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Abstract

Current false discovery rate (FDR) methods mostly ignore the correlation structure
in the data. The objective of this paper is to quantify the effect of correlation in
FDR analysis. Specifically, we derive practical approximations for the mean, variance,
distribution, and quantiles of the FDR estimator for arbitrarily correlated data. This
is achieved using a negative binomial model for the number of false discoveries, where
the parameters are found empirically from the data. We show that correlation increases
the bias and variance substantially with respect to the independent case for practical
FDR levels, and that in some cases, such as an exchangeable correlation structure, the
FDR estimator fails to be consistent as the number of tests gets large.

1 Introduction

Large-scale multiple testing is a common statistical problem in the analysis of high-dimensional
data, particularly in genomics (Dudoit et al., 2003; Efron, 2004; Roeder et al., 2006), pro-
teomics (Tibshirani et al., 2005) and medical imaging (Genovese et al., 2002; Worsley et al.,
2004; Schwartzman et al., 2009). An increasingly popular global measure of error in these
applications is the false discovery rate (FDR) (Benjamini and Hochberg, 1995), defined as
the expected proportion of false discoveries among the total number of discoveries. The
majority of research on FDR assumes conveniently that the test statistics corresponding
to each hypothesis are independent (Genovese and Wasserman, 2004; Storey et al., 2004;
Efron, 2007b; Sun and Cai, 2007), and little is known about how to take the correlation
into account. As a result, FDR methods are often used on data ignoring the correlation
between the test statistics.

However, high-dimensional data are often highly correlated, e.g. gene expression lev-
els in microarray experiments (Qiu et al., 2005; Owen, 2005; Klebanov et al., 2006). As
a typical example, a look ahead at Figure 5b shows the distribution of sample pairwise
correlations between genes obtained from the diabetes study of Mootha et al. (2003). The
raw pairwise correlations range from -0.9 to 0.96. Other applications exhibit a correlation
structure that can be modeled as a spatial random field, as in brain imaging (Genovese
et al., 2002; Worsley et al., 2004), or as a time series, as in proteomic mass spectrometry
(Harezlak et al., 2008). As a result of correlation, some FDR controlling methods that
assume independence have been shown to fail (Qiu et al., 2005), while the variance of the
number of false discoveries has been shown to be greatly inflated (Owen, 2005). While there
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exist procedures that control FDR under arbitrary dependence (Yekutieli and Benjamini,
1999; Benjamini and Yekutieli, 2001), they have substantially less power than procedures
that assume independence (Farcomeni, 2008) and the latter are often preferred. Because of
the current widespread use of FDR, it is important to understand the effect of correlation
in FDR analysis as it is typically used in practice, both for correct inference using current
methods and as a guide for developing new FDR methods for correlated data.

The goal of this paper is to quantify the effect of correlation in FDR analysis. As a
benchmark, we use the FDR estimator of Genovese and Wasserman (2004) and Storey et al.
(2004). This estimator is appealing because it provides estimates of FDR at all thresholds
simultaneously. Furthermore, thresholding of this estimator is equivalent to the original
FDR algorithm (Benjamini and Hochberg, 1995) under independence, and under specific
forms of dependence such as positive regression dependence (Benjamini and Yekutieli, 2001)
and weak dependence such as dependence in finite blocks (Storey et al., 2004). However,
the generality of the estimator makes it conservative under correlation and it can perform
poorly in genomic data (Qiu and Yakovlev, 2006). We show that correlation increases both
the bias and variance of the estimator substantially compared to the independent case, but
less so for small FDR levels. From a theoretical point of view, we show that in some cases
such as an exchangeable correlation structure, the FDR estimator fails to be consistent as
the number of tests gets large.

Other related approaches that incorporate correlation in FDR analysis include the use
of an empirical null (Efron, 2007a; Schwartzman, 2008), and procedures adapted to clusters
of highly correlated genes (Dahl and Newton, 2007; Tibshirani and Wasserman, 2006) and
clusters of locally correlated image pixels (Pacifico et al., 2004; Heller et al., 2007). Owen
(2005) quantified the variance of the number of discoveries given an arbitrary correlation
structure, but did not provide results about the FDR. His analysis was also restricted to
the complete null hypothesis and to a particular test statistic, the correlation coefficient
between the gene expression and a covariate.

