote the probability distribution of the set S of random subscripts: 

 

( ) [ ] ( )S∈==π TTSPT  

 

This is an example of a set function on S . The cumulant of π (or any set function on S) is 

 

( ) ( ){ }∑ ∈⊆π=π SU,TU:UTC  

 

We take this to be defined on S . To simplify the computations we assume that ∅∈S . In effect, we must also assume 

π(∅)>0, since otherwise 

 

( ) ( ){ } 1U:U* =∈β=∅π ∨ S   
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would imply that some β(U) = 1, trivializing the model.  

 

The first step toward identifiability is to establish a relationship between the set functions π and β. For any fixed 

T we have 

 

[ ] ( )TTSP π=⊆ C  

 

But also 

 

[ ] ( ){ }∏ ∈∅≠∩=⊆ SU,*TU:*UbTS  

 

 

where T* is the complement of T in N. Consequently 

 

( ) ( )( ){ } ( ) ( )TnNnU,*TU:UnTln βλ−βλ=∈∅≠∩βλ=π− ∑ CCC S  

 

where we write λnβ for the set function U→λn(β(U)) and Cλnβ for its cumulant. (We also interpret Cλnβ(N) to be 

the cumulant over all sets in S in case N is not in S .) Note the special case 

 

( ) ( )Nnln βλ=∅π− C  

 

These computations give us the complementary results 

 

( ) ( ) ( )( )
( ) ( ) ( )∅π−π=βλ

βλ−βλ=π

lnTlnTn

NnTnexpT

CC

CCC
 

 

establishing a 1-1 relationship between the cumulants of π and λnβ. 

 

For the final identifiability step we use the fact that ⊆ is a partial order on S . The Möbius function µ(V,U) is a 

function of pairs V, U in S , such that for any set function α on S if we define 

 

( ) ( ) ( ){ }∑ ∈⊆µα=α SV;UV:U,VVUM  
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then MCα = α (Rota, 1964). Since the Möbius function exists for any finite partially ordered set, we can apply it to 

both sides of the previous two equations, obtaining π as a function of β and λnβ as a function of π, thus also β as a 

function of π: 

 

( ) ( )( ) ( )( )
( ) ( )( ) ( )( )0;TTlnxpT

TnexpNnexpT

=∅β∅≠πε=β

βλβλ−=π

CM

CMC
 

 

It is worth noting in the special case when S consists of all subsets of N, that µ(V,U) = (-1)#U-#V when V⊆U and 

0 otherwise, where #U is the number of elements in U. The Möbius function can be computed in a simple sequence 

of iterative steps in the general case. 

 

We take the usual empirical probabilities π̂ (T) to estimate π, and then use the above formulas to produce the 

estimates β̂ (T). For inference it turns out to be both easier and more accurate to work with ( )Tˆnβλ . Directly from 

the formulas, 

 

( )( ) ( ) ( )( ){ }∑ ⊆⊆∈µµππ=βλ TV,TU:V,U:)T,V()T,U(Vˆln,UˆlncovTˆnvar SCC  

 

Applying the delta method to the known form of the covariances of multinomial estimates 

 

( ) ( )( ) ( ) ( )( )
( ) ( )

( ) ( ) ( )
( ) ( )VˆUˆn

VˆUˆVUˆ

VUˆ

Vˆ,Uˆcov
Vˆln,Uˆlncov

ππ
ππ−∩π

=
ππ
ππ

≅ππ
CC

CCC

CC

CC
CC  

 

from which it follows from properties of the Möbius function that 

 

( )( ) ( )
( ) ( )

( ) ( )∑








⊆⊆∈µµ
ππ
∩π

≅βλ TV,TU:V,U:T,VT,U
VˆCUˆC

VUˆC

n

1
Tˆnvar S  

 

where n is the sample size. The validity of this approximation has been confirmed in simulations. 

 

Estimates of the β(T) parameters will be presented in examples below, but first it is useful to point out some 

derived quantities of interest. Note that β(T) represents the fraction of the population in which all of the subscripts 

in T represent mutually linked events, none of which are linked with any subscripts outside of T. If one wants an 

overall measure of the degree of linkage of variables in T irrespective of linkage to other variables, then it is given by 

the link association probability 
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( ) ( ){ }S∈⊆β=β ∨ U,UT:UT  

 

When T is a singleton, {i}, then ⊆ is replaced in the definition by ⊂ , since b({i}) does not link any events.  

