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Abstract

We consider a class of normal transformation models for clustered failure

time data. The failure time outcomes are assumed to marginally follow a pro-

portional hazards model, while the normally transformed variates allow a shared

frailty. As a result, the model permits population-level interpretation of covari-

ates in the proportional hazards model, but also directly models the correlation

of the transformed failure times. The method allows for varying cluster sizes,

and we are able to predict shared frailties for the transformed failure times.

Predictions of the frailties allow us to evaluate the role of underlying cluster

effects on subjects’ survival. We propose a profile estimation procedure and

derive asymptotic properties under this estimation scheme. Simulation studies

verify finite sample utility. We apply the method to a Children’s Oncology

Group multi-center study of acute lymphoblastic leukemia. The analysis es-

timates marginal treatment effects and examines potential clustering within

treatment institution.

Keywords: Semiparametric normal transformation, frailty model, marginal model,

correlated survival data, proportional hazards model
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Marginalized Frailty Models 1

1. Introduction

Two major branches of models for correlated survival data are frailty models (Oakes

1989; Murphy 1994, 1995; Parner 1998) and marginal models (Wei, Lin, and Weissfeld

1989; Prentice and Cai 1992; Cai and Prentice 1995). The parameters from these two

approaches have different interpretations and hence are appropriate in different con-

texts. For example, frailty models are used when within cluster inferences are desired.

Frailty models account for dependence by including a multiplicative term (called a

frailty or a random-effect) in the model for the hazard. The multiplicative nature of

the frailty term implies that parameters have interpretations conditional on the value

of the frailty. In contrast, marginal models directly model the marginal failure time

and within cluster correlations are treated as a nuisance. With marginal models, the

correlated nature of the data is often accounted for by using a sandwich-type variance.

The parameters of marginal models have population-average interpretations.

In some correlated survival data settings, practitioners have two primary interests:

assessing the effect of treatment or exposure on the marginal survival distribution

and determining the dependence between subjects. For example, in many multi-

center clinical trials data are clustered within treatment center. Clinical researchers

are interested in the unconditional treatment effect observed in the study, which can

be found via marginal modeling. Although institutions participating in clinical trials

follow trial-specific protocols, differences can still exist between outcomes (Fleiss 1986;

Gray 1994; Jones, Teather, Wang, and Lewis 1998; Senn 1998; Anello, O’Neill, and

Dubey 2005; Vierron and Giraudeau 2007; Logan, Nelson, and Klein 2008; Zheng and

Zelen 2008). The correlation between patients treated at the same institution is an

important component of a multi-center clinical trial analysis.

Our motivating data come from a large multi-center clinical trial for children with
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Marginalized Frailty Models 2

“higher risk” acute lymphoblastic leukemia. The goal of the study was to evaluate

the effect of different treatments on survival. We are interested in evaluating whether

there existed substantial variation between institutions while concurrently assessing

the efficacy of the new treatments.

To this end we propose a marginalized frailty model, which models the marginal

failure times with the proportional hazards model (Cox 1972) and models the corre-

lation by assuming that normally transformed survival times follow a shared frailty

model. This project extends previous work on normal transformation models (e.g.

Li and Lin (2006); Li, Prentice, and Lin (2008)) in four major ways. First, Li et al.

(2008) use a likelihood method that does not allow for covariates and is restricted to

bivariate data. Our model allows for covariates and varying cluster sizes. Second, Li

and Lin (2006) assume a specific spatial correlation structure on the entire dataset.

Our method explicitly allows for correlated survival times within independent clus-

ters. Third, we establish a likelihood framework for inference for general regression

models for the normally-transformed survival times. Finally, we provide a method

for predicting cluster-level effects, providing information that can be used to evaluate

individual clusters.

The rest of the paper is structured as follows: in Section 2 we define notation and

describe the model; Section 3 provides methods to estimate the marginal survival

parameters, the correlation parameter, and the frailties; we provide a summary of

asymptotic results in Section 4; we outline a model-checking procedure in Section 5;

simulations are presented in Section 6; Section 7 contains an analysis of Children’s

Oncology Group study 1961; and we finish with a brief discussion in Section 8. Reg-

ularity conditions and detailed proofs of theorems are contained in the Appendix.

http://biostats.bepress.com/harvardbiostat/paper104



Marginalized Frailty Models 3

2. Model Specification

Let Tij and Cij denote potentially unobserved failure and censoring times for subject

j in cluster i, where j = 1, . . . , ni and i = 1, . . . ,m. The observed data are Xij =

min(Tij, Cij) and ∆ij = I(Tij ≤ Cij). Let Zij(t) denote an external time-dependent

covariate vector (Kalbfleisch and Prentice 2003, page 197) of length p and write its

covariate path up to time t as Z̄ij(t) = {Zij(s) | 0 ≤ s ≤ t}. Assume that Tij,

conditional on the covariate process Z̄ij(Tij), is independent of Cij. Also, assume

that, conditional on each individual’s covariate path, the hazard of Tij follows a

proportional hazards model where λ{t | Z̄ij(t)} is equal to

lim
h→0

h−1P{t ≤ Tij < t+ h | Tij ≥ t, Z̄ij(t)} = λ0(t) exp{β′Zij(t)}. (1)

Here β is a vector of regression coefficients and λ0(t) is an unspecified baseline hazard

function with cumulative hazard function Λ. Equation (1) is a marginal model for each

Tij, hence β has a population-level interpretation not a cluster-specific interpretation.

To model the clustering of the Tij, consider the semiparametric normal transfor-

mation:

T̃ij = Φ−1[1− S{Tij | Z̄ij(Tij)}], (2)

where Φ is the standard normal distribution function, Φ−1 is the inverse of the stan-

dard normal distribution function, and S is the survival function associated with

Equation (1). By the probability integral transform, 1 − S{Tij | Z̄ij(Tij)} has a

Uniform(0, 1) distribution. It necessarily follows that T̃ij ∼ Normal(0, 1). The trans-

formation takes Tij with support on (0,∞) and transforms it to a standard normal

random variable.
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Marginalized Frailty Models 4

Denote the correlation of (T̃i1, . . . , T̃ini
) with Σi. We propose to model the trans-

formed survival times from Equation (2) with a shared frailty model:

T̃ij =
√
σbi + εij, (3)

where the cluster level frailty bi has a standard normal distribution and the error

terms, εij, are independent and identically distributed N(0, 1 − σ) random variables

that are also independent of bi. We call the class of models described by Equations

(1), (2), and (3) marginalized frailty models. The β parameters in Equation (1) have

marginal interpretation, while σ and bi from Equation (3) characterize the cluster

effect. The term σ can have the interpretation as the proportion of explained variance

shared by members of the same cluster. In the context of a multi-center clinical trial,

the cluster level frailties characterize the center effect. Using this model, Σi will

have an exchangeable structure with diagonal elements equal to 1 and off-diagonal

elements equal to σ.