Our contributions are as follows. First, we provide approximations for the mean, vari-
ance, distribution, and quantiles of the FDR estimator given an arbitrary correlation struc-
ture. This is achieved by modeling the number of discoveries with a negative binomial (NB)
distribution whose parameters are estimated from the data based on the empirical distribu-
tion of the pairwise correlations. Our results are derived for common test statistics whose
marginal distribution is either normal or y2. Second, we identify a necessary condition
for consistency of the FDR estimator as the number of tests increases and show that it is
violated in situations such as exchangeable correlation.

The structure of the paper is as follows. We first study the mean-variance structure
of the number of discoveries and present the asymptotic results. Next we show how to
quantify the overdispersion in the number of discoveries for normal and x? statistics based
on the empirical distribution of the pairwise correlations. Finally, based on the above mean-
variance structure, we propose the NB model for the number of discoveries and derive the
distributional properties of the FDR estimator based on this model. Results are evaluated
by simulations and illustrated with a microarray data example.
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2 Theory

2.1 The false discovery rate estimator

Let Hy,...,H,, be m null hypotheses with associated test statistics 11,...,T,,. The test
statistics are assumed to have marginal distributions

Fy, H;ist
- { |
s ; is false

where Fy is a common distribution under the null hypothesis and Fi, Fs,... are spe-
cific alternative distributions for each test. The test statistics may be dependent with
corr(T;,T;) = pij. In particular, if the test statistics are z-scores, then this is the same as
the correlation between the original observations.

The fraction pg = mg/m of tests where the null is true is called the null proportion.
The complete null model is the one where pg = 1 and T} ~ Fp for all j. Without loss of
generality, we focus on one-sided tests, where for each hypothesis H; and a threshold u, the
decision rule is Dj(u) = 1(Tj > u). Two-sided tests may be incorporated, for example, by
defining T; = Tf or T; = |Tj|, where Tj is a two-sided test statistic.

Let Rpy(u) = >30L; Dj(u) and Vip(u) = >°7, Dj(u)1(Hj is true) be the number of
rejected null hypotheses or discoveries, and the number of false positives, respectively. The
FDR is the expected proportion of false positives among the tests where the null hypothesis
is rejected, i.e. W

Vi (u

FDR=E [W] (2)
where the expectations are computed under the true model (1) (Benjamini and Hochberg,
1995). When m is large, the FDR is empirically estimated by (Genovese and Wasserman,
2004; Storey et al., 2004)

——— poma(u)

FDR;;, (u) = Bon(@) v 1 (3)
where pg is an estimate of the null proportion pg, and a(u) is the marginal type-I-error
level a(u) = E[Dj(u)] = P[Tj > ul], computed under the assumption that H; is true. A
heuristic argument for this estimator is that the expectation of the false discovery proportion
numerator, E[V,,(u)], is equal to poma(u) under the true model (1). There are several ways
to estimate the null proportion py (Storey et al., 2004; Efron, 2007b; Jin and Cai, 2007). In
applications pg is often close to 1 and setting pg = 1 biases the estimate only slightly and
in a conservative fashion (Efron, 2004). In this article we study the effect that correlation
has on the FDR estimator (3) via the number of discoveries R, (u).

2.2 The number of discoveries

As a stepping stone towards studying the FDR estimator (3), we first study the number of
rejected null hypotheses or discoveries R,,(u). Under the complete null model, and if the
tests are independent, R,,(u) is binomial with number of trials m and success probability
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a(u). In general, under model (1) and allowing dependence, we have that

B[R ()] = 3 EIDiw)] = 3 6i(u)
o m . mom (4)
var Ry ()] = D2 cov[Di(u), Dy(u)] = 373" Wis(u)
=1 j=1 =1 j=1

where
ﬁl(u) = PZ(TZ > ’LL)

U,i(u) = P(T; > u,Tj > u) — P(T; > u)P(T; > u)
The quantity (;(u) is the per-test power. For those tests where the null hypothesis is true,

this is equal to the marginal type-I-error level a(u). Summing over the diagonals in (4)
reveals the mean-variance structure

B[R (u)] = mB(u)
var[R,(u)] = m [B(u) - @(u)} +m(m — 1)U, (u),

(5)

(6)
where

B = =3, P =3 Tl = s S ) (7)
i=1 =1

1<j

The quantities 3(u) are 32(u) are empirical moments of the power, while ¥,,(u) is the
average covariance of the decisions D;(u) and Dj(u) for i # j, a function of the pairwise
correlations {p;; = corr(73,T})}.

