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Efficient Design and Inference for Multi-stage
Randomized Trials of Individualized

Treatment Policies

Ree Dawson and Philip W. Lavori

Abstract

Increased clinical interest in individualized ‘adaptive’ treatment policies has shifted
the methodological focus for their development from the analysis of naturalisti-
cally observed strategies to experimental evaluation of a pre-selected set of strate-
gies via multi-stage designs. Because multi-stage studies often avoid the ‘curse of
dimensionality’ inherent in uncontrolled studies, and hence the need to paramet-
rically smooth trial data, it is not surprising in this context to find direct connec-
tions among different methodological approaches. We show by asymptotic and
algebraic proof that the maximum likelihood (ML) and optimal semi-parametric
estimators of the mean of a treatment policy and its standard error are equal under
certain experimental conditions. The two methodologies offer conceptually dif-
ferent formulations, which we exploit to develop a unified and efficient approach
to design and inference for multi-stage trials of policies that adapt treatment ac-
cording to discrete responses. We derive a sample size formula expressed in terms
of a parametric (regression-based) version of the optimal semi-parametric popula-
tion variance. Non-parametric (sample-based) ML estimation performed well in
simulation studies, in terms of achieved power, even though sample sizes relied
on parametric re-expression. For a variety of simulated scenarios, ML outper-
formed the semi-parametric approach, which used a priori rather than estimated
randomization probabilities, because the test statistic was sensitive to even small
differences arising in finite samples.



 
 

1.  Introduction 

 

Increased clinical interest in individualized treatment policies has shifted the 

methodological focus for their development from the analysis of ‘naturalistically’ 

observed strategies (Murphy et al. 2001; Hernan et al. 2006) to experimental 

evaluation of a pre-selected set of strategies via multi-stage designs (Lavori and 

Dawson, 2000; Thall et al., 2000; Lunceford et al., 2002).  The candidate policies 

under evaluation have been described as ‘adaptive’ treatment strategies (ATS) or 

‘dynamic’ treatment regimes (Lavori and Dawson 2008) because treatment 

changes are tailored to the circumstances of the individual, including response to 

prior treatments.  The studies have been described as sequential, multiple 

assignment, randomized (SMAR) trials (Murphy 2005) because successive 

courses of treatment are randomly and adaptively assigned over time, according 

to the individual subject’s treatment and response history.  The multiple stages of 

randomization correspond to the sequential decision making formalized by an 

ATS, the primary goal of the trial being to evaluate entire strategies, rather than 

stage-specific treatment options.  

 

A typifying example of an adaptive treatment strategy occurs in the 

treatment of a chronic disorder such as depression.  The following ATS 

exemplifies the decision algorithm used in the SMAR trial of antidepressants 

known as STAR*D (Rush et al. 2004):  ‘Start on A; after a sufficient medication 

trial, switch to B if response is poor or side effects persist, otherwise either 

continue on A or augment A with C, depending on the degree of improvement; 

continue to monitor and augment or switch to treatments D and F, respectively, 

according to degree of response.’  As in STAR*D, the SMAR design specifies 

that all subjects in the trial start on A, so that the first randomization is to possible 

treatment options for B and C , which is nested within the response categories for 

treatment with A.  For example, subjects who experience side effects are 

randomized to one of the alternatives for B.  Further randomization to options for 
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D and F is similarly nested within previous treatment and response history.  

Subjects who respond well enough to A and continue to do so are never 

randomized, but participate fully in all stages of the trial.   

 

Clinical equipoise successively guides SMAR treatment options for B,C, D 

and F, just as it guides fixed treatment alternatives in single-stage trials (Dawson 

and Lavori 2010).   That principle, coupled with standardizing of clinical details 

(e.g., dosing, duration of medication trial), reduces the typically explosive 

variation in treatment regimes found in observational settings (Lavori and 

Dawson 2004).  Because SMAR studies often avoid the ‘curse of dimensionality’ 

inherent in uncontrolled studies, and hence the need to parametrically smooth 

trial data, it is not surprising in this context to find direct connections among 

different methodological approaches.  This paper shows that the simplest 

estimators of the population mean of an ATS and its standard error, derived 

using probability calculus and ‘plug-in’ method of moments estimates, are equal 

under certain experimental conditions to the analogous estimators provided by 

optimal semi-parametric theory, maximum likelihood (ML) theory, and Bayesian 

predictive inference.  In particular, we assume that constrained randomization 

(e.g., sequential blocking) insures that the observed allocation of subjects 

matches that intended by design (Dawson and Lavori 2008).  We also assume 

that the specification of the ATS  and the choice of SMAR sample size insure 

‘replete’ datasets at the end of the experiment,  in the sense of precluding 

random zeroes at intermediate randomization steps (Lavori and Dawson 2007). 

