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Introduction

It is widely recognized that complex diseases are likely caused by multiple susceptible loci,

each contributing a small to medium amount to the disease risk, that are potentially inter-

acting with each other [Risch, 1999; Risch, 2000; Botstein and Risch, 2003]. While link-

age analysis shows to be largely ineffective, association studies, in which the frequencies of

marker alleles in affected individuals and controls (either population- or family-based) are

compared, may hold the promise of dissecting the genetic susceptibility of complex diseases

[Risch, 2000; Botstein and Risch, 2003]. With the explosion of single nucleotide polymor-

phism (SNP) discovery and the advances in genotyping technologies, numerous SNP-based

association studies have been carried out in a scale ranging from a few candidate genes to

the whole genome [Barnby et al., 2005; Cope et al., 2005; Hu et al., 2005]. Despite the much

improved cost efficiency in genotyping, missing data are fairly common in these association

studies, often with a rate of 5% – 10%.

Depending on the analytical strategy undertaken, the missing SNPs have different

impact on association inference. The haplotype approach treats a collection of adjacent SNPs

in linkage disequilibrium (LD) all together and models the disease-haplotype association

[Schaid et al., 2002; Zhao et al., 2003; Epstein et al., 2003; Stram et al., 2003]. Missing SNPs

are essentially imputed in the process of haplotype reconstruction. The haplotype ambiguity

introduced by missing SNPs costs enlarged variances in the estimated haplotype effects.

Although haplotype analysis is effective to model interactions between SNPs in a tight LD

block, it runs into difficulties when there are a large number of SNPs under investigation (a

genome-wide scanning study, for example) and LD blocks are not well defined. In view of the

polygenic nature of complex diseases, an alternative strategy is to directly regress disease

status on the SNP main effects and SNP-SNP interactions. Cordell and Clayton [2002]

proposed a stepwise logistic regression procedure for both case control data and family data.

Ruczinski et al. [2003] developed logic regression, an adaptive regression methodology well

suited for detecting interactions between binary SNP variables. These SNP-based approaches
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build the regression model by search algorithms, offer a flexible choice of hypothesis testing,

yet remain computationally tractable. However, missing data in SNP genotypes pose a more

serious problem to regression approaches.

The standard procedure to cope with the missing SNPs is to ignore the individuals that

have missing values in the SNP loci under investigation, the so-called complete-case analy-

sis. In general, the complete-case analysis reduces the effective sample size and potentially

introduces bias in parameter estimates [Greenland and Finkle, 1995]. In particular, if a large

number of SNPs are under investigation simultaneously (as in regression approaches), the

proportion of individuals with at least one missing value can be quite high, even if the rate

of missing SNPs is low for each locus. Given that neighboring SNPs are likely in linkage

disequilibrium, it is feasible to impute missing ones by borrowing information from the ob-

served ones. Furthermore, the imputation may also benefit from incorporating information

on disease status and covariates. For example, when we studied the association between

breast cancer and polymorphisms in the XPD gene in a matched case control study, the

imputation frequencies for missing SNPs relied strongly on disease status and whether there

was a family history of breast cancer [Brewster et al., 2005]. It is therefore desirable to

develop a flexible imputation approach which takes into account LD in neighboring SNPs,

as well as disease status and covariates if they are relevant.

The aforementioned haplotype reconstruction can be used for imputation. Existing

EM algorithms [Excoffier and Slatkin, 1995; Qin et al., 2002] accommodate missing SNPs by

first replacing the missing locus with all possible alleles. After haplotype reconstruction, the

missing SNP genotypes are filled by sampling compatible haplotypes from their conditional

distributions given the unphased genotypes. Similarly Bayesian methods for haplotype re-

construction can be use to impute the missing SNPs [Stephens et al., 2001; Niu et al., 2002;

Lin et al, 2002]. All these methods may over-simplify the haplotype distribution in case

control samples, as the frequencies of the disease-associated haplotypes may differ between

cases and controls. To alleviate this problem, Lake et al. [2003] used a weighted EM (WEM)

algorithm to jointly model the haplotype effects and haplotype frequencies. Alternatively,

https://biostats.bepress.com/uwbiostat/paper278



3

Epstein and Satten [2003] developed a retrospective likelihood, and estimated haplotype fre-

quencies separately in cases and in controls. These more sophisticated methods can be easily

adapted to imputing missing SNPs, with disease status and extra covariates being accounted

for.

Instead of using genetic models, nonparametric regression methods such as classifica-

tion and regression trees (CART) [Breiman et al., 1984] can be used to model the missing

SNPs. Recently there is growing interest in applying tree methods to genetic association

studies with a large number of SNPs [Zhang and Bonney, 2000; Bureau et al., 2005]. Previ-

ous applications of CART mostly target the association between SNPs and diseases, where

the disease status is treated as an outcome variable. For the imputation purpose, we can

regress each SNP locus with missing data on the other SNP loci, the covariates and the

disease status, build the tree and predict the missing data at the locus. In order to obtain

the joint distribution of missing SNPs at different loci, we employ a Gibbs sampler which

iteratively cycles the regression and prediction by CART through loci with missing SNPs.

One advantage of CART is that it deals with missing data by surrogate splits. That is, after

choosing the best predictor and split point using the available data, a list of surrogate vari-

ables and split points are formed by comparing the performance of the alternate predictor

with the primary predictor. If a primary predictor is missing for one individual, we use the

secondary predictor if available, and so on.