We observe that the dependence between the test statistics does not affect the mean of
R, (u) but does affect its variance. It does so by adding the overdispersion term m(m —
1)¥,,(u) to the independent-case variance m[B(u) — 32(u)]. The special case of (6) under
the complete null is an unconditional version of the conditional variance in expression (8)
of Owen (2005). Similar expressions have appeared before in estimation problems with
correlated binary data (Crowder, 1985; Prentice, 1986).

Another observation from (5) is that W;;(u) vanishes asymptotically as u — oo, so the
effect of the correlation becomes negligible for very high thresholds. We will see later in
Section 2.4 that the rate of decay is in fact quadratic exponential times a polynomial.

Example (Exchangeable correlation). Suppose the test statistics 7; have an exchangeable
correlation structure so that p;; = p > 0 is a constant for all ¢ # j. Under the complete
null, such test statistics may be generated as T; = \/pZ + /1 — pe;, where Z,e1,...,ep,
are i.i.d. with mean zero. In this case, for any fixed threshold w, ¥;;j(u) = ¥(u) > 0
is a constant for all i # j and U,,(u) = ¥(u). The mean and variance of R,,(u) can be
computed explicitly using (6). For example, if the tests are one-sided and the tests statistics
are marginally N(0,1) (obtained when Z,¢e1,...,&,, are i.i.d. N(0,1)) then the mean and
variance of R,,(u) are given by

(®)

4
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where ®(u) is the standard normal survival function and ®4(u, u; p) is the bivariate standard
normal survival function with marginals N (0, 1) and correlation p. As expected, the variance
increases with p.

2.3 Asymptotic inconsistency of the FDR estimator

The overdispersion of the number of discoveries R,,(u) has implications for the behavior of
the FDR estimator (3). We consider the asymptotic case m — oo in this section and treat
the finite m case in Sections 2.4 and 2.5.

Asymptotically as m — oo, a sufficient condition for consistency of the estimator (3)
is that the test statistics are independent or weakly dependent, e.g. dependent in finite
blocks (Storey et al., 2004). On the other hand, taking m in (3) to the denominator, we see
that a necessary condition for consistency is that the fraction of discoveries R,,(u)/m has
asymptotically vanishing variance. By (6), the variance of Ry, (u)/m is

Var[Rm(u)] _ Bw) — () n (1 B %)Em(u) ()

m m

and is asymptotically zero if and only if the overdispersion W, is asymptotically zero,
provided that 8 and (32 grow slower than linearly with m.

Example (Exchangeable correlation, continued). Suppose the test statistics 7; have an
exchangeable correlation structure with pairwise correlation p > 0. Then, for any fixed
threshold u, W;;(u) = ¥(u) = Pg(u,u;p) — ®*(u) > 0 is the same for all i,5. By (9),
var[Ry, (u)/m] — ¥(u) > 0 and the FDR estimator (3) is inconsistent. The case p < 0
is asymptotically moot because positive definiteness of the covariance of the T;’s requires
p > —1/(m —1), so p cannot be negative in the limit m — oo.

The following result characterizes covariance structures that may be called asymptoti-
cally exchangeable.

Theorem 1. Assume [B(u) — B2(u)]/m — 0 as m — co. Fix an ordering of the test statis-
tics Th, ..., T, and assume the autocovariance sequence ;i1 p(u) = Vi i(u) in (9) has a
limit Yoo (u) > 0 as k — oo for every i. Then, as m — oo, var[Ry,(u)/m] — W (u) > 0.

Example (Stationary ergodic covariance). Suppose the index i represents time or position
along a genome sequence, and suppose the test statistic sequence T; is a stationary ergodic
process, e.g. M-dependent or ARMA, with Toeplitz correlation p;; = p;—;. Then p; i11 =
pr — 0 for all i as k — oo, and so ¥ (u) = 0, pointwise for all u. By Theorem 1, the
variance (9) converges to zero as m — 0.