 

   The equality of the optimal variance estimator with the others is not 

obvious by appearance and full induction across randomization stages is 

required to derive the result algebraically.  The different formulations for standard 

error clarify how the distinct methodological perspectives complement each 

other.   The iterative probability calculus (also underlying ML and predictive 

estimators) is carried out sequentially according to the nested structure of SMAR 

data, to reflect the influence due to intervening outcomes used for multi-stage 

 2 
http://biostats.bepress.com/cobra/art69



randomization.  The resulting variance estimator decomposes into stage-specific 

components corresponding to the uncertainty associated with estimating the 

conditional distributions of successive outcomes.  In this way, it quantifies the 

inference ‘penalty’ paid at each SMAR stage for not knowing a priori the 

population parameters for their joint distribution.  By contrast, the efficient semi-

parametric influence function used to obtain the optimal variance estimator is a 

‘marginal’ mean model for the outcome measured at the end of the study 

(Murphy et al. 2001).  The resulting variance estimator derives from the 

population marginal variance of the final outcome, typically used for determining 

sample size in single-stage trials, plus a sum of stage-specific variances of the 

inversely weighted final outcome. 

 

In this paper, we exploit the marginal character of the semi-parametric 

approach to derive a regression-based formula suitable for sample size 

calculations, which minimizes reliance on unknown population parameters and is 

expressed in quantities familiar to the trialist.  We also derive a non-parametric 

counterpart for the semi-parametric efficiency gains provided by the optimal 

estimator, relative to the simpler marginal mean estimator defined by Murphy for 

SMAR trials (2005).  We consider the performance of ML and semi-parametric 

inference, in terms of achieved power, when using the regression-based sample 

size formula.  The intent is to provide a unified and efficient approach to design 

and inference for SMAR trials of ATS that adapt treatment according to discrete 

responses.   

 

 

2.   Design Framework and Estimators 

 

Consider a SMAR trial with K stages of randomization.  The multi-stage design 

can be described sequentially in terms of the adaptive randomized treatment 

assignments.  Let be the (observed) baseline state of the subject, taking 

values denoted by  and let  be initial treatment assigned as a function of  

1S

,1s 1A ,1s
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taking values denoted by .   Analogously for stage k in 2, … , K let  be the 

status of the subject measured at the start of the kth stage and  the treatment 

assigned by the kth randomization according to values for and , where  

= , ,…, and = , , …, .  SMAR assignment to different 

treatment options can be expressed in terms of (sequential) allocation to different 

decision rules, each of which determines treatment as a function of the current 

and past states and past treatments.  Formally, we write = = = 

 for the decision rule at the kth stage; the randomization probabilities for 

 denoted { , )}, are known and experimentally fixed functions of 

prior state-treatment history.   
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The (observable) strategies to be evaluated from the multi-stage design 

can be represented as sequences of the SMAR decision rules with positive 

probability of assignment.  Specifically, each SMAR sequence { , , …, Kd

=1S

} 

corresponds to an ATS, which we denote as d, if the domain for each successive 

rule includes the state-treatment histories produced by previous rules in the 

sequence.  This condition insures that the K-stage ATS is a well-defined policy 

for adaptively determining the ‘next’ treatment.  The introductory example 

consists of two decision rules { , }, given that all subjects in the SMAR trial 

start on A :  A  = d , A+C  =   and B  = d , 

where the baseline state indicates response to A.  The second decision rule is 

similarly defined.  For example,  = ), where  indicates 

response measured after the first randomization.  The more cumbersome 

notation, such as  makes explicit that treatment is a function of prior state-

treatment history.    

1d
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 The SMAR design includes a primary outcome Y, obtained after the Kth 

stage of randomization, which is used for evaluation purposes.  We judge the 
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performance of an ATS d by d , the population mean of Y that would be 

observed if all subjects were treated according to d. 

 

 

2.1   Estimator of the Mean of an ATS 

 

Previously, we derived a method of moments estimator of d from SMAR trial 

data using iterated expectation and showed that under certain experimental 

conditions, it is equal to the marginal mean (MM) estimator defined by Murphy for 

SMAR trials (Lavori and Dawson 2007).  Specifically, the two estimators are the 

same when at any given stage k, the proportion of subjects with state-treatment 

history ( ) randomized to d coincides with the assignment probability 

, ).  Such coincidence occurs asymptotically by the law of large 

numbers and might be achieved in a study using sequentially blocked 

randomization.  When this holds, both estimators of 

1-, kk AS

kS 1-kA|(
kk dp

d  can be expressed in 

terms of stage-specific, stratified sample quantities as: 

 

∑ )()(
K

KKKK m
s

ss                                                                                      (1) 

                        

where is the sample mean of final responses among subjects 

sequentially randomized to d through K and having state values = , 

)( KKm s

KS Ks

                

 )( KK s = ∏                                                                 (2) 
1=

)(
K

k
kkf s

                         
and  is the sample (conditional) response rate for = , given 

assignment to d through k-1 and = .  The estimator (1) is a version of the 

non-parametric G-computational formula (Robins 1989) and is suitable for 

strategies that adapt treatment according to discrete states, such as the ATS in 

)( kkf s kS ks

1-kS 1-ks
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the Introduction.  Under the assumption of sequential ignorability (guaranteed by 

multi-stage randomization), (1) is consistent for d .   