3. Inference

3.1. Likelihood Function

The survival function for Tij | bi can be written P (Tij > t | bi) = 1−Φ1−σ(t̃−
√
σbi),

with density function fij(t) = φ1−σ(t̃−
√
σbi)f{t | Z̄ij(t)}/φ1−σ(t̃), where t̃ = Φ−1[1−

S{t | Z̄ij(t)}], Φ1−σ is the distribution function for εij, φ1−σ is the density of εij, and

f{t | Z̄ij(t)} is the density associated with Equation (1). Let Φ̃1−σ(t) = 1 − Φ1−σ(t)

and X̃ij = Φ−1[1 − S{Xij | Z̄ij(Xij)}]. Here X̃ij is a potentially censored version

of T̃ij (Equation (2)). The semiparametric normal transformation is monotone and

thus preserves censoring patterns. The likelihood based on the observed data can be

http://biostats.bepress.com/harvardbiostat/paper104
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written

L(σ,β,Λ) =
m∏
i=1

∫ ni∏
j=1

Φ̃1−σ(X̃ij −
√
σbi)

1−∆ij [λ0(Xij) exp{β′Zij(Xij)}]∆ij

×(exp[

∫ Xij

0

exp{β′Zij(s)} dΛ(s)]φ1−σ(X̃ij −
√
σbi)/φ1−σ(X̃ij))

∆ij dΦ(bi)

=
m∏
i=1

∫ ni∏
j=1

[f{Xij | Z̄ij(Xij)}/φ1−σ(X̃ij)]
∆ij

×φ1−σ(X̃ij −
√
σbi)

∆ij Φ̃1−σ(X̃ij −
√
σbi)

1−∆ij dΦ(bi).

Conveniently, L(σ,β,Λ) has a closed form expression proportional to a product

of multivariate normal terms. To simplify the presentation, define ∆i =
∑ni

j=1 ∆ij,

order the observations such that ∆i1 = . . . = ∆i∆i
= 1, and let X̃∆i

i = (X̃i1, . . . , X̃i∆i
)

and X̃ni−∆i
i = (X̃i∆i+1

, . . . , X̃ini
).

Then L(σ,β,Λ) can be written

m∏
i=1

φ∆i
u (X̃∆i

i )Φ̃ni−∆i
c (X̃ni−∆i

i | X̃∆i
i )

ni∏
j=1

[f{Xij | Z̄ij(Xij)}/φ1−σ(X̃ij)]
∆ij ,

where φ∆i
u is the multivariate normal density corresponding to its argument and

Φ̃ni−∆i
c is the multivariate normal survival function corresponding to its argument.

The distribution of each of the arguments will be outlined below. Let Σi be the co-

variance matrix for the transformed failure times. Write Σi as a partitioned matrix:

Σi =

(
Σi11 Σi12

Σi21 Σi22

)
,

where Σi11 has dimension ∆i × ∆i. The vector X̃∆i
i follows a multivariate normal

distribution with mean 0 and covariance matrix Σi11. For the second term of the
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Marginalized Frailty Models 6

likelihood, X̃ni−∆i
i | X̃∆i

i is a censored observation from a normal distribution with

mean Σi21Σ
−1
i11X̃

i∆′i
i and covariance matrix Σi22 −Σi21Σ

−1
i11Σi12.

To shed some light on the likelihood, L(σ,β,Λ), we consider an example likelihood

contribution from a cluster of size two where one subject is observed to be censored

at time CA1 and one subject is observed to fail at time TA2. The covariate process for

each subject is denoted Z̄A1(CA1) and Z̄A2(TA2). The normally transformed observed

failure times are X̃A1 = Φ−1[1 − S{CA1 | Z̄A1(CA1)}] and X̃A2 = Φ−1[1 − S{TA2 |

Z̄A2(TA2)}]. In this case

Σ =

(
1 σ

σ 1

)
.

The first term of L(σ,β,Λ) can be written

φ1
u(X̃A2) = (2π)−1/2 exp(−X̃2

A2/2) (4)

while the second term can be written

Φ1
c(X̃A1) =

∫ ∞
X̃A1

{2π(1− σ2)}−1/2 exp{−(x− σX̃A2)2/2
√

1− σ2} dx. (5)

Equation (4) is the density of a standard normal random variable, while Equation

(5) corresponds to, conditional on X̃A2, the probability that a Normal(σX̃A2, 1− σ2)

random variable is greater than X̃A1.

3.2. Profile Likelihood Estimation

We propose a profile method to estimate (σ,β,Λ):

Step 1: Estimate β and Λ assuming working independence. Denote these estimates β̂

and Λ̂.

http://biostats.bepress.com/harvardbiostat/paper104



Marginalized Frailty Models 7

Step 2: Estimate σ as the maximum of L(σ, β̂, Λ̂). Write this maximum as σ̂.

Formulas for the standard errors of β̂ and Λ̂ can be found using a sandwich

formula (Spiekerman and Lin 1998). The standard error of σ̂ needs to account for

the variability from β̂ and Λ̂. This can be accomplished using a jackknife resampling

scheme. To maintain the correlated structure of the failure times, the clusters should

be the unit of removal for the jackknife calculations (Cai et al. 1997; Cai and Shen

2000).

This estimation procedure is computationally straightforward. Marginal estimates

of the survival function assuming working independence are available in all standard

computing programs. The likelihood for σ, L(σ, β̂, Λ̂), is proportional to a product of

multivariate normal terms. The multivariate normal terms can be evaluated quickly

using existing software (e.g. R package mvtnorm).

3.3. Predictions of Shared Frailties

Our marginalized frailty model allows us to estimate the shared frailties, which is

often of interest. In the context of institutional clustering, the bi can provide in-

formation on the results of individual institutions participating in a clinical trial.