In this article we develop and compare the haplotype and CART based imputation ap-

proaches in SNP association studies. In particular, we consider the EM and WEM algorithm

as two representatives of haplotype-based approaches because of their easy implementation.

We choose the case-control design as an illustrative example since it is probably the most

commonly used in association studies. By comparing the imputation accuracy, bias and

efficiency in inference, we evaluate the potential of the tree based approach as compared

to the haplotype based approaches, and assess the benefit of the weighted EM approach as

opposed to the regular EM approach. Most of all, we aim to demonstrate the benefit of a

reasonable imputation strategy over simply ignoring the missing data.
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Methods

Assume we have a case control study with i = 1, 2, . . . , n unrelated individuals. Let Di =

1 if individual i is a case and Di = 0 otherwise, and let Gi = (gi1, gi2, . . . , giK) be the

unphased SNP data on individual i at K loci of interest. Some of the gik may be missing.

Assume that in the population there are m possible haplotypes h1, h2, . . . , hm with (unknown)

population frequencies p = (p1, p2, . . . , pm). In addition to the genetic information we also

have information on r covariates Xi = (xi1, xi2, . . . , xir).

Haplotype-based imputation

Treating haplotypes Hi = (hl(i), hl′(i)) as missing data, the EM algorithm [Excoffier and

Slatkin, 1995] aims to maximize the likelihood

n∏

i=1

Pr(Gi|p1, p2, . . . , pm) =
n∏

i=1

∑

Hi∈Gi

pl(i)pl′(i),

where l(i) refers to a conformable haplotype to the observed Gi, and Gi is the set of all

possible haplotype pairs that conform to the observed Gi. If the SNP at k locus is miss-

ing for individual i, all possible genotypes at k locus are filled in to construct conformable

haplotypes. In the E step, the conditional probability of each pair of conformable haplo-

types to unphased genotypes is calculated based on the current estimates of the haplotype

frequencies,

Pr((h1, h2)|Gi) =
p̂1p̂2∑

Hi∈Gi
p̂l(i)p̂l′(i)

. (1)

Note that Hardy-Weinberg equilibrium assumes that Pr(hl(i), hl′(i)) = pl(i)pl′(i). The fre-

quency estimates are then re-estimated in the M-step. At convergence,we use the conditional

probabilities of all conformable haplotype pairs in (1) to impute the missing SNPs.

The weighted EM (WEM) approach is an extension of the EM algorithm which incor-

porates disease status, as haplotype frequencies may be different between cases and controls

[Lake et al., 2003], as well as other covariates that may affect the disease risk and haplotype
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frequencies. Given Hi and Xi we model the disease penetrance by a logistic function

Pr(Di = 1|Hi = (hl(i), hl′(i)),Xi) =
exp[α + 1(hl(i), hl′(i))γ + Xiβ]

1 + exp[α + 1(hl(i), hl′(i))γ + Xiβ]
, (2)

where 1(hl(i), hl′(i)) denotes a length m indicator vector. For simplicity, we assumes an

additive model so that the two elements of 1(hl(i), hl′(i)) equal to 1 and all other elements are

0. For a homozygous individual, the l(i)th element of 1(hl(i), hl′(i)) equals 2. Our interest is

not to use (2) to model the haplotype-disease association, but rather we use it as a vehicle

to impute the missing SNPs.

Set Θ = (γ, β,p). The complete data log-likelihood can be written as

ℓ(Θ;D,G|X) =
n∑

i=1

[ℓ(β, γ;Di|Gi,Xi) + ℓ(p;Gi|Xi)] .

Since Hi has a finite number of possible values for a given Gi, we sum this log-likelihood

over all possible haplotypes in the Expectation step. Let

Qi(Θ|Θ(s)) =
n∑

i=1

E
Hi|Di,Gi,Xi,Θ

(s) [ℓ(Θ;Di,Gi|Xi)]

=
n∑

i=1

∑

Hi∈Gi

Wi,(s) [ℓ(β, γ;Di|Hi,Xi) + ℓ(p;Hi|Xi)] ,

where Θ(s) denotes the parameter estimates in the sth iteration of the algorithm, Θ denotes

the parameter in the (s + 1)th iteration and Wi,(s) = Pr(Hi|Di,Gi,Xi,Θ
(s)) is the condi-

tional probability of a haplotype pair given the observed data and the current estimates of

parameters. Note the first part of expected log likelihood is a weighted log likelihood for a

generalized linear model, such as logistic regression in (2) if case control data. The second

part is a weighted multinomial log likelihood. Both can be readily maximized using existing

software. It is straightforward to calculate Wi,(s) using Bayes Theorem

Wi,(s) =
Pr(Di|Hi,Xi,Θ

(s))Pr(hl(i)|Xi,Θ
(s))Pr(hl′(i)|Xi,Θ

(s))
∑

Hi∈Gi
Pr(Di|Hi,Xi,Θ

(s))Pr(hl(i)|Xi,Θ
(s))Pr(hl′(i)|Xi,Θ

(s))
. (3)

The derivation assumes Hardy-Weinberg equilibrium. Here Pr(Di|Hi,Xi,Θ
(s)) is the cur-

rent estimate of (2). The frequencies of haplotypes may depend on the covariates. If not,
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Pr(hl(i)|Xi,Θ
(s)) reduces to p

(s)
l(i). We impute the missing SNPs by sampling the conformable

haplotype pairs according to (3 ) at convergence. Although we describe the WEM approach

for a case-control study with logistic regression, in principle it works for other generalized

linear models.