 
Murphy et al. (2001) derived a semi-parametric estimator of d , deemed 

optimal because it has the smallest variance among the class of all regular 

asymptotically linear (RAL) estimators.  Let  

 

kD d

)(P s

= ∏ = , ))  
1=

(
k

j
jAI jj S( 1-jA

 

indicate assignment to strategy d through stage k, where is 1 if B occurs, 

otherwise 0, and let 

)(BI

                        

  =  kk ∏
1=

1- ),|(
k

j
jjjj dp AS

 

be the probability of being sequentially randomized through k to d given = . 

The optimal estimator is obtained by solving the efficient estimating equation  

kS ks

∑1
optn

U = 0, where n is the number of subjects and  is defined as: optU

          

 ),,,( dKKKoptU μdS  = )}){ 1-
1- ( KKKKK ,K ds

+1( ks

μ-YPD (s                                 (3) 

 

              +   ∑
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kkkkkkkk PD dd ss 

 

                                           +  )({ 11 s - }d  
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with ),( 1-kkk ds = for k in 1,...,K;  denotes the primary 

outcome when the subject is treated according to strategy d.  Note that for k = 1, 

)=,=|( 1-1- kkkkYE dAsSd dY

), 1-kk ds(k  )1s(1 .  

 

 The G-computational formula (1) can be used to provide consistent non-

parametric estimates of the k (given SMAR randomization), in which case, the 

solution to the estimated estimating equation is optimal (Murphy et al. 2001).  It 

also reduces to (1).  This follows because all but the last term of  are zero 

when the G-estimates for 

optU

k are ‘plugged’ into (3); solving the last term of the 

estimating equation (using the plug-in G-estimate) leads to (1).  The result holds 

asymptotically without restriction, but otherwise requires that the observed 

allocation of subjects matches that intended by design, as noted above for the 

MM estimator.  This condition is required because  uses assignment 

probabilities for inverse weighting, whereas sample estimates in (1) use the 

observed assignment proportions.  Unless stated otherwise, we assume blocking 

or some other form of constrained randomization makes this distinction moot for 

analytic derivations, and use the notation , ) interchangeably for 

expected and observed proportions under strategy d, as well as  for their 

cumulative products. 

optU

k -kA|(
kk dp S 1

)kk(P s

 

 Because the ML estimates for means and proportions coincide with the 

‘plug-in’ estimates obtained by the method of moments, (1) is also ML.  It is also 

equal to the predictive estimator of d , assuming non-informative priors 

(Dawson and Lavori 2008).  We therefore refer to (1) unambiguously as the 

estimator of the ATS mean, denoted d̂ . 

 

 7 
Hosted by The Berkeley Electronic Press



2.2   Variance Estimators of the Estimator of the Mean of an ATS 

 

To obtain the asymptotic ML variance of d̂ , we assume (i) the final outcome Y 

has a stratified normal distribution across strata indexed by the possible 

sequences ( ), (ii) the intermediate states  are distributed conditionally, 

given ( ), as multinomial random variables, (iii) model parameters are 

distinct across state-treatment histories for a given stage k and across stages.  

Because the sequence of nested randomizations in a SMAR trial gives rise to a 

monotone pattern of missingness for each ATS, the likelihood can be factored 

into distinct components, each of which is a complete-data problem.  Standard 

theory dictates that the (asymptotic) ML variance, obtained from the information 

matrix, is block diagonal, with each block corresponding to a complete-data 

component.  It is possible to derive the ML variance from the information matrix 

for the parameters in the factored form of the likelihood, inverting, and then 

transforming back to the original (joint) parameterization.  However, a more 

tractable derivation calculates the ML variance directly using iterated variance 

decomposition (Little and Rubin 1987).   For the SMAR set up, the iterated 

calculation mimics that used to sequentially identify 

KK as , kS

kk as ,

d , and produces the same 

variance estimator previously obtained using probability calculus coupled with the 

method of moments (Lavori and Dawson 2007) or Bayesian predictive inference 

(Dawson and Lavori 2008).  We use  MLv  to denote the variance estimator ofˆ d̂  

provided by these three derivations.   

 

The expression for MLv̂  established using iterated decomposition has two 

primary components:  the ‘naïve’ variance estimate that assumes the coefficients 

of  in (1) are known a priori, denoted , and the ‘penalty’ paid for 

estimating them via (2), denoted :    

)( KKm s nv̂

pv̂

 

MLv̂  =  +                   nv̂ pv̂
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where (suppressing dependence on state history) 

 

nv̂ =  ;            = ;                              (4)    )(v̂∑ 2
KK m

Ks
 pv̂ ),(′ ′vôc∑

′,
KKKK

KK

mm 
ss

                                                                                                                                                             

and )(v̂ Km   is the sample variance of and ))((v̂ KKm s )( KKm s K′  )( ′KK s  

(Dawson and Lavori 2008).  The estimated covariances ), ′(vôc KK   can be 

obtained by induction on k, with the cross-sectional case K =1 being the usual 

multinomial calculation (Lavori and Dawson 2007).  For general K, there is a 

component of ‘penalty’ variance for each stage due to estimating the conditional 

distributions of  indexed by state history.  The kth-stage term of kS )′,(vôc KK   

fixed at  can be directly expressed in terms of the large sample variance and 

covariances of the estimated proportions   defined for (2); 

see the Appendix.    