Example (Finite blocks). Suppose the test statistics T; are dependent in finite blocks, so
that they are correlated within blocks but independent between blocks. Suppose the largest
block has size K. If K increases with m such that K/m — 0 as m — oo then ¥ (u) =0
for all u. On the other hand, if K/m — v > 0 then Vo (u) > 0 and the FDR estimator (3)
is inconsistent.
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Example (Strong mixing). Suppose the test statistics 7; have a strong mixing or a-mixing
dependence; that is, the supremum over k of |P(AN B) — P(A)P(B)|, where A is in the
o-field generated by T1,...,T; and B is in the o-field generate by Tx11,Tk12,. .., tends to
0 as m — oo (Zhou and Liang, 2000). By taking A = {T; > u} and B = {T; > u} in (5),
we have that Uo, = 0 and therefore, by Theorem 1, the variance (9) converges to zero as
m — 00.

2.4 Quantifying overdispersion for finite m

We are interested in estimating the distributional properties of the FDR estimator. This
requires estimating the overdispersion V¥,,(u) in (6) and (9). This quantity is easy to
write in terms of the pairwise correlations between the decision rules, as in (4), but not
necessarily as a function of the pairwise test statistic correlations p;;. In this section we
provide expressions for W,,(u) for finite m assuming a specific bivariate probability model
for every pair of test statistics, but without the need to assume a higher-order correlation
structure. We consider commonly used z and x? tests.

Suppose first that every pair of test statistics (7j,7;) has the bivariate normal den-
sity with marginals N(u;,1) and N(uj;,1), and corr(73,7;) = pij. Denote by ¢(t) and
¢2(ti, t;; pij) the univariate and bivariate standard normal densities. Mehler’s formula (Pa-
tel and Read, 1996; Kotz et al., 2000) states that the joint density f;;(t;,t;) = ¢a(ti—pi t;—
i pij) of (T;,T;) can be written as

00 k
fij(ti,ty) = o(ti — pa)p(t; — 1) Z ZJH (ti — i) Hi(t; — ), (10)

k!
k=0

where Hy,(t) are the Hermite polynomials: Ho(t) = 1, Hy(t) = t, Ha(t) = t* — 1, and so on.

Theorem 2. Let pp = (p1,-..,m). Under the bivariate normal model (10), the overdis-
persion factor in (7) is given by

T i) = 3 L (1)
where

pr(p) = Z Pl V(= puj)Hp—1(u — pi) Hpor (w — ). (12)

2<j

Under the complete null, (11) reduces to
Z ,’;— (13)
k=

where E, k =1,2,... denote the empirical moments of the m(m — 1)/2 correlations p;;,
1< ].
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Another common null distribution in multiple testing problems is the y? distribution.
Let f,(t) and F, () be the density and distribution functions of the x?(v) distribution with v
d.f. Under the complete null, the pair of test statistics (7;,7}) admits a Lancaster bivariate
model where both T; and 7} have the same marginal density f,, their correlation is p;;, and
their joint density is given by

fo(ti, ty pig) = fults) fu(ts %%5%/2—1«%)5%/2—1)(%) (14)

where E,(:/ 2_1)(15) are the generalized Laguerre polynomials of degree v/2 — 1:

Ly D) =1
LYV ) = —t+v)2
LY@ =2 —2/24 Dt + (v/2) (/2 + 1)

and so on (Koudou, 1998). Notice that, in contrast to the normal, the x? distribution is not
a location family with respect to the non-centrality parameter, so the Lancaster expansion
does not hold in the non-central case.

Theorem 3. Let po = (u1,...,m) and assume the complete null. Under the x? normal
model (14), the overdispersion factor (7) is given by
oo ¢ 2 2
— P I'(v/2) (V/g) u
v = e | L — . 15
m(t) = fupal k_l k! KT (v/2 + k) 2 (15)

where pF, k = 1,2,... denote the empirical moments of the m(m — 1)/2 correlations p;j,
i< j.

Theorems 2 and 3 show that the overdispersion is a function of modified empirical
moments of the pairwise correlations p;; and depends on m only through these moments.
This provides an efficient way to evaluate ¥,,(u) for a given set of pairwise correlations
obtained from data, as the expansions (13) and (15) may be approximated evaluating only
the first few low order terms. This is contrast to direct computation of (7), which requires
m(m—1) evaluations of the bivariate probabilities in (5), one for each value of p;;. As shown
later in the simulations, only the first few terms in the sums (13) and (15) are needed.