The implementation of the EM and WEM algorithms is an adaptation of the existing

R package HaploStats [Schaid et al., 2002; Lake et al., 2003]. We applied the haplo.em

function to perform the EM algorithm. Rather than the regular EM algorithm, this func-

tion uses an efficient algorithm which progressively inserts a batch of SNP loci, enumerates

possible haplotypes, runs EM, and trims off haplotypes with conditional probabilities below

a threshold. We set the batch size to be 3, and the minimal conditional probability to 0.001.

Starting from the haplo.em function, we develop a weighted EM algorithm similar to the

haplo.glm function in HaploStats. The minimum haplotype frequency allowed is set to 10−6.

Tree-based imputation

The tree-based approach is a general algorithm to impute the missing data, including missing

SNPs and missing covariates in SNP association studies. For each individual i, let Mi =

(Mi1, Mi2, . . . , Mip) be the vector of p variables consisting of the covariates Xi = (xi1, . . . , xir)

and the unphased SNP data Gi = (gi1, . . . , giK) which have missing entries (1 ≤ p ≤ m+K).

Let Ci be the vector of the remaining covariates for which all data are available. We assume

that the outcome Di is always observed. The joint probability distribution of the missing data

for individual i given the observed data, Pr(Mi1, Mi2, . . . , Mip|Ci,Di), is difficult to get. An

obvious problem is that the sets of missing data Mi and complete data Ci, respectively, are

different for each individual i. Instead of modeling the joint distribution, we use the Gibbs

sampler, a Markov chain Monte Carlo technique that uses conditional (low-dimensional)

distributions to draw samples from a high-dimensional distribution.

Specifically, we consider iteratively sampling from the following sequence of the full
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conditional distributions in the (n + 1)th iteration:

M
(n+1)
1 ∼ Pr(M1|M

(n)
2 , M

(n)
3 , . . . , M (n)

p ,C,D)

M
(n+1)
2 ∼ Pr(M2|M

(n+1)
1 , M

(n)
3 , . . . , M (n)

p ,C,D)

...

M (n+1)
p ∼ Pr(Mp|M

(n+1)
1 , M

(n+1)
2 , . . . , M

(n+1)
p−1 ,C,D).

where each full conditional distribution, for example Pr(M1|M
(n)
2 , M

(n)
3 , . . . , M (n)

p ,C,D), is

modeled by CART. This is easily done even though M2, . . . , Mp contain missing observations

before imputation has taken place, as CART uses surrogate splits if missing observations are

encountered in a node [Breiman et al., 1984]. For example, if M1 are actual data from a

SNP, each terminal leaf in the classification trees provide a multinomial distribution from

which we can sample. A convenient property of surrogate splits is that we do not have to

guess the initial values of the missing data in M, as a result only a very short burn-in of the

above sampler is required. Under mild regularity conditions, this sequence of conditional

variables converge to the joint distribution of missing data.

A similar idea, data augmentation [Tanner and Wong, 1997], has been exploited to

deal with missing data in a Bayesian framework. However data augmentation is only an-

alytically tractable in some simple situations, such as a multivariate normal distribution.

The advantage of applying decision trees such as CART [Breiman et al., 1984] is that it can

handle variables of any type, such as the 3-level factor (0,1,2) coding SNP genotypes in a

locus, or a continuous age variable. Though lacking a formal proof, it has been demonstrated

in simulation studies that the inference in missing data problems is fairly non-sensitive to

model misspecification as long as the distribution of the missing data given the observed

data involves the covariates that are ultimately found to be important in the model [Schafer,

1997]. It is therefore natural to investigate the performance of nonparametric regression

methods such as decision trees for imputation. This has been suggested in the literature

before [Harrell, 2001], though not for SNP association studies.
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Our tree algorithm is based on the rpart package in R [Therneau and Atkinson, 1997].

The nodes in the decision trees generated by this package are split until the improvement

of impurity measure (by default, the GINI) for the best possible split is less than 1% of

the impurity in the root node. Also, splits are usually only attempted on nodes with at

least 5% of the number of total observations. This allows for somewhat larger trees in

case-control studies with relatively few observations. Using those parameters, we grow the

trees to full size without model selection and pruning. In our simulations, this provided

some additional computational benefit as it was not necessary to carry out cross-validation,

without compromising the quality of the imputations. By default, we iterate 10 times through

the set of missing variables (“sweeps” through the data) before imputing the missing values.

However in data sets with severe missingness, more sweeps might be beneficial.

Multiple Imputation

The uncertainty of imputations is addressed by multiple imputation [Little and Rubin, 1987;

Schafer, 1997]. Multiple imputation is a Monte Carlo technique which draws multiple samples

from the probability distribution of predicted missing values. As described previously, we

draw 10 samples from the resulting joint distribution of missing data at convergence, whether

it is from EM, WEM or tree algorithm. Each imputed sample is analyzed by standard

methods, and the results are combined across 10 samples to get parameter estimates and

their standard errors. The details of multiple imputation have been documented in Little

and Rubin [1987] and Schafer [1997].