 

The second quantity of interest concerns the fraction of observed cases of S=T which can be attributed to the 

link indicator b(T). This is the attributable probability ( ) ( )[ ]TS1TbPT
~ ===β , and it is a measure of the degree to 

which the co-occurrences represented by T are due to T-defined linkage. Elementary considerations give 

 

( ) ( )[ ]
[ ]

( ) ( )
( )T

TT

TSP

TS,1TbP
T

~

π
πβ

=
=

⊆=
=β

C
 

 

The identifiability derivation, presented above, establishes a 1-1 relationship between all probability distributions 

on a 2n table and a space of vectors of β-parameters. (The cases in which π(∅)=0 are present only in the limit.) The 

linkset model has been motivated in terms of positive β’s, representing probabilities of linkage among subsets of 

events. The general mathematical result does not require positivity, however, and so by permitting negative β’s we 

have an alternative parametrization of the complete set of table distributions. In cases where some of the estimated 

β(L)’s are negative, we would associate the corresponding linkset L with an “unlinking” or suppression of linkage. It 

is not yet possible to provide a structural model for suppression on the same footing as for linkage. For this reason, 

in the examples we note instances of apparent unlinking but do not attempt any inference for the corresponding 

negative β-parameters. 

 

6.3 The 2××××2 Table 
 
The only linkset example that is easy to see is the 22 table. A conventional parametrization is shown on the left 

in Table 6, and the linkset parametrization is shown on the right. 

 

Table 6. Conventional and linkset parametrizations for a 2×2 table; cell probabilities and marginal probabilities. 
 Column = 0 Column = 1   Column = 0 Column = 1  

Row = 0 p00 p01 p0+ *
12

*
2

*
1 βββ  *

122
*
1 βββ  *

12
*
1ββ  

Row = 1 p10 p11 p1+ 

= 
*
12

*
21 βββ  1221 β∨ββ  121 β∨β  

 p+0 p+1   *
12

*
2ββ  122 β∨β   

β-parameters are shown with subscripts; for example, β12 =  β({1,2}) 
 

It is evident that β12 = 0 is equivalent to independence. It is also easy to express the p-parameters in terms of 

the β parameters and vcie versa. An interpretation of β12 emerges from consideration of the extent to which the 

column variable influences the row variable.  To see this, first define 

 

[ ] 1,0ccCol1RowPc ====α  
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We can then compute for Sheps measure of excess occurrence (of row 1 in column 1) that 

 

122

12
01 \ β∨β

β
=αα  

 

Sheps defined another measure of excess occurrence, the excess of row 0 in column 0, as *
1

*
0 \αα . Her first 

measure was designed to capture the causal effect of [Col=1] on [Row=1], whereas the second was supposed to 

capture the dual causal effect of [Col=0] on [Row=0]. In epidemiologic terms the first is a measure of the column 

variable as a risk factor for the row variable, and the second is a measure of the absence of the column variable as a 

preventive factor for the row variable. One can combine them with ∨ in order to get an overall measure of 

association, capturing both the risk and prevention effects, and then using unitary algebra we find 

 

( ) ( )
1221

12*
1

*
001 \\

β∨ββ
β

=αα∨αα  

 

It is of some interest that the expression on the right is (OR-1)/OR, an increasing transform of the odds ratio OR in 

the original table. Thus the epidemiologic odds ratio does not measure a risk effect, as usually claimed, but instead it 

measures a combination of risk and prevention effects. 

 

Simiarly easy computations show that 

 

[ ] [ ] 1212211221 0,,:ColRowP\,,:ColRowP β==βββ=βββ=  

 

Thus β12 is the parametric form for Cohen’s kappa (Cohen, 1960), a measure of chance-corrected agreement. 

 
7. Other Modeling Approaches 

 
The linkset model has some similarities with a few other approaches in the literature, but most proposed 

analyses for 2n tables differ from linksets in fundamental ways. In one of the earliest paper devoted to the 2n table, 

Bahadur 1961) derived the consequences of invariance of the joint distribution with regard to certain sets of 

permutations, with subsequent implications about marginal sums having binomial distributions. This serves as an 

example of the approach based on imposing simplifying conditions on the table probabilities. From the 1970’s 

onward, perhaps the most frequent approach has been based on increasingly complicated linear combinations of ln-

odds ratios, which do not appear to have any natural relationship to linksets. The literature on log-linear and related 

models is enormous, and is not reviewed here. 
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With regard to linkage suppression, Boyles & Samaniego (1984) have used the concept of a set of “shocks” to 

reduce the natural occurrence of 1’s in the table. They restrict consideration to “positively dependent” variables, 

which amounts to Cπ(T1∪T2) ≥ Cπ(T1)Cπ(T2), and which is evidently more stringent than the linkset model, even 

with all β-parameters positive. Presumbly the Boyles & Samaniego metaphor could be developed for linkage 

suppression, to account for negative linkset parameters. 