Theorems 2 and 3 also provide insight into the nature of the overdispersion. First, as
a function of u, both expressions (13) and (15) decay as a quadratic exponential times
a polynomial, implying that the effect of correlation quickly becomes negligible for high
thresholds. Second, under the complete null, (13) and (15) indicate that the overdispersion,
and thus also the variance (9), vanish asymptotically as m — oo for all u if and only if
p_k — 0 as m — oo for all Kk = 1,2,.... The usefulness of this result is illustrated in the
following example.

Example (Factor analysis). Suppose we have observations y = (y1,...,ym) with factor
analysis covariance cov(y) = o2l + add’, where I is the m x m identity matrix, a > 0 and
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0 is a unit m-vector. Suppose for each i, y; = u; + ¢; and we want to test H; : u; = 0 with
the z-statistic Tj = y; (0% + aé?)~'/2. Then

_1 z<] Z] _1 z<] \/024—&52,/024-&52

and R,,(u)/m has asymptotically vanishing variance if and only if p_k — 0 for all k. Suppose
d; = 1/4/m (to ensure unit length). Then one may obtain vanishing limits for example if a
is constant, but not if a increases linearly with m.

i

2.5 Distributional properties of the FDR estimator: the negative bino-
mial model

We now apply the above results about the number of discoveries R,,(u) for finite m towards
quantifying the distributional properties of the FDR estimator (3). In view of the mean-
variance structure of R,,(u), our strategy is to model R,,(u) as a negative binomial (NB)
variable and derive the properties of the FDR estimator based on this model.

Specifically, seen as a function of m, the mean-variance structure (6) resembles that
of the beta-binomial distribution, which has been used to model overdispersed binomial
data (Prentice, 1986; McGullagh and Nelder, 1989). Since the beta-binomial distribution
is difficult to work with, we propose instead to model R,,(u) using an NB distribution.
The rationale is as follows. If a random variable R is binomial with number of trials n
and success probability p, then when n is large and p is small, the distribution of R can be
approximated by a Poisson distribution with mean parameter np. Similarly, if p has a beta
distribution with mean p, then when n is large and g is small, the distribution of np can be
approximated by a gamma distribution with mean nu. Therefore the beta-binomial mixture
model can be approximated by a gamma-Poisson mixture model, which is equivalent to a
NB distribution (Hilbe, 2007).

It is convenient to parametrize the NB distribution with parameters A > 0 and w > 0,
such that the mean and variance of R ~ NB(\,w) are

E(R) =),  var(R) = XA +w\? (16)

Here X has the interpretation of a mean parameter while w controls the overdispersion with
respect to the Poisson distribution. When w = 0, the NB distribution becomes Poisson
with mean A, and when A\ = 0, it becomes a point mass at R = 0.

We describe how to estimate A and w from data in the next section. Given A and w, the
moments, distribution, and quantiles of the FDR estimator can be obtained directly from
the NB model. These are given by the following theorem. For simplicity of notation we
omit the indices m and wu.

Theorem 4. Suppose R is distributed as

po [NBOW),  ifAZ0,0>0
Poisson(X), ifA>0, w=0
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with moments (16), cdf F(k) = P[R < k|, and quantiles F~1(q) = inf{z : P[R < z] > q¢}.
Assume pg is known. Then
(i) Probability of discovery:

a B 1—(1+wh) Y w>0
1(w) £ PIR > 0] = {1_exp<_», “ (17)
(i) Mean:
B|FDR| = pomar[1 = 7(0,w) + 70, 0)((A )] (18)
where . AT w) - 1 i
a1 B vy w)—1 x
v =E|glr>o] = [FSRS 1)
(iii) Variance:
var [F/DT{] = (poma)? [1 — y(\,w) + v\, w)a (A, w)] — E2 [F/DT%} (20)
where . ) — 1 C(ew)d
_wl L _ Y w) =1 ((z,w)ds
G w) = E[R2 R> 0} B /0 vy Hz,w) =1 z(1+wzx) 1)
(iv) Distribution:
0, z <0
P[F/D?{gx}z 1 - F(k), app1<z<ap k=1,2,... (22)
1, a1 <z
where a, = poma/k.
(v) Quantiles:
T . ok =F(1—q), g<1-F()
mf{a:.P[FDRgx] zq} = {al, g>1- F(1) (23)

where a, = poma/k.