1-ks

),ks ( kkf s( ,1-kkf s )′k,1- s

  

The estimated asymptotic variance of the optimal semi-parametric 

estimator of d , denoted , is obtained non-parametrically from the variance 

of  ( Murphy 2005).  Specifically,  is the estimate of 

OPTv̂

optU OPTv̂ )(U
n optV
1

, where 

                                                

          = )(V optU 2)( dd  -Y  +                                 (5) ∑
1=

2])-(-[( 1-)1
K

k
kkk YPp d

    
and the expectation is calculated under the distribution of ()dE KS  and Y when all 

treatments are assigned according to the strategy d.  As before, the k are 

estimated using the G-computational formula, which guarantees that  

achieves the semi-parametric efficiency bound (Murphy et al. 2001).  

OPTv̂
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To show equality of the asymptotic ML and optimal semi-parametric 

variance estimators, we posit that Y takes on only a finite number of possible 

values, and reframe the normal model (i) as multinomial.  Given sufficiently large 

n, either specification will give nearly the same sample estimates of mean and 

variance required for ML estimation (Rubin 1987).  Hence, the assumed 

likelihood model for d  can be taken as non-parametric for practical problems, 

such as those arising in the type of SMAR trials considered here.  We also note 

that the semi-parametric efficiency bound for d , which is equal to , is the 

same whether or not the randomization probabilities (the ‘nuisance’ parameters) 

are known (Bickel et al. 1993).  Therefore, for our purposes, it suffices to 

consider the semi-parametric model corresponding to the ‘true’ non-parametric 

model for

OPTv̂

d , and fixed at the parameter values for the randomization 

probabilities (Robins and Ritov 1997).  Standard theory implies that the semi-

parametric bound is at least as large as the asymptotic ML variance of d̂ , so 

that MLv̂  .  Moreover, because the optimal estimator of OPTv̂ d is assumed 

equal to the ML estimator of d , given large samples or constrained 

randomization, it follows directly that the asymptotic semi-parametric efficiency 

bound for d  is equal to the Cramer Rao bound for d  or equivalently ML

v̂

v̂  

(Tsiatis 2006), thereby establishing equality.  An immediate consequence of this 

result is that the simulation studies previously carried out for ML estimators 

(actually their method of moments and predictive counterparts) pertain to .  

Those studies demonstrate that the estimators have good finite sample coverage 

for the SMAR trials considered here (Lavori and Dawson 2007; Dawson and 

Lavori 2008).   

OPT

 

It is also possible to use induction to algebraically show equality of the 

variance estimators (see the Appendix).  The result demonstrates that the 

normality of the likelihood has no impact on the above proof that MLv̂ = .  A 

key element of the inductive proof is the ANOVA decomposition:  

OPTv̂
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  ˆ =   + OPTv nv̂ { 2)(
1

ˆ∑  -m  + }])-(-[(
1=

2

k
kKkk mPped∑

1-

ˆ)1ˆ 1-
K

dn KK
Ks

               (6) 

                                                                

where   is the sample estimator of()ˆde  ()d obtained via inverse weighting:  

 =                                                                          (7)  

.  

pression of the  in (6) in terms of covariances provides a direct 

                                         

))((ˆ Yhed ∑ )(1-
iiKiK, YhPD ,

n

1=i

 (As before, we suppress extra notation whenever possible.)   Algebraic re-

ex  2)-( ˆkKm 

comparison of OPTv̂ - nv̂  to the ‘penalty’ component of MLv̂ , defined in (4).  A

shown in the Appe th-stage covariances derived from OPTv̂ - nv̂  are 

standard (K = 1) large sample multinomial covariances the ‘pseudo’ 

proportions p= ∏K
f  and p′ = ∏ ′K

f .  As described abov e -stag

s 

e 

term of  and

difference 

ndix, the k

=kj j

 restricts covari

 of 

kf ′

=kj j

tainty to

e, th

.  Accordingly, the 

 kth

 pv̂ ance uncer kf

MLv̂ - v̂OPT  gives rise to K remainder terms.   An inductive argument 

tim s b

.   Optimal Semi-parametric Variance for Sample Size Calculations 

r

establishes overall equality of the variance es ator y showing that the 

successive remainders telescope to zero. 

 

 

3

 

 dFor the purposes of developing sample size formulae for inference fo ,  we 

an choose either formulation of the variance estimator for c d̂ .  Here, we exploit 

 Vthe marginal character of the semi-parametric approach and re-express (Uopt

in terms of regression quantities that would be familiar to the trialist.  To do so, 

)  
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we assume that ]|)-[( ,
2

kkY dd s  = )|( ,kYV dd s  = ),
2

kk ( ds is homogeneo

across state history at k, i.e., ),
2

kk( ds   2
,dk  .2

k   Applying iterated expectation

to the stage k term

 

 ])-(-1[( 21-) kkk YPp d  =  

us 
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 2 +                                       (9)
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Furthermore, ]-1[( 1-) kk Ppd =  1( -stage randomization 
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K
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k
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w   inal variance of dY .  Let 22
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,dY  )221( YK-   be the TR  = 
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ient o de

d

termination for the r

1-k,d

egression of Yd  on K,dS
2
kR

(population) increment in coefficient of determination when 

regression of Y  on S .  Then (9) becomes: 

 

 1-2

k,dS

KYP [ 1( 2
1)RKP-  - 21- )1( Rp 2) KK Rp-1- 21KP-  - …-  1( ]                               (10) 

oting that

 

n 2 TR  = multipli s the ‘variance inflation ∑ 2
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 to the SMAR des

o the e

ign, which generalizes

r of 2
Y  a

 to:    factor’ (VIF) due

 

       )1-( KPd - 2
1

1- ])1([ RPKKP-d  - 2
2        (11)                            

when randomization probabilities depend on prior state values.   