Simulations

Our simulation studies involved drawing case-control samples from a population, randomly

masking a proportion of SNPs as missing, and imputing them by the methods under investi-

gation. We adopted an eight-haplotype distribution based on four SNPs in the progesterone

receptor (PGR) gene [Kraft et al., 2005]. Previously, De Vivo et al. [2002] found that a
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G/A polymorphism in the PGR gene may be associated with an increased risk of endome-

trial cancer. Kraft et al. [2005] genotyped four haplotype tagging SNPs (htSNPs) in case

control data in order to compare several methods currently used in haplotype-disease asso-

ciation studies. Table I shows the distribution of eight haplotypes estimated in Kraft et al.

[2005]. Based on these frequencies and assuming Hardy-Weinberg equilibrium, we created a

population of 100,000 individuals with diploid genotypes.

Table I. PGR haplotype frequencies (Kraft et al. 2005) used in the simulation study.
Haplotype 1000 is associated with the disease outcome.

Haplotype Frequency

0000 0.3265
0001 0.1327
0100 0.0306
0101 0.0408
1000 0.1613
1010 0.0408
1100 0.0204
1110 0.2449

We added a disease-association signal to haplotype 1000 through a logistic penetrance

function

logit(Pr(D = 1|H)) = −3 + β · (number of copies of h1000), (4)

with β = 0, 1, or 2. D is the dichotomous disease status, and H refers to the haplotype pair

for an individual. We randomly sampled 100 cases and 300 controls from the population.

Either 10% or 20% of the SNPs were made missing completely at random. These missing

SNPs were imputed ten times using the EM, WEM, and tree approach. To construct a

baseline for the imputation comparison, we used the observed marginal SNP genotype dis-

tribution to impute the missing ones. We call this method the “naive” approach, as it uses no

information of other SNPs or the response. We calculated the imputation error probability

for each SNP using a 0/1 loss function. That is, we coded each genotype as 0 (homozygous

wide type), 1 (heterozygotes), and 2 (homozygous mutant) and any difference in imputed

genotype was counted as an error. We explored a variety of other error functions, reaching
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similar conclusions about the various approaches.

While we predisposed disease risk on the haplotype level, we analyzed the imputed data

using SNP based logistic regression models. We first considered marginal SNP association

with disease by fitting a logistic regression model of the form

logit(Pr(D|SNPs)) = α0 + α1x, (5)

where x denotes the number of variant alleles (0,1,2) for a particular SNP. For simplicity we

treated x as a continuous variable so that having two copies doubles the effect of having one

copy. We also investigated the effect of imputation on interactions using the model

logit(Pr(D|SNPs)) = γ0 + γ1x1 + γ2x2 + γ3x1x2. (6)

Similarly x1 and x2 are the coding variables for SNP 1 and SNP 2, respectively. γ3 is

the interaction parameter of interest. We compared the parameter estimates using various

approaches of imputing SNP data with the true values, that can be computed by fitting (5)

and (6) to the whole population.

Data application

We used a recently published case-control dataset on developmental dyslexia (DD) to com-

pare various imputation approaches. Cope et al. [2005] performed a high-density linkage

disequilibrium screen in a 575-kb region of chromosome 6p22.2 with both case-control and

family data. We used the case-control data for imputation, which includes 248 cases and 273

controls. We only used the six SNPs in the KIAA0319 gene, since there is strong evidence

that it is a susceptibility gene, and pair-wise LD analysis suggests that these 6 SNPs are

located in a block so that they are good candidates for a haplotype reconstruction. Note

these 6 SNPs are all htSNPs and inter-SNPs correlations are weak according to Table 2 in

Cope et al. [2005]. Table II shows the number of missing values for each of these SNPs,

separately for cases and controls. 25 probands from the later family study were also included

as cases, who do not have genotypes for SNP rs6911855 and rs6939068. This is because these

https://biostats.bepress.com/uwbiostat/paper278



11

two SNPs are not significant in the initial case-control screen, hence not genotyped in the

later family study. Cope et al. [2005] ignored missing data and analyzed the data in a SNP

by SNP fashion.

Table II. Percentage of missing SNPs in the case-control study in Cope et al. (2005).

Case (n = 248) Control (n = 273)
SNP # % # %

rs4504469 8 3.2 9 3.3
rs6911855 30 12.1 8 2.9
rs6939068 48 19.4 25 9.2
rs2179515 16 6.5 16 5.9
rs6935076 17 6.9 18 6.6
rs2038137 19 7.8 16 5.9
Total 138 9.3 92 5.6

Note - rs6939068 and rs6939068 have extra missing values in cases since 25 probands from the later family study are included.
By design these 25 cases do not have the genotypes for rs6939068 and rs6939068.

We reanalyzed the marginal SNP association in DD data via the multiple imputation

approaches under investigation. The SNP-disease association was modeled as in (5). To

evaluate the imputation errors, we randomly generated extra missing values and computed

the probability of false imputation for the additional missing data. Parameter estimates for

model (5) and (6) were computed with the extra missing data imputed, but the original

missing data from Table II were left unimputed. The “true values” of parameter estimates

are therefore computed from the original data with missing values. We compared the bias

and sampling variance as in the simulation study.

Results

For this relatively simple LD block with 4 SNPs in the simulation study, both the EM

and WEM approach yield better predictions of the missing SNPs than the tree approach

(Table III), while all three approaches show a marked improvement over the naive approach.