In terms of notation, the functions ((\,w) and (2(\,w) above were defined so that both
are bounded, tend to 0 as A — 0, and tend to 1 as A — oo. In particular, (19) with w =0
is the same as Equation (27) in Schwartzman (2008) divided by A.

2.6 Estimation of distributional properties of the FDR estimator

Next we show how the parameters A and w can be estimated from the data. We set the
parameters A and w of the NB model for R,,(u) by the method of moments. First, based
on (6) but respecting the form (16), we propose the estimates

~

E[R,(u)] = ma(u), var[Ro, (u)] = ma(u) + m*T,, (u;0)
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Here the estimate for the mean is simply the mean under the complete null. The form
of the variance ensures that var[Ry,(u)] > E[Rm(u)] as required by the NB model. The
overdispersion W¥,,(u;0) is also estimated conservatively under the complete null. In the
normal case, (13) is estimated by

~ K %
= P
U (150) = ¢ (w) ) 5 HE 1 (w),
k=1 """
where ﬁ, k = 1,2,...,K denote the empirical moments of the m(m — 1)/2 empirical

pairwise correlations p;;, i < j, after correction for sampling variability. In practice, K = 3
suffices.
Matching the estimated moments of R,,(u) to those of the NB model (16) leads to the
parameter estimates
1 Em(u7 0)
Am(u) = ma(u Wn(u) = ———= 24
m( ) ( )7 m( ) ag(u) ( )
Finally, the moments and quantiles of FDR are estimated using the formulas in Theorem 4
by plugging in the parameter estimates (24).

3 Numerical studies and data examples

3.1 Numerical studies

The goal of the following simulations is to illustrate the effect of correlation on the FDR
estimator and to assess the accuracy of the NB model in quantifying that effect. In the
following simulations, N = 10000 datasets were drawn at random from the model Y; =
i+ Zj, j=1,...,m, where u; is the signal and Z; has marginal distribution NV (0, 1). The
tests were set up as Hg : pj = 0 vs. Hj : u; > 0. The test statistics were taken as the
z-scores T; =Y}, the signal-to-noise ratio being controled by the strength of the signal. The
true FDR was computed according to (2) where the expectation was replaced by an average
over the N datasets. Similarly, the true moments and distribution of R,,(u) and F/D\Rm(u)
(3) were obtained from the N simulated datasets.

Example (Exchangeable correlation, complete null). To obtain an exchangeable correlation
structure, the Z; were generated as Z; = \/pZ + /1 — pej with Z,e1,..., e, 1i.d. N(0,1).
The signal was set to u; =0, 7 =1,...,m.

Figure 1 shows the population mean and standard deviation of the discovery rate
R, (u)/m for m = 100 under the complete null. Dependency does not affect the mean
(panel (a)) but affects the variance substantially (panel (b)). The estimated NB mean
and standard deviation of R,,(u)/m coincide with the true mean and standard deviation
by design because the moments were matched, except that only 3 terms were used in the
polynomial expansion (13) for ¥,,(u). This shows the accuracy of this expansion. While
three terms seems enough, the largest contribution by far is provided by the first term.

Figure 2 shows the effect of dependency on the FDR estimator for m = 100 under the
complete null. First, note that the FDR estimator is always biased up, even greater than

10
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1 for intermediate thresholds, where it is likely for the denominator to be smaller than the
numerator. Dependence causes the expectation of the FDR estimator to go further up while
it causes the true FDR to go down, further increasing the bias. The true FDR in this case
is equal to the FWER and can be easily seen to be

FWER,, (u) = 1 — /OO [1 _ %%)m} o(2) dx = {;(—u)[l — @ (u)™, Z - (1)

Dependence also causes the variability of the estimator to go up dramatically, as indicated
by the 5th and 95th percentiles in panel (b). Here, the ragged lines are a consequence of
the discrete nature of the distribution. On both panels (a) and (b), the expectation and

— 00

percentiles of FDR under dependency are surprisingly well approximated by the NB model
for most thresholds.

The bias and standard error of the FDR estimator are easier to assess when plotted
against the true FDR in each case, as shown in panels (c¢) and (d). Here we see that at
practical FDR levels such as 0.2, the bias of the FDR estimator under independence is
about 6% while under correlation is 60%, about 10 times larger. Similarly, the standard
error under independence is about 8% while under correlation is 25%, about 3 times larger.
Again, the NB model is able to capture this effect quite accurately.