Estimates of the bi and their standard errors can be found using Laplace approxi-

mations to the bi’s first two moments. Denote the observed data for the ith cluster,

(Xi1, . . . , Xini
,∆i1, . . . ,∆ini

, Z̄i1(Xi1), . . . , Z̄ini
(Xini

)), with Ψi. The conditional den-

sity of bi given the observed data Ψi, denoted g(bi | Ψi;σ,β,Λ), can be written

L−1
i (2π)−1/2 exp(−b2

i /2)

ni∏
j=1

[f{Xij | Z̄ij(Xij)}/φ1−σ(X̃ij)]
∆ij

×φ1−σ(X̃ij −
√
σbi)

∆ij Φ̃1−σ(X̃ij −
√
σbi)

1−∆ij
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Marginalized Frailty Models 8

where Li is the likelihood for Ψi | σ,β,Λ. Define ki such that g(bi | Ψi;σ,β,Λ) =

L−1
i exp{ki(bi | Ψi;σ,β,Λ)}. Using the Laplace approximations to the first two mo-

ments of g(bi | Ψi;σ,β,Λ) (Booth and Hobert 1998), the predicted estimate and

variance of bi are taken to be:

b̂i = E(bi | Ψi) ≈ arg max
bi

ki(bi | Ψi; σ̂, β̂, Λ̂) (6)

V (bi | Ψi) ≈ −k̈i(b̂i | Ψi; σ̂, β̂, Λ̂)−1, (7)

where double superscript dots denote second derivatives.

The prediction of the shared frailties is straightforward and computationally fast,

particularly in contrast to standard gamma frailty algorithms, which can involve

analytically complicated integrals. The expression for ki(bi | σ̂, β̂, Λ̂,Ψi) involves ni

normal terms and can be maximized using any standard optimization routine. The

estimate of the variance of bi has a closed form expression and can be found by

plugging in relevant estimated quantities.

4. Theoretical Results

The following theorems establish the theoretical properties of (σ̂, β̂, Λ̂) where their

true values are denoted with (σ0,β0,Λ0).

Theorem 1. Under Conditions C.1 – C.6 in the Appendix, (σ̂, β̂, Λ̂) converges in

probability to (σ0,β0,Λ0) as m→∞.

Theorem 2. Under Conditions C.1 – C.7 in the Appendix, as m→∞,
√
m(σ̂− σ0)

and
√
m(β̂ − β0) converge to zero-mean normal distributions and

√
m{Λ̂(t)−Λ0(t)}

converges to a zero-mean Gaussian process.

Detailed proofs can be found in the Appendix. The proofs of both theorems for σ̂

involve accounting for the proposed profile estimation method. These theorems verify

http://biostats.bepress.com/harvardbiostat/paper104
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that σ̂ is consistent and asymptotically normal when plug-in estimates of β and Λ

are used in the likelihood function.

To prove that σ̂ is consistent we first have to verify that the log-likelihood function

is Hadamard differentiable with respect to Λ0 (van der Vaart 1998). The next step

is to show that the first order terms of a Taylor series expansion of the log-likelihood

around β0 and Λ0 are bounded. The final key step is to prove that the log-likelihood

function with plug-in estimates for β and Λ converges uniformly to the expected value

of the log-likelihood function evaluated at the true values for β and Λ.

The proof of normality for σ̂ accounts for the profile estimation scheme by inflating

the variance term to account for using β̂ and Λ̂. The key step of the proof is to show

that the score equation can asymptotically be written as the sum of independent

and identically distributed terms, facilitating the use of the central limit theorem.

To make this argument we need to prove that the score equation for σ is Hadamard

differentiable with respect to Λ0 and that the first order terms of a Taylor series

expansion of the score function around β0 and Λ0 are bounded.

The analytical formula for the variance of σ̂ is so complicated that it is of little

computational utility. To evaluate the finite sample variability of σ̂ we propose to

use a jackknife resampling scheme. We evaluate the performance of the jackknife by

simulation studies, which are presented in Section 6. The jackknife estimates of the

standard error match well with Monte Carlo estimates of the standard error with

moderate numbers of clusters.

5. Model-checking

In practice, it is often of interest to verify that any assumptions made during modeling

are plausible. We propose a two-step model-checking procedure. As the marginal

survival function is modeled using proportional hazards regression, a natural first

Hosted by The Berkeley Electronic Press
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model-checking step is to verify that the associated regression assumptions are not

violated. In our application, we use the method of Grambsch and Therneau (1994),

though there have been many other methods proposed, such as Lin, Wei, and Ying

(1993). Next, provided that the proportional hazards model fit is adequate, the

assumption that the transformed failure times follow a shared frailty model (Equation

(3)) can be checked.

Recall that S{· | Z̄ij(Tij)} is the survival function associated with the marginal

survival time Tij. If S is estimated well, with estimate denoted Ŝ, the probability

integral transform indicates that it should be the case that Φ−1{1− Ŝ(Tij | Z̄ij(Tij))}

approximately follows a standard normal distribution. In verifying the assumptions

of Equation (3), we need to check that the estimates of the frailties are normally dis-

tributed. To this end, let zi = b̂i/

√
V (b̂i), where b̂i and V (b̂i) are defined in Equations

(6) and (7). A simple graphical check of the assumption that the bi are normally dis-

tributed is a quantile-quantile plot (Q-Q plot) of the cumulative distribution function

of the zi.

6. Simulation Results

We conducted a number of simulations to evaluate the efficacy of the proposed

method. The presented simulations have marginal survival times from a propor-

tional hazards model with a constant baseline hazard function equal to 1 and with

two covariates: one Bernoulli(0.5) covariate with parameter equal to log(0.5) (de-

noted β1) and one Uniform(0, 1) covariate with parameter equal to 0.75 (denoted

β2). Censoring times were taken from the Exponential(mean=3) distribution and

produced about a 25% censoring rate. Clustering was induced through generating

survival times using Equation (3). The precision of σ̂ is determined by the number of

clusters, while the precision of the predicted frailties is determined by the sample size
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in individual clusters. Each simulation is based on 500 replications. We summarize

results for simulated datasets with 30, 60, and 90 clusters. The individual clusters

sizes either varied between 2 and 10 with a median size of 3, or varied between 10

and 50 with median cluster size 17.

Simulation results are presented in Table 1. Even with small cluster sizes the

estimates of σ are relatively unbiased and the jackknife standard errors match well

with the Monte Carlo standard errors. For example, in a simulation of 30 clusters

with median cluster size 3 the average estimate for σ is 0.531 (truth = 0.5), while in

a simulation of 90 clusters with median cluster size 3 the average estimate for σ is

0.512.

The jackknife estimates of the standard errors for β1 and β2 are closer to the

Monte Carlo standard errors than the sandwich-based standard errors for almost all

the simulations. For example, in a simulation of 30 clusters with median size 3, the

jackknife standard error of β2 is 0.400, which is very close to the Monte Carlo standard

error of 0.403, while the sandwich-based standard error is 0.366. In a simulation of 60

clusters with median size 17, the Monte Carlo and jackknife standard error estimates

of β1 are 0.079 and the sandwich-based standard error estimate is 0.077.