When there is no association between the SNPs and the outcome (β = 0) the EM and

WEM approaches performed equally well and the tree approach makes roughly 2–3% more
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errors. However, when there is a disease risk associated with haplotype 1000 the WEM

approach yields more accurate imputations than the EM approach. As β increases to 2,

the advantage of WEM for SNP1 imputation becomes substantial: WEM produces almost

5–6% less errors than EM. This was expected since the case-control status influences the

estimation of haplotype frequencies. When the association is absent (β = 0) or small (β =

1) the tree approach performs comparably to the EM and WEM approach. Given that

the tree algorithm treats SNPs as 0/1/2 categorical variables, thus completely ignores the

underlying haplotype structure, such performance is impressive. When the association is

strong (β = 2), the tree approach even outperforms EM for SNP1, presumably because the

strength of the association now overcomes the incorrect model. A graphical representation

of Table III as well as the following tables can be found as supplementary materials at

http://biostat.jhsph.edu/∼iruczins/supplements/05.comparison.

Table III. Mean imputation errors in the simulated data of four SNPs on the PGR
gene for four imputation approaches.

10% missing data 20% missing data
Approach SNP1 SNP2 SNP3 SNP4 SNP1 SNP2 SNP3 SNP4

β = 0
Naivea 0.625 0.596 0.568 0.449 0.625 0.595 0.567 0.449
EM 0.412 0.390 0.243 0.379 0.427 0.407 0.271 0.385
WEM 0.412 0.390 0.243 0.379 0.427 0.406 0.271 0.385
Tree 0.440 0.397 0.260 0.399 0.461 0.411 0.292 0.415

β = 1
Naive 0.627 0.589 0.560 0.441 0.627 0.589 0.560 0.441
EM 0.433 0.383 0.245 0.369 0.448 0.399 0.273 0.375
WEM 0.415 0.381 0.241 0.369 0.431 0.396 0.269 0.375
Tree 0.449 0.389 0.263 0.389 0.471 0.407 0.296 0.403

β = 2
Naive 0.628 0.587 0.557 0.438 0.627 0.588 0.557 0.438
EM 0.443 0.380 0.246 0.365 0.457 0.397 0.273 0.371
WEM 0.386 0.375 0.233 0.363 0.402 0.391 0.257 0.370
Tree 0.422 0.388 0.262 0.385 0.443 0.398 0.292 0.399

Note - Each number is the average of imputation error probabilities from 5000 simulations.
a this method imputes the missing by the marginal distribution of available SNP genotypes.

In Table IV we compare the effects of the different imputation approaches on estimating

the log-odds ratio for SNP1, as modeled by α1 in (5). In this table, the lines “True data” refer
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to the case-control data before SNPs were made missing, as these are the best imputations

one can obtain. In all scenarios, WEM has the smallest bias, whereas EM has the smallest

sample variance. When there is no SNP disease association, all three approaches perform

comparably in square root of mean square error (RMSE). When haplotype 1000 is associated

with the disease outcome, the WEM approach has less bias than the tree approach, while

the EM approach has more bias. As a result, the WEM approach has the smallest RMSE

among all methods when there is a strong signal. Note that the WEM approach consistently

outperforms the complete-case approach, suggesting that there is something to be gained

by imputing SNPs. The tree approach has a relatively large variance, but it has less bias

than the EM approach, and it outperforms EM in terms of RMSE when β = 2. The large

variance reflects the inherent variability of the tree-based regression, as trees are known to

be unstable predictors [Hastie et al., 2002].

We further investigated the effect of imputation on the estimation of interaction pa-

rameters. For SNP interactions, the complete-case analysis hurts more as 10% missing values

in each SNP may result in up to 20% missing in either one of two SNPs. This is confirmed by

the results in Table V. All imputation approaches substantially reduce the sampling variance

and RMSE of γ̂3, in comparison to a complete-case analysis. Because of the severity of miss-

ingness and the higher variability in estimating interactions, sampling variance dominates

bias in RMSE calculation so that the EM approach generates the smallest RMSE. Inter-

estingly, the EM and the tree approach produce a smaller sampling variance and RMSE

than the true data. A similar pattern is present when we compare RMSE for the SNP1

main effect at β = 0 in Table IV. Further inspection of the simulation results suggests that

the imputation of missing data always shrinks the parameter estimates slightly toward null,

since no imputation will ever achieve 100% accuracy. This shrinkage effect may lower the

sampling variance, and thus generate a smaller RMSE than using the true data.

Cope et al. [2005] estimated the odds ratios for the allele effect for each SNP ignoring

missing data. They concluded that four of six SNPs in KIAA0319 are significantly associated

with DD at a significance level of 0.05. We carried out a multiple imputation analysis to see
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Table IV. The effect of different imputation approaches on the marginal association
parameter α1 for SNP1.

10% missing data 20% missing data
Approach Bias SD(α̂1 ) RMSE Bias SD(α̂1 ) RMSE

β=0
True data −0.011 0.168 0.168 −0.011 0.168 0.168
Complete-case −0.013 0.176 0.177 −0.011 0.187 0.187
EM imputed data −0.014 0.163 0.164 −0.016 0.160 0.160
WEM imputed data −0.011 0.173 0.173 −0.009 0.178 0.178
Tree imputed data −0.013 0.166 0.166 −0.014 0.163 0.164

β=1
True data 0.006 0.163 0.163 0.006 0.163 0.163
Complete-case 0.006 0.173 0.173 0.005 0.182 0.181
EM imputed data −0.051 0.162 0.169 −0.107 0.155 0.188
WEM imputed data −0.001 0.174 0.174 −0.005 0.181 0.181
Tree imputed data −0.020 0.173 0.174 −0.049 0.183 0.189