1-1-
1 ])1[( RPp KKP-d  - 1[( -d

21- ]) KK RPp K
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Using either (10) or (11) as appropriate provides the SMAR version of the 

usual one-sample t-test formula for sample size: 

 

2
2/ )+(  zz 2

VIF
                                                                                 (12) 

ES

 

where   is the significance level, 1-   is the power to be achieved, and ES = 

Y-  )0( d  is the standardized difference between d and the null mean.   The 

rmul 2) assumes a two-sided test of the null hypothesis that a (1 dfo =  and 

te 

that th am

 of a 

rence for pairs of ATS, using pooled values for VIF and .  

owever, the pooled version of (12) does not address the possible role of 

s in a 

,0

k.  T

the (approximate) large sample normality of the semi-parametric estimator.  No

ple size calculation does not require any assumptions for the 

unknown distribution of the K,dS  when |(
kk dp kS , 1-kA )  )(

kk dp  f ll his 

would occur when subjects are allocated with equal probability to treatment 

alternatives, which themselves are equal in number at every decision point

particular stage.    

 

 The formula (12) extends in a straightforward way to sample size 

calculations for infe

e s

or a

2
Y

H

between-strategy covariance in causal inference.  Such covariance arise

SMAR trial because of the nested structure of the randomizations.  Dawson and 

Lavori (2010) use the regression quantities in (12) to provide an adjustment to 

SMAR sample size when covariance is substantial enough to increase efficiency.     
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4.  Semi-parametric Efficiency Gains with the Optimal Estimator 

 

Murphy (2005) obtains the simple MM estimator of d  and its standard error by 

setting each k in  to optU d .   To characterize the potential loss of efficiency in 

doing so, we express the variance of the MM estimator of d , denoted , in 

ANOVA form as: 

MMv̂

              

MMv̂ v̂ ˆ ˆ =  + v                   v =  n ;b b
2)(

1
ˆ∑ 1-
d -mP

n KKK
Ks

                                    (13)   

                                                                                                                               

with accounting for response heterogeneity across subgroups indexed by state 

history (Lavori and Dawson 2007) .   

bv̂

 

. We compare (13) to , as expressed in (6).  With some algebra, it 

follows from (7) that: 

OPTv̂

   

])-( 2- ˆ[ˆ
1 1

kKk mPe
n

d  = 2
2 )(

1
ˆ∑ 1-1-
kKKkK -mnPP

n
K


s

                         (14)                             

 

and 

 =  + +  OPTv̂ v̂n )(v̂∑ KbK
K

P s
s

2
1

1=

)()1(
1 ∑∑ 1-

K

kKKkk

-K

k

--
n

mPp
s

                    (15) 

                                                 

where  is the summand of corresponding to )(v̂ Kb s bv̂ Ks .  Thus, the optimal 

variance estimator improves semi-parametric efficiency, in part, by 

downweighting .  bv̂
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To further characterize efficiency gains, consider  and the term of (15) 

corresponding to k.  Define 

bv̂

k  as: 

 

  k =   -                                                   (16) 2)( ˆ∑ d -KK m
Ks

2)( ˆ∑ kKK -m
K


s

 

which can be re-expressed as:   

 

              k =   =                                                                                                                  (17)22 ˆˆ∑ d -kk
ks

                                          

                      

noting that k̂  = ∑ .  Suppose that  is binary (always 

achievable by introducing more stages), taking on values , .  Accordingly, 

1-
),,1+( KkK m

Kk ss  kS

ks ks′

k  can be sequentially defined in terms of stage-specific response heterogeneity 

k  = k + 1-k  … + 2 + 1 ,   where  

- 

 k =  ;           2),(),( }{ ′ˆˆ′ 1-1-

1

1-∑ kkkkkkkkk ssff -
-k

ss
s

 1 = 
1   

                                         (18) 

 

and = = 1-   1- .  The derivation follows by induction.     kf ′ ),( ′1- kkk sf s ),( 1- kkk sf s
k
f

                                                          

 We can re-express -  directly in terms of the OPTv̂ MMv̂ k when 

, )  for all k.  The case K = 3 suffices to concretely explicate 

the general result: 

|(
kk dp kS 1-kA )(

kk dp

. 

 =  + - OPTv̂ nv̂ bvp ˆ3 1213 )1( ppp - - 223 )1( pp -                                                               (19a) 

 

                   =  -  - MMv̂ bv-p ˆ)1( 3 1213 )1( ppp -  - 223 )1( pp -                                                  (19b)                                         
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The SMAR randomization probabilities, which are specified a priori by the trialist, 

govern increased semi-parametric efficiency provided by the optimal estimator, 

and do so in a simple way under the assumed restrictions.  The strength of the 

relationship of state history to Y, as evidenced by the magnitudes of the k , has 

impact as well, with  =  when there is no between-subgroup response 

heterogeneity at any stage of the stud y.   