With respect to the frailty estimates, the median relative bias decreases and the

likelihood-based standard error and the Monte Carlo standard error approach one as

the individual cluster sizes increase. For example, in a simulation of 90 clusters with

median cluster size 3 the median relative bias was -0.032 and in a simulation of 30

clusters with median size 3 the likelihood-based standard errors have an average value

of 0.911.
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7. Data Application: Children’s Oncology Group Study 1961

We apply our method to a Children’s Oncology Group study (protocol number 1961)

(Seibel et al. 2008). The study population included 460 children with enlarged livers.

The goal of this study was to determine whether increasing the intensity of therapy

by increasing duration or strength for “higher risk” acute lymphoblastic leukemia

patients would improve survival. To evaluate the relative benefit or harm for each

type of intensification, a 2x2 factorial design with block randomization of patients

was used. The distribution of subjects with enlarged livers among the four arms is

presented in Table 2. We focus on the overall survival endpoint.

We present regression results for an analysis with a marginal survival model con-

taining covariates for strength and duration of treatment in Table 3. We note that

there was no evidence of a duration by strength interaction in the initial analysis of

the entire dataset (Seibel et al. 2008) or in this enlarged liver subset. The p-value

for increased strength of treatment is marginally significant (p-value = 0.056, using

sandwich standard error) and indicates that increased strength of treatment may be

associated with improved survival. The p-value for increased duration of treatment is

marginally significant (p-value = 0.063, using sandwich standard error) and indicates

that duration strength of treatment may be associated with worsened survival. For

both survival parameters, the sandwich-based standard error and jackknife standard

error estimates that account for clustering within institutions provide smaller stan-

dard error estimates than the näıve method assuming independence. The estimate

for σ is 0.171 with a standard error of 0.152.

We also include results for a larger survival model that includes gender and po-

tential prognostic factors age and platelet count at diagnosis. Regression results are

summarized in Table 3. The p-values for increased strength (p-value = 0.067, using

http://biostats.bepress.com/harvardbiostat/paper104



Marginalized Frailty Models 13

sandwich standard error) and increased duration (p-value = 0.071, using sandwich

standard error) are slightly larger in this larger model, but the direction of the effect

remains the same. None of the p-values for gender, age, or platelets at diagnosis is

significant. The estimate of σ increases slightly to 0.175 with standard error of 0.144.

We predicted the frailties for each of the institutions in the sample using the

treatment only survival model. A summary of the distributions of the predictions can

be found in Figure 1. The mean of the frailties is close to zero (0.024). A Q-Q plot

with standardized predicted frailties compared to theoretical normal quantiles and

the smoothed density of the predicted frailties indicate that the normal assumption

in approximately satisfied.

We also provide a scatter plot of the predicted frailties and the number of patients

enrolled at each institution in Figure 2. In general, it appears that the predicted

frailties are larger with larger sample sizes. It may be the case that institutions with

more patients have more practice with a trial protocol, which could lead to better

performance.

The two most extreme standardized frailties in the Q-Q plot are marked at the

bottom of Figure 1. The same institutions are marked in Figure 2. These institutions

have more negative predicted frailty values than might be expected given the trends

in the rest of the data. This might be due to the worse than normal outcomes in

these two institutions. Specifically, among the 460 patients in this subset, 14.8% have

died. However, in the institution with 22 patients, the failure rate was 27.3% and, in

the institution with 10 patients, the failure rate was 60%.

8. Discussion

There is a need for flexible survival regression models that allow for marginal interpre-

tations of treatment or exposure, while concurrently evaluating potential clustering.
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Marginalized Frailty Models 14

The method proposed here establishes a general likelihood framework for this type

of analysis. Marginal treatment or exposure effects are modeled with a proportional

hazards model, while correlated transformed survival times are described by a shared

frailty model.

In future work, we hope to extend the transformation in Equation (3) to normal

distributions with variances that can depend on covariates. This type of model can

allow for more explicit analyses into what is driving differences between clusters.
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Table 1: Summary of Simulation Results
Number of clusters = 30

Median cluster size = 3 Median cluster size = 17
Truth Estimate SEJ SES SEMC Estimate SEJ SES SEMC

σ 0.5 0.531 0.117 – 0.107 0.559 0.070 – 0.067
β1 -0.693 -0.718 0.244 0.217 0.236 -0.709 0.112 0.106 0.109
β2 0.75 0.824 0.400 0.366 0.403 0.770 0.177 0.168 0.179

R. Bias SEL SEMC R. Bias SEL SEMC

Frailties -0.099 0.911 0.759 -0.076 0.797 0.838

Number of clusters = 60

Median cluster size = 3 Median cluster size = 17
Truth Estimate SEJ SES SEMC Estimate SEJ SES SEMC

σ 0.5 0.520 0.081 – 0.076 0.535 0.051 – 0.050
β1 -0.693 -0.710 0.163 0.157 0.157 -0.704 0.079 0.077 0.079
β2 0.75 0.749 0.275 0.260 0.282 0.762 0.125 0.120 0.124

R. Bias SEL SEMC R. Bias SEL SEMC

Frailties -0.040 0.900 0.798 -0.067 0.773 0.886

Number of clusters = 90

Median cluster size = 3 Median cluster size = 17
Truth Estimate SEJ SES SEMC Estimate SEJ SES SEMC

σ 0.5 0.512 0.066 – 0.063 0.528 0.042 – 0.042
β1 -0.693 -0.704 0.133 0.128 0.131 -0.700 0.064 0.063 0.065
β2 0.75 0.773 0.221 0.212 0.229 0.748 0.102 0.100 0.104

R. Bias SEL SEMC R. Bias SEL SEMC

Frailties -0.032 0.896 0.811 -0.055 0.767 0.906

Estimate = average of estimates
SEJ = average of jackknifed based standard errors
SES = average of sandwich-formula based standard errors (only for β)
SEL = average of likelihood based standard errors
SEMC = standard deviation of estimates
R. Bias = median relative bias, where relative bias = bias/parameter estimate

Table 2: Treatment arms for subjects of CCG-1961 with enlarged livers

Arm Strength Duration N
A Standard Standard 119
B Standard Double 104
C Increased Standard 117
D Increased Double 120
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Table 3: Data Analysis Results

Parameter Estimate SEJ SES Näıve SE

Treatment Only Model
Covariates
Increased Strength -0.430 0.231 0.225 0.247
Increased Duration 0.419 0.231 0.226 0.245