β=2
True data 0.012 0.181 0.181 0.012 0.181 0.181
Complete-case 0.011 0.190 0.190 0.012 0.204 0.204
EM imputed data −0.104 0.169 0.198 −0.211 0.162 0.266
WEM imputed data 0.003 0.184 0.184 −0.003 0.193 0.193
Tree imputed data 0.005 0.190 0.190 −0.011 0.211 0.211

Note - For each combination of the missing proportion and the imputation approach, the logistic model logit(Pr(D|SNPs)) =
α0 + α1x was fitted; x is the continuous coding variables for SNP1, valued at 0, 1,and 2. The true value of the parameter is
obtained by fitting the model to the population. Bias is the mean difference between estimated parameters and the true value.
SD(α̂1) is the sample standard deviation of the estimated parameters. RMSE is the square root of the mean square error.

whether imputation of missing data changes these conclusions. Six individuals with all SNPs

missing were left out of this analysis. We verified that the SNP effect is indeed additive,

and applied the univariate logistic regression as in (5) to each SNP. Table VI compares the

log-odds ratio estimates and significant levels. We explain the results by dividing six SNPs

into two groups. Group 1 contains rs4504469, rs2179515, rs6935076 and rs2038137, each of

which has less missing values roughly balanced between cases and controls (Table II). Group

2 contains rs6939068 and rs6911855. Both SNPs have more missing values in total, and more

missing values in cases than controls (Table II). For SNPs in group 1 the imputation has little

effect on the standard errors. The effect of the sample size increase after imputation seems to

be canceled by the extra variability raised by multiple imputation. This is perhaps because

the rate of missing values is small for these loci and LD is weak (as suggested by Table 2
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Table V. The effect of different imputation approaches on the interaction parameter
γ3 for SNP1 and SNP2.

10% missing data 20% missing data
Approach Bias SD(γ̂3 ) RMSE Bias SD(γ̂3 ) RMSE

β=0
True dataa −0.022 0.255 0.255 −0.022 0.255 0.255
Complete-case −0.029 0.281 0.282 −0.022 0.319 0.320
EM imputed data −0.022 0.242 0.243 −0.017 0.234 0.234
WEM imputed data −0.026 0.262 0.263 −0.024 0.271 0.272
Tree imputed data −0.020 0.238 0.239 −0.015 0.231 0.231

β=1
True data 0.010 0.303 0.303 0.010 0.303 0.303
Complete-case 0.010 0.332 0.332 0.000 0.366 0.366
EM imputed data 0.051 0.282 0.287 0.097 0.249 0.267
WEM imputed data 0.036 0.306 0.308 0.058 0.310 0.315
Tree imputed data 0.040 0.291 0.294 0.069 0.268 0.277

β=2
True data −0.041 0.368 0.370 −0.041 0.368 0.370
Complete-case −0.049 0.425 0.427 −0.049 0.467 0.470
EM imputed data 0.060 0.333 0.338 0.145 0.281 0.316
WEM imputed data 0.002 0.394 0.394 0.054 0.400 0.403
Tree imputed data 0.018 0.366 0.366 0.084 0.327 0.337

Note - For each combination of the missing proportion and the imputation approach, the logistic model logit(Pr(D|SNPs)) =
γ0 + γ1x1 + γ2x2 + γ3x1x2 was fitted; x1 and x2 are the continuous coding variables for SNP1 and SNP2, valued at 0, 1,and
2. The true value of the parameter is obtained by fitting the model to the population. Bias is the mean difference between
estimated γ3 and the true value. SD(γ̂3) is the sample standard deviation of the estimated γ3. RMSE is the square root of the
mean square error.
a original data without any missing values.

in Cope et al. [2005]). In comparison to the complete-case analysis, the point estimates of

log-OR using the various imputation approaches are shrunken toward null, especially for the

EM and tree approach. For SNPs in group 2, however, standard errors become smaller and

point estimates are enlarged by both the EM and WEM imputations. Hence the resulting

p-values are smaller than the complete-case analysis, especially for SNP rs6911855. The

difference of group 1 and 2 is driven by the 25 proband-cases, who have two SNPs in group 2

missing. The WEM approach seems to capture the missing pattern depending on the disease

status, therefore yield more significant results than the other approaches.

To compare the accuracy of three imputation approaches, we again randomly removed

an extra 5%, 10%, and 15% of the SNPs from the dataset of Cope et al. [2005]. Table
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VII shows the comparison of imputation error probabilities for the additional missing SNPs

stratified by SNP, imputation approach, and missing percentage. Similar to Table III, all

three approaches work much better than the naive approach. The WEM approach performs

consistently better than the EM and tree approaches, although the improvement of WEM

over EM is for most cases less than 1%. This may be explained by the weak LD among the 6

SNPs, since haplotype ambiguity is so substantial that knowing case-control status does not

gain much in imputation. On the other hand, the accuracy of the tree approach is only 1-2%

lower than two haplotype-based approaches, suggesting that in practice the tree approach

may be sufficiently accurate to characterize the inter-SNP correlation in a modest LD block.