OPTv̂ MMv̂

 

 Simple differentiation of (19) shows that efficiency gains for the assumed 

SMAR set up are maximized (as a function of state history) when each  acts 

like a flip of a fair coin, thereby allowing sequential allocation of subjects to each 

possible state history.  The worst improvement occurs when at each stage but 

the last,  is a degenerate binomial, i.e., all mass on one outcome.  This makes 

intuitive sense if you consider that this scenario isn’t adaptive until the last stage, 

and is formally equivalent to the cross-sectional K = 1 case. 

kS

kS

 

 

5.  Simulation Studies 

 

A central issue to the sample size formula (12) is how well the parametric re-

expression of , derived using the assumption of homogeneity of 

variance, adequately matches non-parametric inference carried out using the 

estimators in Section 2.  It may be that successive stratification leads to one or 

more random zeroes at intermediate stages of randomization, even if the nominal 

level of power is achieved (in the frequency sense).  As the sample size grows, 

the chance of this diminishes.  We conducted simulations to understand the 

degree to which good performance of the sample size formula across repeated 

samples protects the trialist from an unlucky SMAR realization.  Because (12) 

may also fail to protect against near sampling zeroes (and thereby interfere with 

constrained randomization), we calculated the test statistic twice, using ML and 

semi-parametric estimators. 

)(UoptV
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The simulation set up is designed to explicate the relationship between 

‘repleteness’, defined as the lack of random zeroes at any intermediate stage of 

the SMAR experiment, and calculated  sample size.  Data for the example ATS, 

described in the Introduction and denoted here as d, are generated by the 

following scheme.  The state space at each stage is {1,2,3}, which corresponds 

to “low, medium, or high” symptoms; these values determine whether to 

adaptively continue, augment or switch medication, using the stage-specific 

treatments specified by  d.   As in the STAR*D antidepressant study, baseline 

state is obtained after an initial trial on the medication A.  The  values are set 

to be equiprobable.  The values for  are produced according to the transition 

matrix TM with rows (0.7, 0.2, 0.1), (0.5, 0.3, 0.2), (0.1,0.5,0.4), where  = 

Pr(j|i).  The matrix TM is consistent with “healthier” subjects having greater 

probability of better successive outcomes.  The final outcome is generated as a 

regression on state history, with normal error:   = , 

~N(0,

1S

e

2S ,d

ijTM

dY
T
2 +, dS

e 2
e where ), 21(  = (1.2) and the intercept 0 = 0.5 is the coefficient for 

  1. 0S

 

The randomization probabilities for assignment to d depend on prior state 

values: subjects who are (well, in partial remission, ill) continue on d with 

probability (1, 1/3, 1/2).   The values for the randomization probabilities are also 

suitable for generally investigating semi-parametric efficiency gains with the 

optimal estimator, because the analytic derivation required , ) 

 for all k.  For purposes of inference for 

|(
kk dp kS 1-kA

)(
kk dp d  (generated to be 6.10), we 

set the standardized effect size in the formula (12) to be either 0.2 or 0.4.   The 

trialist might specify the larger ES value to insure adequate precision for 

individual ATS means when planning a pilot SMAR trial.  The inherent ‘cost’ in 

successfully implementing a whole treatment strategy makes it unlikely that the 

trialist would find effects smaller than 0.2 of practical relevance.   
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We note that an alternative version of the simulation set up described 

above was used to evaluate (12) for pairwise comparisons, and more generally 

for sizing a SMAR trial with equal randomization probabilities, with particular 

attention to the role played by between-strategy covariance (Dawson and Lavori 

2010).  To explicitly allow for simulated causal effects due to the final treatment 

KA  (for a K-stage trial), that set up included a ‘final’ state , not necessarily 

measured during a real trial, which was part of state history used to generate .  

For our context, including   in the simulation substantially increases the 

chance of a non-replete SMAR experiment in a way that would not occur in 

practice.  Because we do not have interest here in the use of (12) for causal 

inference, there is no reason to disallow the ‘null’ effect of final treatment.   

1+,KSd

dY

3,dS

 

 

 6.  Results 

 

Table 1 summarizes 2000 replications for every combination of ES = 0.2, 0.4 and 

e = 0.5, 1, 2.  Scenarios also varied by whether the simulated trial used a ‘safe’ 

mechanism to guarantee positive sample sizes across state histories at both 

stages of the simulated trial (Lavori and Dawson 2007).  Specially, ‘safe’ implies 

that once the number of subjects for a particular state history falls below a certain 

value (set here to 6), further randomization stops and subjects with those states 

continue on d thereafter.  The ‘safe’ mechanism is intended to reflect the effects 

of good practice, in the sense that the trialist would ensure repleteness, either 

through design or by monitoring subject accrual during the trial.  For all 

scenarios, randomized assignment was sequentially constrained via blocking to 

insure whenever possible that observed and expected allocations agreed.   