Frailty Variance
σ 0.171 0.152 – –

Larger Model
Covariates
Increased Strength -0.418 0.236 0.229 0.247
Increased Duration 0.426 0.247 0.236 0.248
Gender (ref=males) -0.101 0.254 0.243 0.251
Age
1–9 (ref)
10–15 0.415 0.253 0.244 0.262
16+ 0.394 0.491 0.430 0.384
Platelets (×103/mm3)
1–49 (ref)
50–150 0.386 0.303 0.288 0.258
150+ -0.118 0.643 0.568 0.529

Frailty Variance
σ 0.175 0.144 – –

Estimate = log hazard ratios and estimates of σ
SEJ = average of jackknife based standard errors
SES = average of sandwich-formula based standard errors (only for β)
Näıve SE = SE assuming independence
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Figure 1: Left figure: smoothed density of predicted frailties. Right figure: Q-Q plot
of predicted frailties and standard normal distribution quantiles
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Appendix A. Regularity Conditions and Notation

Assume the following regularity conditions where τ > 0 is a constant (for example,

study duration):

C.1: β is in a compact subset of Rp

C.2: Λ(τ) <∞

C.3: σ ∈ ν, where ν is a compact subset of (0, 1)

C.4: P (Cij ≥ t∀t ∈ [0, τ ] | Zij) > δc > 0 for j = 1, . . . , ni and i = 1, . . . ,m

C.5: Write Zij(t) = {Zij1(t), . . . , Zijp(t)}. |Zijk(0)|+
∫ τ

0
|dZijk(t)| ≤ BZ <∞ almost

surely for some constant BZ and i = 1, . . . ,m, j = 1, . . . , ni, k = 1, . . . , p

C.6: E log{L(σ1; β,Λ)/L(σ2; β,Λ)} exists for all σ1, σ2 ∈ (0, 1)

C.7: Let Yij(t) = I(Xij ≥ t), K = maxi ni, a⊗0 = 1, a⊗1 = a, a⊗2 = a′a,

Q
(κ)
j (β, t) = m−1

∑m
i=1 Yij(t) exp{β′Zij(t)}Zij(t)

⊗κ, q
(κ)
j (β, t) = EQ

(κ)
j (β, t),

ηj(β, t) =
q
(1)
j (β,t)

q
(0)
j (β,t)

, %j(β, t) =
q
(2)
j (β,t)

q
(0)
j (β,t)

− ηk(β, t)⊗2 for j = 1, . . . , K.

Assume
∑K

j=1

∫ τ
0
%j(β0, t)q

(0)
j (β0, t)λ0(t) dt is positive definite

Condition C.3 allows us to avoid boundary issues. Condition C.5 assumes that all

the covariates are of bounded variation, which is necessary to ensure the Hadamard

differentiability of the likelihood and score function. Condition C.6 is useful to help

prove that the expected likelihood is maximized at σ0. Condition C.7 is a technical

condition from Spiekerman and Lin (1998) that is needed for the results for β̂ and Λ̂.
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To simplify the presentation of the proofs we define several terms. Define

L∗(σ,β,Λ) =
m∏
i=1

φ∆i
u (X̃∆i

i )Φ̃ni−∆i
c (X̃ni−∆i

i | X̃∆i
i ),

where L∗(σ,β,Λ) = c∗L(σ,β,Λ) and c∗ does not depend on σ. Let

lm0(σ) = m−1 logL∗(σ,β0,Λ0), lm(σ) = m−1 logL∗(σ,β,Λ),

l̂m(σ) = m−1 logL∗(σ, β̂, Λ̂), Um0(σ) = ∂lm0(σ)/∂σ, Um0(σ) = ∂lm(σ)/∂σ,

and Ûm(σ) = ∂l̂m(σ)/∂σ

Expectations are with respect to the true distributions of all random variables in-

volved. Let ‖ ·‖ denote the Euclidean norm and let ‖ ·‖∞ denote the supremum norm

on [0, τ ]. Let BV [0, τ ] denote the class of functions with bounded total variation on

[0, τ ]. Let single superscript dots denote first derivatives and double superscript dots

denote second derivatives.

Appendix B. Proof and Associated Lemmas for Theorem 1

For ease of presentation we state several lemmas used in the proof of Theorem 1, but

defer their proof until the end of the Appendix.

To account for the fact that plug-in estimates of β and Λ are used in the likelihood

for σ, we will need to take a Taylor series expansion of the likelihood of σ around

β0 and Λ0. Since Λ0 is an unspecified function, this expansion will need to include a

functional expansion term. An expansion using Hadamard derivatives is appropriate

for this situation. Hence, in order to use the functional expansion, we need to verify

that the log-likelihood is Hadamard differentiable with respect to Λ, which is done in

Lemma 1.
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Lemma 1. Under conditions C.1–C.5, the log-likelihood lm(σ) is Hadamard differen-

tiable with respect to Λ.

After we have an expansion of the log-likelihood we will need the first order terms

to be bounded by a random variable with finite expectation. We provide this verifi-

cation in Lemma 2.

Lemma 2. Write the Hadamard derivative of lm(σ) with respect to Λ at Π ∈ BV [0, τ ]

as
∫ τ

0
ζm(Λ, σ)(u) dΠ(u) and let ζm(β, σ) = ∂lm(σ)/∂β. Under conditions C.1–C.5,

‖ζm(Λ, σ)‖∞ and ‖ζm(β, σ)‖ are bounded. Expressions for ζm(β, σ) and ζm(Λ, σ) are

provided in the proof.

In order to prove consistency of σ̂ we will need to verify the uniform convergence

of the log-likelihood with plug-in estimates of β and Λ to the expected value of the

log-likelihood evaluated at the truth. We accomplish this, using the results of Lemmas

1 and 2, in Lemma 3.

Lemma 3. Under conditions C.1–C.5, as m→∞

sup
σ∈ν
|l̂m(σ)− Elm0(σ)| = op(1).

Finally, in order to verify that σ̂ is consistent, we will need to show that the

expected log-likelihood is maximized at the truth, which is done in Lemma 4.

Lemma 4. Under conditions C.1–C.6,

Elm0(σ)− Elm0(σ0) < 0.
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Proof of Theorem 1

The results for β̂ and Λ̂ follow from arguments along the lines of Spiekerman and Lin

(1998). We use the results of Lemmas 3 and 4 to prove the result for σ̂.

Since σ̂ maximizes l̂m(σ), Lemma 3 implies that

0 ≤ l̂m(σ̂)− l̂m(σ0) = l̂m(σ̂)− l̂m(σ0) + Elm0(σ0)− Elm0(σ0)

= l̂m(σ̂)− Elm0(σ0) + op(1).