Table VIII shows the biases, sample standard deviations and RMSE for two SNPs

found to be most significantly associated with DD in Cope et al. [2005], using different

imputation approaches. These statistics are conditional on the original data from Cope et

al. [2005]. That is, the “true values” of the parameters are obtained from the original data

with the original missing values and no imputation. Likewise, the “Complete-case” here

refers to datasets with both the original missing SNPs and extra missing data removed,

again serving as the baseline for comparison. The first six columns compare the estimates

of SNP marginal effects. It appears that all three imputation approaches improve the SD

and RMSE over the complete-case analysis. Among them, the WEM approach is effectively

unbiased and it has the smallest RMSE under almost all conditions. Interestingly, the tree

approach achieves the second best performance in bias reduction and RMSE, superior to

the EM approach in most situations. This seems contradictory to the comparison in Table

VII, where the tree approach makes more imputation errors than the EM approach. Since

we count 1 error whenever the imputed SNP genotype is different from the true genotype,

the impact of different genotype errors on association parameter estimates may be different.

For example, imputing a missing SNP with true genotype “2” to be “1” has less effect than

imputing it to be “0”. It is possible that the impact of imputation errors on estimating

association parameters is smaller in the tree approach than that in the EM approach, since

the former use case-control status in the imputation.
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Cope et al. [2005] found a significant interaction between rs4504469 and rs6935076. In

the last three columns in Table VIII, we compared the effects of imputation on the interaction

parameter in the logistic regression model (6). Similarly to what we found in Table V, all

imputation approaches show a marked improvement on SD and RMSE compared to no

imputation at all (complete-case). EM has the smallest RMSE owing to its low variability,

even though WEM has the smallest bias.

Discussion

Despite the fact that missing SNPs are quite common in genetic association studies, the

impact of imputation on SNP association inference has not been adequately studied. In

this article, we developed and compared the haplotype-based and the tree-based imputation

approaches in case-control data. Our results suggest that in general there is benefit from

imputation over the commonly used complete-case analysis. As we expected, the benefit of

imputation is greater in estimating interaction parameters than that in estimating marginal

parameters (Tables V and VIII). Haplotype-based approaches show slightly better imputa-

tion accuracy and better inference properties than the nonparametric tree based approach,

when LD blocks are present. The performance of the tree approach is rather impressive given

the fact that it ignores the underlying haplotype structure. The weighted EM approach, not

surprisingly, is superior to the EM approach if there is a SNP-disease association.

Imputing missing SNPs usually helps association inference in increasing the efficiency

without adding noticeable bias, yet at the price of some extra variability from the uncertainty

in the imputation. With LD structure existing between SNPs, the added sample size usually

outweighs the imputation uncertainty and the standard error decreases. This is seen in our

simulation study (Tables IV and V) and the data application (Table VIII). The advantage

of imputation can be substantial when a regression model with multiple SNPs is employed

(Tables V and VIII). In some cases where missingness rate is low and LD is weak, the

imputation may not help to gain efficiency for marginal parameters (Table VI). On the

Hosted by The Berkeley Electronic Press



18

other hand, imputation of the missing SNPs could also help to correct bias. In our data

application, the fractions of missing values for SNP rs6911855 and SNP rs6939068 differ

between cases and controls. The parameter estimates and association inferences for these

two SNPs were changed greatly by multiple imputation using the WEM approach (Table VI),

suggesting complete-case analysis may cause bias in this scenario. Our overall assessment is

that performing multiple imputation up-front yields better inferences than the complete-case

analysis in SNP association studies, particularly when regression models with multiple SNPs

are involved.

Haplotype analysis is becoming increasingly popular in genetic association studies,

whereas tree-based approaches start to draw attention in studies with a large number of

SNPs. To our knowledge, this is the first paper directly comparing haplotype and tree

based approaches. The imputation accuracy serves as an indicator as how well the inter-

SNPs correlation structure is captured by nonparametric tree regression. Evidently, the tree

approach produces slightly more imputation errors than the haplotype approaches and it

is more variable by nature. However its advantages are apparent: it is computationally

efficient, it easily accommodates disease status, extra covariates, and a large number of

SNPs. In some situations with weak LD blocks present (marginal effects in Table VIII),

the tree approach even outperforms the EM approach in both bias reduction and MSE. In

many genetic epidemiological studies subjects complete a questionnaire, which may contain

dozens of relevant environmental and demographic variables. The tree algorithm can handle

an arbitrary number of these variables, as the splits in the decision trees are completely

data driven. Computing time so far has never been an issue in our analyses (typical data

we see have up to a few thousand observations and a few hundred variables). Considering

the increasing number of genome-wide SNP association studies carried out today, we believe

that the tree approach provides a competitive alternative for the imputation of missing SNP

values.

For the benefit of imputation, the information of disease status is secondary to the

correlation between adjacent SNPs in the data we studied. That is perhaps why the im-
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provement of the WEM approach over the EM approach is much smaller compared to that

of the EM approach over naive imputation. In virtually every situation we examined, the

WEM approach produces minimal bias since it uses the critical information of case-control

status. On the other hand, the WEM approach incurs more variability than the EM ap-

proach since it involves more parameters in the modeling. That said, we recognize that

sometimes one may be willing to take the unbiased approach even it has a larger variance.

Since we generally do not know whether there is association between haplotype and disease

beforehand, using the WEM approach to impute the missing data seems a “safe” choice.