Other simulations for increasing m from m = 10 to m = 10000 indicate that, when
plotted against the true FDR as in panels (c¢) and (d), the bias and standard error of
the FDR estimator increase only slightly as a function of m both under independence and
correlation. This is because increasing m increases the expectation and variance of the FDR
estimator for any fixed threshold, but the threshold required for controling FDR at a given
level also increases accordingly.

Example (Exchangeable correlation, non-complete null). Keeping the same exchangeable
correlation structure as before with m = 100, the signal was set to u; = 2, j = 1,...,5,
providing a null fraction pg = 0.95. Figure 3 shows the population mean and standard
deviation of the discovery rate R,,(u)/m. Taking into account the dependency approximates
the variance better than if independence is assumed. Since the NB parameters were chosen
assuming the complete null, the estimate for the mean is slightly smaller, and the estimate
for the variance is slighlty smaller for high thresholds.

Figure 4 shows the effect of dependency on the FDR estimator. Panel (a) shows that
the bias persists as in the complete null case. Panel (b) shows that correlation increases
the variability of F/DT{, visible in this panel mostly in terms of the 5th percentile. The NB
quantile estimates assuming dependency capture the variability better than if the depen-
dency were ignored. When plotted against the true FDR, we see in panels (c¢) and (d) that
the NB model with complete null parameters slightly underestimates both the bias and
standard error of FDR for small FDR levels.

3.2 Data Example

As a specific data example we use the genetic microarray dataset from Mootha et al. (2003).
Briefly, m = 10983 expression levels were measured among diabetes patients. For the pur-
poses of this article, standard two-sample t-statistics were computed at each gene between
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the two groups labeled DM2 (Type 2 diabetes mellitus, ny = 17) and NGT (normal glucose
tolerance, no = 17). The t-statistics, having 17+17-2=32 degrees of freedom, were con-
verted to the normal scale by a one-to-one quantile transformation (Efron, 2004, 2007a).
Figure 5(a) shows a histogram of the m = 10983 test statistics. The histogram follows
the N(0,1) density pretty well with mean 0.059 and standard deviation 0.977, making an
empirical null unnecessary.

Figure 5(b) shows a histogram of 499500 sample pairwise correlations computed from
1000 randomly sampled genes out of m = 10983. The pairwise correlations were computed
between the gene expression levels across all 34 subjects after subtracting the means of
both groups separately. These are approximately the same as the correlations between
the z-scores gven the moderate sample size of 34. The first three empirical moments of
the pairwise correlations, obtained from a random sample of 2000 genes, were p = 0.0044,
p? = 0.0846 and p? = 0.0020. To correct for sampling variability, as recommended by Owen
(2005) and Efron (2007a), we applied Fisher’s transformation to the sample correlations,
shrunk them towards zero in that domain using empirical Bayes, and transformed them
back with the inverse of Fisher’s transformation. This process resulted in the superimposed
black histogram, with empirical moments 7 = 0.0029, p2 = 0.0586 and p3 = 0.0012.

Figure 5(c) shows the FDR estimator as a function of the threshold u. Superimposed are
the 5th and 95th percentiles of the distribution of ﬁ{, estimated by the NB model under
the complete null, both assuming indpendence and asumming the correlation structure in
the data. When the dependence is taken into account, the bands are realistically wider
and indicate the variability of the FDR estimate. For example, at u = 4, the estimated
FDR is 0.17, but the bands indicate that with 90% probability it could have been as low
as 0.12 or as high as 0.35. For refe reference, superimposed are the 5th and 95th percentiles of
the empirical distribution of FDR obtained by permuting the subject labels between the
two groups, while keeping genes belonging to the same subject together. We see that the
permutation estimates closely resemble those of the NB model under dependence.

4 Discussion

In this article we have developed explicit expressions for estimating the mean, variance,
distribution, and quantiles of the FDR estimator based on a NB model, where the mean
and variance parameters are chosen to match those of the number of discoveries under the
complete null. These expressions allow and arbitrary correlation structure, requiring only
the first few empirical moments of the distribution of pairwise correlations in the normal
and x? cases. The NB model has been found to work well for practical FDR levels and
for both small and large number of tests, giving an accurate representation of the effect
of correlation in FDR analysis. Moreover, we have shown that accumulated correlation
can cause the FDR estimator to be inconsistent, for instance if the correlation structure is
exchangeable, has a block form with blocks that increase in size, or has a factor analysis
form with loadings increasing linearly with m.