Therefore Elm0(σ0) ≤ l̂m(σ̂)+op(1). Subtract Elm0(σ̂) from each side of the inequality

to write

Elm0(σ0)− Elm0(σ̂) ≤ l̂m(σ̂)− Elm0(σ̂) + op(1)

≤ sup
σ∈ν
|l̂m(σ)− Elm0(σ)|+ op(1) = op(1), (8)

where the last equality comes from Lemma 3.

Take σ such that |σ − σ0| ≥ ε for any fixed ε > 0. By Lemma 4 there must exist

some γε > 0 such that Elm0(σ) + γε < Elm0(σ0). It follows that P (|σ̂ − σ0| ≥ ε) ≤

P{Elm0(σ̂)+γε < Elm0(σ0)}. Equation (8) implies that P{Elm0(σ̂)+γε < Elm0(σ0)}

converges to 0 as m→∞. Therefore P (|σ̂ − σ0| ≥ ε) converges to 0 as m→∞.

Appendix C. Proof and Associated Lemmas for Theorem 2

For ease of presentation we state several lemmas used in the proof of Theorem 2, but

defer their proof until the end of the Appendix.

To account for the fact that plug-in estimates of β and Λ are used in the likelihood

and score function for σ, we will need to take a Taylor series expansion of the score

function for σ around β0 and Λ0. We verify that the score function is Hadamard
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differentiable with respect to Λ, which is done in Lemma 5.

Lemma 5. Under conditions C.1–C.5, the score function Um(σ) is Hadamard differ-

entiable with respect to Λ.

After we have an expansion of the score function for σ, we will need the first order

terms to be bounded by a random variable with finite expectation. We provide this

verification in Lemma 6.

Lemma 6. Write the Hadamard derivative of Um(σ) with respect to Λ at Π ∈ BV [0, τ ]

as
∫ τ

0
ξm(σ,Λ)(u) dΠ(u) and let ξm(β, σ) = ∂Um(σ)/∂β. Under conditions C.1–C.5,

‖ξm(σ,Λ)‖∞ and ‖ξm(σ,β)‖ are bounded. Expressions for ξm(σ,β) and ξm(σ,Λ) are

provided in the proof.

Proof of Theorem 2

The result that
√
m(β̂ − β) converges to mean zero normal distribution and that

√
m(Λ̂− Λ0) converges to mean zero Guassian process follows from arguments along

the lines of Spiekerman and Lin (1998). This proof needs to verify that
√
m(σ̂ − σ0)

converges to a normal distribution with mean zero after accounting for the extra

variance induced by the profile estimation procedure. The variance of σ̂ should be

inflated over a model where β0 and Λ0 are used to take into account the estimation

of β̂ and Λ̂.

First we will show that the score equation associated with l̂m evaluated at σ0

follows a normal distribution. This result coupled with a first order expansion of the

score equation associated with l̂m around σ0 will finish the proof.

Using Lemma 5, a Taylor series expansion of Ûm(σ) around β0 and Λ0 gives

Ûm(σ0) = Um(σ0) +

∫ τ

0

ξm(σ0,Λ)(t) d{Λ̂(t)− Λ0(t)}+ ξm(σ0,β)(β̂ − β) +Gm,
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where Gm is a remainder term for the Taylor series. Since Λ̂ and β̂ are
√
m-consistent

it can be shown that Gm = op(m
−1/2). Define the pointwise limit of ξm(σ,Λ)(t) as

ξ(σ,Λ)(t) and let ξ(σ,β) = Eξm(σ,β). From Lemma 6, ‖ξ(σ0,Λ)‖∞ and ‖ξ(σ,β)‖

are bounded. It follows that

√
mÛm(σ0) =

√
mUm(σ0) +

√
m

∫ τ

0

ξ(σ0,Λ)(t) d{Λ̂(t)− Λ0(t)}

+
√
m ξ(σ0,β)(β̂ − β) + op(1). (9)

Using the results of Spiekerman and Lin (1998), we can write Equation (9) as a

sum of independent and identically distributed random variables,
√
m
∑m

i=1 Ξi, where

EΞ1 = 0 and V Ξ1 <∞. The central limit theorem implies that
√
mÛm(σ0) converges

to a normally distributed random variable with mean zero and variance equal to the

variance of Ξ1.

Next, we take a first order Taylor series expansion of Ûm(σ̂) around σ0:

Ûm(σ̂) = Ûm(σ0) + (σ̂ − σ0)Ŵm(σ∗),

where Ŵm(σ) = ∂Ûm(σ)/∂σ and σ∗ is between σ̂ and σ0. It must be the case that

Ûm(σ̂) = 0 since σ̂ was taken to be the maximum of L(σ, β̂, Λ̂). Theorem 1 showed

that σ̂ consistently estimates σ0, so the the law of large numbers implies that Ŵm(σ∗)

converges in probability to W (σ0) = limm→∞Wm(σ0). Finally, using the central limit

theorem and Slutsky’s theorem,
√
m(σ̂− σ0) converges to a normal distribution with

mean zero and variance equal to W (σ0)−2V (Ξ1).
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Appendix D. Proofs of Lemmas

Proof of Lemma 1

Define Yij(t) = I(Xij ≥ t). The log-likelihood can be written

lm(σ) = m−1

m∑
i=1

log φ∆i
u (X̃∆i

i ) + log Φ̃ni−∆i
c (X̃ni−∆i

i | X̃∆i
i )

where X̃ij = Φ̃−1(exp[−
∫ τ

0
Yij(u) exp{β′Zij(u)} dΛ(u)]). By condition C.5 the term

∫ τ

0

Yij(u) exp{β′Zij(u)} dΛ(u)

is Hadamard differentiable. Using multiple iterations of the chain rule for Hadamard

derivatives (van der Vaart 1998, Theorem 20.9), we conclude that lm(σ) is Hadamard

differentiable.

Proof of Lemma 2

First we find expressions for ζm(σ,Λ) and ζm(β, σ), starting with ζm(σ,Λ). To make

the argument more concrete express lm(σ) as a function of Λ by writing lm(σ,Λ) =

lm(σ). Let Γ ∈ BV [0, τ ]. Denote

Hij = exp[−
∫ τ

0

Yij(u) exp{β′Zij(u)} dΛ(u)].

By conditions C.1 and C.2, for j = 1, . . . , ni and i = 1, . . . ,m, Hij > 0 and |X̃ij| <

B∗ <∞ for some constant B∗.