 

Many of the restricted-parameter multivariate binary models involve discriminant analysis (Goldstein, 1977), 

clustering (Martin & Bradley, 1972; Ott & Kronmal, 1976), or the estimation or prediction of an outcome based on 

an array of binary factors. One path in this latter direction is called “logic regression”, in which the binary variables 

are repackaged into Boolean combinations that are optimal for the model under study (Ruczinski, Kooperberg, 

LeBlanc, 2003). The focus is thus on how to re-express the binary factors so as to clarify their capacity to predict or 

explain outcomes. In linkset analysis, the emphasis is not so much on the outcome-predictor dichotomy as it is on 

explaining the co-occurrence of events. 

 

The reliability and test theory literature on the 2n table is also very large and is not reviewed here. In general 

these methods either rely on explanatory continuous latent variables (item response theory), or are oriented toward 

establishing the reliability or validity of binary tests. Test theory concentrates on the development of item batteries, 

and although this does involve multivariate binary data, the focus is not so much on understanding the 

interrelationships among test items as it is to produce a final test with good characteristics. Studies of diagnostic 

procedures focus on the diagnostic procedure itself, with the aim of establishing its reliability and validity. Seldom 

does one see cases in which assessing the raters is the point of the research (as in the surgical diagnostic example 

given here). 

 

Boolean factor analysis attempts to express the relationship between objects and attributes in terms of an 

objects-factors relationship and a factors-attributes relationship, with the factors being chosen as parsimoniously as 

possible (Belohlavek & Vychodil, 2007). This approach is like linksets in that it attempts to explain co-occurrences, 

but unlike linksets in that its goal is to find simple structure rather than to display the structure that is present, 

irrespective of whether it is simple. 

 

Although it seemed to play a small role above, the Möbius inversion theorem of Rota is actually central to the 

linkset approach. Despite its technical simplicity, this method has appeared only rarely in the statistical literature, and 

is usually involved with the theory of random sets. All of the theory of log-linear models, and the more general 

theory of reconstruction can be framed in terms of the incidence algebra of partially ordered sets and Möbius 

inversion. 
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8. Discussion 

 
The linkset model is a latent factor model, and like all such formulations it attempts to provide a way of doing 

inference about forces that are below the level of direct observation. While it may be impossible to prove the 

existence of the underlying concepts using a latent factor model, it does seem worthwhile to posit that the concepts 

exist, and then it makes sense to employ models that explicitly incorporate them into the analysis. 

 

In some cases it is possible to speculate usefully about why events might co-occur, even if the reasons for co-

occurrence remain to some extent obscure. In the surgery recommendation example it is plausible that the clinicians 

are all trained in the same system, understand the rationale for the guidelines, and see how to apply them to different 

patients. Thus, the reasons for expecting linkages are clear, based on common training. In the Titanic example 

historical accounts suggested what might link gender or passenger class with survival, and again this does not seem 

particularly difficult to understand. The employment discrimination example is interesting because of the massive 

evidence of discrimination against blacks and women in the United States, and yet this clever experiment failed to 

find it. In the only previous publication using linksets (Aickin & Taetle, 2006) the method was employed to detect 

co-occurrence of genetic abnormalities in ovarian tumors, which might be related to survival. Here the underlying 

linking mechanism is less clear, but would presumably be based on the argument that genetic abnormalities play a 

role in pathways that regulate tumor cell behavior, so that particular co-occurrences would signal the activation of 

particular pathways. This argument generalizes to genomic and proteomic studies in both diseased and healthy 

tissues. 

 

On the statistical side, the 2n contingency table has been somewhat of an orphan. Epidemiologists break such 

tables down into a series of 2×2 tables that cannot possibly reconstruct the linkages, except perhaps in cases where 

they involve only pairs of factors. Almost all biostatistical approaches to the 2n table try to reduce the size of the 

parameter space in some way, in the search for structure. This enterprise takes it for given that the natural 

parametrization of the probability distributions on a 2n table does not reveal its structure. It also raises issues about 

the assumptions that underly the simplifying models, which is then frustrated by the usual difficulty in validating the 

assumed conditions. The attempt here has been not so much to simplify the distribution on the 2n table, but instead 

to provide an alternative parametrization, in such a way that each parameter says something about structure. The 

definition of structure here is linkage, meaning that events co-occur for some reason, rather than through simple 

random conjunction. 

 

Software for performing linkset analyses is available from the author at www.ergologic.us.  
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