Throughout, the nominal level of power to be achieved was set to 0.80, with the 

level of the test = 0.05.  The test statistic, defined as the difference of the 

estimated mean and the null value divided by the standard error, was compared 
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to 1.96, suggested by asymptotic normality of the ML and semi-parametric 

estimators of d  . 

 

 The results show that when ES = 0.2, the calculated sample sizes insure 

repleteness for all but a very small number of experiments.  By contrast, when 

ES = 0.40, the proportion of replete experiments among the 2000 replications 

ranges from 60% to 89%.  One could argue that for most SMAR trials, the 

primary interest will be to detect moderate-sized causal effects, thereby 

increasing the sample size beyond that provided by (12) when ES = 0.4.  

Nonetheless, the simulations serve to illustrate the relevance of repleteness to 

good planning of a SMAR experiment, beyond the usual sample size 

considerations. 

 

 A more striking result in Table 1 is the differences in power achieved by 

the ML and optimal semi-parametric estimators.  The ML estimators are mostly 

robust to even substantial failures of repleteness, because of their use of sample 

quantities in (1) and (4) based on allocated proportions.  In contrast, the semi-

parametric reliance on assignment probabilities precludes the optimal estimator 

from tuning to the sample at hand, which may not be able to attain intended 

allocation proportions, due to sequential stratification of the sample across 

stages.  This is true even with mostly replete repetitions, highlighting the 

influence of near sampling zeroes on achieved power with semi-parametric 

estimation.  It is not surprising that the optimal estimator may sometimes be 

underpowered when the simulated trials use the ‘safe’ option, given that certain a 

priori randomization probabilities may be set to zero.   It is interesting that ML 

estimation insures nominal power under the ‘safe’ option, albeit conservatively for 

some scenarios.  This property makes it a suitable choice for inference, prior to 

the execution of the trial, and any knowledge of the stochastic process underling 

intermediate states.  This ‘self-tuning’ property of ML estimation in the face of 

random and near sampling zeroes reminds us that the (asymptotically derived) 

ML variance estimator coincides with the finite sample one obtained from the 
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method of moments.  We note that for practical purposes, the ML and semi-

parametric estimators of d  and its standard error show mostly minor 

differences.  This is expected, as the discrepancies across subgroup of subjects, 

stratified by state history, would tend to average out because the discrepancies 

reflect random chance.   However, the test statistic is a ratio, and can be 

sensitive to even small changes to its divisor.  

 

 Table 2 shows that repleteness and near sampling zeroes have a 

moderate impact on the semi-parametric efficiency gains provided by the optimal 

estimator, which entails estimation of the k  in  using inverse weights.  In 

theory, such gains should not depend on n, and simulations with excessively 

large sample sizes show this to be the case.  In the designed simulations carried 

out with realistic values for n, the relative efficiency for any given value of 

optU

e depended on whether the sample size was geared to ES = 0.2 or ES = 0.4.  

Nonetheless, the results of the simulations confirm that the strength of the 

relationship of state history to , as evidenced by the dY
2
TR  values, governs the 

magnitude of efficiency gains.   

 

 

6.  Discussion  

 

In this paper, we have shown by asymptotic and algebraic proof that the ML and 

optimal semi-parametric estimators of d  and its standard error are equal under 

certain experimental conditions.  The two methodologies offer conceptually 

different formulations, which we exploit to develop a unified and efficient 

approach to design and inference for multi-stage SMAR trials with discrete 

intermediate states.  By applying a sequential version of the homogeneity of 

variance assumption often used for power calculations, we derived a sample size 

formula expressed in terms of a parametric (regression-based) version of the 

optimal semi-parametric population variance.  Our simulation studies show that 
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for finite samples, non-parametric (sample-based) ML estimation achieves 

nominal power across repeated experiments when randomization is sequentially 

constrained, even if some of those repetitions are not replete or suffer from near 

sampling zeroes.  In this sense, ML estimation offers ‘frequentist-based’ 

protection against near population zeroes, which the semi-parametric does not 

provide.  Moreover, it offers protection for the sample at hand, by providing at 

least nominal power when the trial design includes a ‘safe’ mechanism that 

selectively shuts down randomization when the number of subjects at a decision 

point falls below some minimum.  This makes ML estimation a suitable a priori 

choice for inference.  We note that the advantage of using observed rather than 

expected allocation proportions, exemplified by the simulation results for 

achieved power, has been discussed for studies with non-randomized treatments 

or missing data in terms of bias and efficiency (Rosenbaum 1987, Rotnizky and 

Robins 1995).    

 

The sample and population formulations of semi-parametric variance 

developed in this paper elucidate the central role played by response 

heterogeneity in determining the magnitude of sequential uncertainty.  Section 4 

offers a non-parametric characterization of sample response heterogeneity in 

terms of stage-specific between-subgroup sum of squares, which captures the 

sequential effect of response heterogeneity on semi-parametric efficiency.  The 

increments in regression-based coefficients of determination defined in Section 3 

provide the parametric counterparts at the population level, and analogously 

describe the sequential effect of response heterogeneity (via incremental 

strength of regression) on sample size requirements.  Because even the optimal 

(or worst) strategy would not be uniformly successful (or not) across state history, 

both characterizations apply generally to ATS under evaluation. 