To find the expression for the derivative, take a Taylor series expansion of lm{σ,Λ+
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t(Γ− Λ)} around t = 0 and evaluate the result at t = 1. The final expression is

lm(σ,Γ) = lm(σ,Λ) +

∫ τ

0

ζm(σ,Λ)(u) d(Λ− Γ)(u),

where ζm(σ,Λ)(u) is equal to m−1
∑m

i=1

∑ni

j=1 D
l
ijYij(u) exp{β′Zij(u)}Hij and Dl

ij is

equal to

(∆ij[φ
∆i
u (X̃∆i

i )
−1{∂φ∆i

u (X̃∆i
i )/∂X̃ij}] + (1−∆ij)[Φ̃

ni−∆i
c (X̃ni−∆i

i | X̃∆i
i )
−1

×{∂Φ̃ni−∆i
c (X̃ni−∆i

i | X̃∆i
i )/∂X̃ij}])

ni∑
j=1

∂Φ−1(Hij)/∂Hij.

Therefore the Hadamard derivative for Π ∈ BV [0, τ ] is
∫ τ

0
ζm(σ,Λ)(u) dΠ(u). Direct

calculation verifies that ζm(σ,β) is equal to

m−1

m∑
i=1

ni∑
j=1

Dl
ij[

∫ τ

0

Yij(u)Zij(u) exp{β′Zij(u)} dΛ(u)]Hij.

We need to check whether each of the terms in Dl
ij is bounded and also that the

terms unique to ζm(σ,β) and ζm(σ,Λ) are bounded. First,

φ∆i
u (X̃∆i

i ) = (2π)−∆i/2 det(Σi11)−1/2 exp(−X̃
∆′i
i Σ−1

i11X̃
∆i
i /2) > 1/B1 > 0

for some constant B1 since for X̃ij ∈ X̃∆i
i , |X̃ij| < B∗. Therefore, for i = 1, . . . ,m,

φ∆i
u (X̃∆i

i )−1 < B1 <∞.

Let wα(j) denote the vector of length α where the jth element is 1 and the rest

of the vector is 0. Using the chain rule, for j = 1, . . . ,∆i and i = 1, . . . ,m,

∂φ∆i
u (X̃∆i

i )/∂X̃ij = −X̃
∆′i
i Σ−1

i11w∆i
(j)φ∆i

u (X̃∆i
i ).
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The multivariate normal density φ∆i
u (X̃∆i

i ) is bounded and for X̃ij ∈ X̃∆i
i , |X̃ij| < B∗.

Hence, for j = 1, . . . ,∆i and i = 1, . . . ,m, |∂φ∆i
u (X̃∆i

i )/∂X̃ij| < B2 < ∞ for some

constant B2.

Next consider Φ̃ni−∆i
c (X̃ni−∆i

i | X̃∆i
i ), which for i = 1, . . . ,m is equal to

∫
Mi

(2π)ni−∆i det(Σ̃i) exp{(tni−∆i − µ̃i)
′Σ̃
−1

i (tni−∆i − µ̃i)/2} dtni−∆i

where Mi = {t(∆i+1) > X̃i,(∆i+1), . . . , tni
> X̃i,ni

}, tni−∆i = (t(∆i+1), . . . , tni
), Σ̃i =

Σi22 − Σ′i21Σ
−1
i11Σi12, and µ̃i = Σi21Σ

−1
i11X̃

∆i
i . Since |X̃ij| < B∗ for X̃ij ∈ X̃ni−∆i

i , it

must be the case that for i = 1, . . . ,m. |Φ̃ni−∆i
c (X̃ni−∆i

i | X̃∆i
i )−1| < B3 <∞ for some

constant B3.

Let tni−∆i
j be equal to tni−∆i but with the component corresponding to (j−∆i)

th

component replaced by X̃ij. Let tni−∆i
−j be equal to tni−∆i but with the (j − ∆i)

th

element removed. Let Mi,−j denote Mi but with the (j − ∆th
i ) inequality removed.

Consider |∂Φ̃ni−∆i
c (X̃ni−∆i

i | X̃∆i
i )/∂X̃ij|, which, for j = ∆i + 1, . . . , ni, i = 1 . . . ,m,

can be written

|
∫

Mi

−(2π)ni−∆i det(Σ̃i) exp{(tni−∆i
j − µ̃i)

′Σ̃
−1

i (tni−∆i
j − µ̃i)/2} dtni−∆i

−j | < B4

for some constant B4 <∞ since |X̃ij| < B∗ for X̃ij ∈ X̃ni−∆i
i .

Using the definition of the derivative of an inverse function, ∂Φ−1(Hij)/∂Hij =

−[φ{Φ−1(Hij)}]−1, where φ is the density of the standard normal distribution and

Φ−1 is the inverse of the distribution function of the standard normal distribution.

Since |X̃ij| < B∗, 0 < B5 < Hij < B6 < 1 for some constants B5 and B6. Therefore,

for j = 1, . . . , ni and i = 1, . . . ,m, |∂Φ−1(Hij)/∂Hij| < B7 < ∞ for some constant

B7. By condition C.5, for j = 1, . . . , ni and i = 1, . . . ,m, ‖Yij exp(β′Zij)‖∞ < B8 <
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∞ and ‖
∫ τ

0
Yij(u)Zij(u) exp{β′Zij(u)} dΛ(u)]‖ < B9 < ∞ for some constants B8

and B9. Hence ‖ζm(σ,Λ)‖∞ and ‖ζm(β, σ)‖ are bounded are bounded by (B1B2 +

B3B4)B7(B8 +B9) <∞.

Proof of Lemma 3

An expansion of l̂m(σ) around Λ0 and β0 can be written:

l̂m(σ) = lm0(σ) + ζm(β, σ)(β̂ − β) +

∫ τ

0

ζm(σ,Λ)(t) d(Λ̂− Λ0)(t) +R,

where R is a remainder term of order op{max(‖Λ̂ − Λ0‖∞, ‖β̂ − β0‖)} and ζm(β, σ)

and ζm(σ,Λ)(t) are defined in Lemma 2. Since Λ̂ is uniformly consistent and β̂ is

consistent (Spiekerman and Lin 1998), R = op(1). The result follows from the law of

large numbers, the uniform consistency of Λ̂, the consistency of β̂, and the fact that

‖ζm(β, σ)‖ and ‖ζm(σ,Λ)‖∞ are bounded (Lemma 2).

Proof of Lemma 4

The log-likelihood, lm(σ), can be written as a sum of independent and identically

distributed random variables m−1
∑m

i=1 ϕi(σ). Take σ 6= σ0. The law of large numbers

and Jensen’s inequality imply that Elm0(σ) − Elm0(σ0) = limm→∞ lm0(σ) − lm0(σ0)

which is strictly less than log[E(L∗(σ,β0,Λ0)/L∗(σ0,β0,Λ0))] = 0.