There are other algorithms to reconstruct haplotypes, and therefore impute the missing

SNPs. For example, PHASE employs a MCMC approach to infer the haplotypes from un-

phased genotypes, using priors based on coalescent theory and taking account of the decay of

linkage disequilibrium [Stephens et al., 2001; Stephens and Scheet 2003]. However, PHASE,

as well as other Baysian approaches, is designed for inferring haplotype in a population and

thus does not incorporate the case-control status to estimate the haplotype frequencies. This

may introduce bias to association inference after imputing the missing SNPs, similarly to the

EM algorithm. We tried PHASE to impute the missing SNPS in the developmental dyslexia

data. The imputation accuracy was about the same as the EM algorithm because of the

weak LD structure between the 6 tagSNPs, yet the computing time was significantly longer

than the other three approaches. For the convenience of computation and implementation

we did not include PHASE in our comparisons.
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Table VI. A comparison of the log-odds ratio estimates by different imputation methods for the developmental
dyslexia data.

Approach Complete-case EM imputed data WEM imputed data Tree imputed data
SNP log-OR SE P-val log-OR SE P-val log-OR SE P-val log-OR SE P-val

rs4504469 −0.417 0.018 0.002 −0.414 0.018 0.002 −0.426 0.018 0.001 −0.416 0.018 0.002
rs6911855 0.658 0.138 0.076 0.684 0.135 0.063 0.720 0.138 0.052 0.614 0.138 0.098
rs6939068 0.637 0.123 0.070 0.648 0.111 0.052 0.700 0.114 0.038 0.584 0.119 0.090
rs2179515 −0.362 0.019 0.008 −0.357 0.018 0.008 −0.357 0.019 0.009 −0.351 0.019 0.010
rs6935076 0.396 0.019 0.005 0.378 0.019 0.006 0.380 0.019 0.006 0.356 0.020 0.012
rs2038137 −0.439 0.019 0.001 −0.411 0.018 0.002 −0.422 0.018 0.002 −0.412 0.019 0.003

Note - the estimates are based on 10 imputations.

Table VII. The comparison of imputation error probabilities for the developmental dyslexia data by four

methods.

Approach rs4504469 rs6911855 rs6939068 rs2179515 rs6935076 rs2038137 Average

5% missing Naive 0.609 0.117 0.133 0.595 0.596 0.600 0.447
EM 0.370 0.034 0.033 0.089 0.446 0.092 0.181
WEM 0.367 0.032 0.032 0.085 0.442 0.091 0.178
Tree 0.379 0.038 0.036 0.106 0.456 0.114 0.192

10% missing Naive 0.609 0.114 0.137 0.594 0.597 0.600 0.447
EM 0.376 0.039 0.039 0.098 0.447 0.104 0.187
WEM 0.373 0.037 0.039 0.095 0.442 0.103 0.185
Tree 0.388 0.041 0.041 0.127 0.462 0.135 0.202

15% missing Naive 0.610 0.114 0.136 0.594 0.595 0.600 0.447
EM 0.380 0.042 0.046 0.110 0.451 0.115 0.194
WEM 0.377 0.042 0.045 0.107 0.446 0.114 0.191
Tree 0.396 0.044 0.047 0.147 0.466 0.151 0.212

Note - the numbers are the averages of imputation error probabilities from 200 simulations.
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Table VIII. The comparisons of the marginal log-odds ratio estimates for SNPs rs4504469 , rs6935076 and their
interactions.

rs4504469
a

rs6935076
a interactionb

Approach Bias SD(α̂1) RMSE Bias SD(α̂1) RMSE Bias SD(γ̂3) RMSE

5% missing
Complete-case 0.0024 0.0291 0.0291 −0.0021 0.0306 0.0306 −0.0010 0.0701 0.0699
EM imputed data 0.0099 0.0214 0.0236 −0.0109 0.0245 0.0267 −0.0137 0.0536 0.0552
WEM imputed data 0.0043 0.0220 0.0224 −0.0010 0.0256 0.0255 −0.0012 0.0570 0.0568
Tree imputed data 0.0095 0.0213 0.0233 −0.0067 0.0257 0.0265 −0.0215 0.0547 0.0587

10% missing
Complete-case 0.0034 0.0438 0.0438 −0.0035 0.0479 0.0479 −0.0073 0.1047 0.1047
EM imputed data 0.0197 0.0303 0.0360 −0.0220 0.0340 0.0404 −0.0302 0.0713 0.0772
WEM imputed data 0.0089 0.0336 0.0347 −0.0018 0.0374 0.0373 −0.0049 0.0802 0.0802
Tree imputed data 0.0179 0.0305 0.0353 −0.0148 0.0348 0.0378 −0.0467 0.0787 0.0914

15% missing
Complete-case 0.0011 0.0557 0.0555 −0.0001 0.0623 0.0621 −0.0069 0.1299 0.1298
EM imputed data 0.0271 0.0356 0.0447 −0.0321 0.0434 0.0539 −0.0412 0.0819 0.0915
WEM imputed data 0.0085 0.0421 0.0429 0.0020 0.0518 0.0517 −0.0063 0.0925 0.0925
Tree imputed data 0.0258 0.0368 0.0448 −0.0187 0.0468 0.0503 −0.0684 0.0869 0.1104

a Marginal effect: logistic model logit(Pr(D|SNPs)) = α0 + α1x was fitted; x is the continuous coding variables for the targeted SNP. The true value of the
parameter is obtained by fitting the model to the original developmental dyslexia data; Bias, SD, and RMSE are computed from 200 iterations.

b Interaction: logistic model logit(Pr(D|SNPs)) = γ0 + γ1x1 + γ2x2 + γ3x1x2 was fitted. x1 and x2 are the 0/1/2 continuous coding variables for rs4504469 and
rs6935076.
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