 

Less apparent is the dual role played by response heterogeneity in SMAR 

trials and accordingly in estimators developed for their data structure.  Not only 

does response heterogeneity govern sequential efficiency, but also the entire 
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premise of an adaptive treatment strategy rests with a strong relationship 

between outcome and state on which to base decisions.  Because the SMAR 

design mimics sequential decision making, the missingness intentionally created 

by sequential (nested) randomization is governed implicitly by variation in 

responses across states for any given strategy.  In the absence of such variation, 

treatment assignment at any given stage reduces to a flip of a fair coin, making 

sequential adjustment for state history, as in the G-computational formula, 

unnecessary.  For certain estimators, such as the ML and optimal semi-

parametric ones considered here, their adjustment for SMAR missingness to 

guarantee consistency also reaps the usual efficiency gains, as translated to the 

sequential context. 

 

The framework developed here for ATS evaluation is appropriate when 

decisions are based on categorical symptom-based states, such as the clinical 

milestones (e.g., remit or not) used in managing chronic relapsing disorders 

(Rush et al. 2004)  and rapidly fatal diseases (Thall et al. 2007).   Bembom and 

van der Laan (2008) proposed a semi-parametric approach for the case when 

decisions are formalized as threshold rules based on continuous data, as might 

be appropriate for managing HIV/AIDS, and indicate extension to the optimal 

version would follow from standard theory.  For semi-parametric estimation of 

survival distributions in two-stage induction-maintenance oncology trials, Wahed 

and Tsiatis (2004) derived the locally efficient influence function that capitalizes 

on the time to response to the induction therapy, as a continuous covariate.  To 

date, sample size formulae have not been developed for the locally optimal case 

of Wahed and Tsiatis or the threshold designs of Bembom and van der Laan. 

 

 The results in this paper emphasize the importance of running a ‘tight’ 

trial, using sequentially constrained randomization in combination with some 

version of an a priori designated ‘safe’ option.  The trialist should also consider 

whether the calculated sample size will sufficiently protect against sparse data, 

and whether a larger number of subjects might circumvent the need for a ‘safe’ 
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option, which effectively truncates the ATS under evaluation.  The simulation set 

up provides one means to translate clinical judgments about intermediate 

response rates into the frequentist probability of experimental repleteness.  The 

trialist can also use the simulation set up to ‘firm up’ guesses for variance 

inflation factors when plausible values for regression quantities are lacking. 
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Proof of equality of optimal semi-parametric and ML variance estimators 
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where k̂  )(ˆ kk s  and the first k values of Ks (implied argument to K and Km ) 

are fixed at .  It follows from (7) and (A.1) that ks
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using the ANOVA decomposition (6). 

laim 2:   =  

 

 

C OPTv̂ MLv̂  

 

Fix KK ss ′, , and (suppressing dependence on KK ss ′,  whenever possible) define 

stage-specific terms for MLv̂ and OPTv̂ , respectively:   
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Table 1: Performance of Sample Size Formula for Nominal Power = 0.80 Using 
Either ML Estimation or Optimal Semi-parametric (SP) Estimation 
 
 

2
e   ES  Safe      VIF†      n‡   % Replete     Power:  ML   Power: Optimal SP 

______________________________________________________________________________________________________________________ 

                                                                         
                        
0.5     0.2    no       1.62     320      99.3%           0.798            0.737 
                   yes      1.62    320       100%           0.798            0.756  
          0.4    no       1.62       80      59.6%           0.818            0.664 
                   yes      1.62      80       100%            0.817            0.775   
 
1.0     0.2    no        2.05     404      99.9%          0.803            0.768 
                   yes      2.05      404      100%           0.801            0.766  
          0.4    no        2.05      101     72.2%           0.800            0.734 
                   yes       2.05     101       100%           0.849           0.826   
 
 2.0     0.2   no        2.97      587      100%            0.801            0.795 
                   yes      2.97      587       100%           0.792            0.784  
          0.4    no        2.97      147       88.6%          0.803            0.780 
                   yes       2.97     147       100%            0.846            0.847   
 
 
† Calculated from regression of  on  dY 2,dS

 
‡Calculated using formula (12)        
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Table 2: Relative Efficiency of Optimal Semi-parametric Estimator to MM Semi-
parametric Estimator 
 
 
 

2
e   ES  Safe      2

TR
†      n‡   % Replete       /  OPTv̂ MMv̂

______________________________________________________________________________________________________________________ 

                                                                         
                        
0.5     0.2    no       0.95     320      99.3%           0.425             
                   yes      0.95     320      100%            0.434              
          0.4    no        0.95       80      59.6%           0.404             
                   yes       0.95      80       100%           0.626               
 
1.0     0.2    no         0.81     404      99.9%           0.508             
                   yes       0.81      404      100%           0.511              
          0.4    no         0.81      101     72.2%           0.460             
                   yes       0.81      101       100%          0.600               
 
 2.0     0.2   no        0.52      587      100%            0.687             
                   yes       0.52      587      100%           0.682              
          0.4    no         0.52     147       88.6%          0.607             
                   yes       0.52     147       100%           0.678       
 
† Calculated using expression (11) 
 
‡Calculated using formula (12)        
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