Proof of Lemma 5

Let N(t, d,µ,Σ†) be defined as (2π)−d/2 det(Σ†)−1/2 exp{−(t− µ)′(Σ†)−1(t− µ)/2}

[tr{(Σ†)−1W̃d} − {−(t − µ)′(Σ†)−1W̃d(Σ
†)−1(t − µ)/2}]/2, where W̃d is the d di-

mensional square matrix with zeros along the diagonal and ones off the diagonal. Let
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0d denote a vector of length d of zeros. The score function can be written

Um(σ) = m−1

m∑
i=1

φ∆i
u (X̃∆i

i )−1N(X̃∆i
i ,∆i,0

∆i ,Σi11)

+Φ̃ni−∆i
c (X̃ni−∆i

i | X̃∆i
i )−1

∫
Mi

N(tni−∆i , ni −∆i, µ̃i, Σ̃i) dt
ni−∆i .

Using the results of Lemma 1 and multiple iterations of the chain rule for Hadamard

derivatives (van der Vaart 1998, Theorem 20.9), we conclude that Um(σ) is Hadamard

differentiable.

Proof of Lemma 6

First we find expressions for ξm(σ,Λ) and ξm(σ,β), starting with ξm(σ,Λ). To make

the argument more concrete express Um(σ) as a function of Λ by writing Um(σ,Λ) =

Um(σ). Let Γ ∈ BV [0, τ ].

To find the expression for the derivative, take a Taylor series expansion of Um{σ,Λ+

t(Γ − Λ)} around t = 0 and evaluate the result at t = 1. The final expression

is Um(σ,Γ) = Um(σ,Λ) +
∫ τ

0
ξm(σ,Λ)(u) d(Λ − Γ)(u), where ξm(σ,Λ)(u) is equal to

m−1
∑m

i=1

∑ni

j=1D
U
ijYij(u) exp{β′Zij(u)}Hij and

DU
ij = (∆ij[{∂φ∆i

u (X̃∆i
i )
−1
/∂X̃ij}N(X̃∆i

i ,∆i,0
∆i ,Σi11) + φ∆i

u (X̃∆i
i )
−1

×{∂N(X̃∆i
i ,∆i,0

∆i ,Σi11)/∂X̃ij}] + (1−∆ij)[{∂Φ̃ni−∆i
c (X̃ni−∆i

i | X̃∆i
i )
−1
/∂X̃ij}

×
∫

Mi

N(tni−∆i , ni −∆i, µ̃i, Σ̃i) dt
ni−∆i + Φ̃ni−∆i

c (X̃ni−∆i
i | X̃∆i

i )
−1

×{∂
∫

Mi

N(tni−∆i , ni −∆i, µ̃i, Σ̃i) dt
ni−∆i/∂X̃ij}])

ni∑
j=1

∂Φ−1(Hij)/∂Hij

Therefore the Hadamard derivative for Π ∈ BV [0, τ ] is
∫ τ

0
ξm(σ,Λ)(u) dΠ(u). Direct
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calculation verifies that ξm(σ,β) is equal to

m−1

m∑
i=1

ni∑
j=1

DU
ij [

∫ τ

0

Yij(u)Zij(u) exp{β′Zij(u)} dΛ(u)]Hij.

In Lemma 2 we showed that, for i = 1, . . . ,m, |φ∆i
u (X̃∆i

i )−1| < B1 < ∞ and

|Φ̃ni−∆i
c (X̃ni−∆i

i )−1| < B3 <∞.Also, for j = 1, . . . , ni, i = 1, . . . ,m, |∂Φ−1(Hij)/∂Hij| <

B7 <∞, ‖Yij exp(β′Zij)‖∞ < B8 <∞ and ‖
∫ τ

0
Yij(u)Zij(u) exp{β′Zij(u)} dΛ(u)]‖ <

B9 <∞.

We tackle each of the remaining terms. First, using results from Lemma 2, for j =

1, . . . ,∆i, i = 1, . . . ,m, |∂φ∆i
u (X̃∆i

i )
−1
/∂X̃ij| is equal to |−φ∆i

u (X̃∆i
i )−2{∂φ∆i

u (X̃∆i
i )/∂X̃ij}| <

B11 = B2
1B2 <∞ for some constant B11.

Since Σi11 has an exchangeable structure, tr{Σ−1
i11W̃∆i

} and det(Σi11)−1/2 are both

bounded by some constantB10 <∞. Therefore for i = 1, . . . ,m, |N(X̃∆i
i ,∆i,0

∆i ,Σi11)| <

B12 <∞ for some constant B12.

Next, we consider |∂N(X̃∆i
i ,∆i,0

∆i ,Σi11)/∂X̃ij| for j = 1, . . . ,∆i and i = 1, . . . ,m,

which is equal to

|X̃∆′i
i Σ−1

i11w∆i
(j)N(X̃∆i

i ,∆i,0
∆i ,Σi11) + X̃

∆′i
i Σ−1

i11W̃∆i
Σ−1
i11w∆i

(j)φ∆i
u (X̃∆i

i )|,

and, by the results of the previous paragraph and the results of Lemma 2, is bounded

by some constant B13 <∞.

Using results from Lemma 2, for j = ∆i + 1, . . . , ni and i = 1, . . . ,m,

|∂Φni−∆i
c (X̃ni−∆i

i | X̃∆i
i )
−1
/∂X̃ij| is equal to

| − Φni−∆i
c (X̃ni−∆i

i | X̃∆i
i )−2{∂Φni−∆i

c (X̃ni−∆i
i | X̃∆i

i )/∂X̃ij}| < B14 = B2
3B4 <∞
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for some constant B14.

Using similar arguments as above one can directly show that for i = 1, . . . ,m,∫
Mi
N(tni−∆i , ni −∆i, µ̃i, Σ̃i) dt

ni−∆i < B15 <∞ for some constant B15.

Also, for j = ∆i + 1, . . . , ni and i = 1, . . . ,m,

|∂
∫

Mi

N(tni−∆i , ni −∆i, µ̃i, Σ̃i) dt
ni−∆i/∂X̃ij

=

∫
Mi,−j

N(tni−∆i
j , ni −∆i, µ̃i, Σ̃i) dt

ni−∆i
−j | < B15 <∞

for some constant B16.

Hence ‖ξm(σ,Λ)‖∞ and ‖ξm(β, σ)‖ are bounded are bounded by (B11B12+B1B13+

B14B15 +B3B16)B7(B8 +B9) <∞.
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