The distribution of the FDR estimator is discrete and highly skewed, so rather than
standard errors, as in Efron (2007a) and Schwartzman (2008), we chose to indicate the
variability of the FDR estimator by its quantiles. The 5th percentile indicates how decep-
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tively low the FDR estimator can be even when there is no signal. The 95th percentile
is almost always equal to ma(u), the Bonferroni-adjusted level, showing that the FDR, es-
timator can be sometimes as conservative as the Bonferroni method. We emphasize that
the band between the 5th and 95th percentiles describe the behavior under the complete
null and is not a 90% confidence interval for the true FDR, but it provides a reference
for variability of the estimator under dependence when the true signal is not far from the
complete null. It is interesting that in our data example, correlation played an important
role but did not cause a departure from the null distribution, as may have been predicted
by Efron (2007a).

The method used in this paper requires in principle few assumptions about the data.
The NB parameters can be computed via (6) and (24) for any pairwise distribution of the
test statistics. The main motivation for assuming the normal and y? models was to reduce
computations, as the Mehler and Lancaster expansions of Section 2.4 allowed reducing the
correlation structure to the first few empirical moments of the pairwise correlations. A
similar reduction was used by Owen (2005) and Efron (2007a). As shown in the data
example, t-statistics can be handled easily by a quantile transformation to z-scores (Efron,
2007a). Similarly, F statistics can be transformed to x? scores (Schwartzman, 2008).

An issue that requires further work for the NB model is the estimation of A, (u) and
wpm (1) not under the complete null. Since Ay, (u) is the expected number of discoveries, one
could estimate it by R,,(u), but this estimate is too noisy. In terms of wy,(u), one could
estimate the required overdispersion term using Theorem 2, but the provided expression
depends on the true signal, which is unknown. Here, estimating the signal as null performs
reasonably well when the signal is weak and/or py is close to 1, but better approximations
may be found using a highly regularized estimator of the signal vector p. From the form
of (12), it is expected that more weight would be given to pairwise correlations were the
signal is large.

About the FDR estimator itself, we have learned that it is inherently biased and highly
variable. The positive bias ensures FDR control, as this keeps the true FDR below the
estimated one on average. But a smaller bias implies that the control is less conservative.
The exchangeable correlation structure used above is a special case of positive regression
dependence and therefore FDR control is guaranteed (Benjamini and Yekutieli, 2001). Its
conservativeness is reflected in the large positive bias of the FDR estimator, a result of
overdispersion in the number of discoveries. It is possible that a correlation structure that
produced underdispersion instead would not guarantee FDR control. Because the FDR
estimator was derived from the point of view of FDR control, it is also possible that better
estimators might be found by approaching the problem directly as an estimation problem.
This is a topic left for future work.
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Appendix: Proofs

Proof of Theorem 1.
(i) Let W(u) denote the covariance matrix of the vector (Di,...,Dy,)" with entries U;;.
Define a mapping of ¥,, to the unit square [0,1)? by the function

o |
szy,ﬂ( coctniloycl)

=1 j=1

Then the variance (4) is equal to the integral fol fol gm(z,y) dx dy. The limit assumptions
on U;; imply that as m — 00, gm(z,y) — VYo pointwise for every (x,y). Therefore, by the
bounded convergence theorem, the integral converges to fol fol Uodrdy = V.

(ii) Follows immediately from Theorem 2 and the fact that |p*| is bounded by 1, so the
infinite sum on k always converges for every m. O

Proof of Theorem 2.
Let ®(-) and P4+, -; p) denote respectively the standard normal survival function and the
standard bivariate normal survival function. Integrating (10) over the quadrant [t; — u;, 00] X

[tj — pj,00] gives
Co(t; — pirty — s pig) =P(t; — i) 2(t; — ;)
+ o(ti — )Pty — pj) Z /Z,] Hp—1(ts — pi) He—1(t; — p15)
k=1
where we have used the property that the integral of ¢(t)Hy(t) over [u, 00) is —¢(u)Hy—1(u)
for k > 1. Replacing in (5) and then (7) gives that the overdispersion term W, (u) is (13). O

Proof of Theorem 3.
Let F,(u,v;p) denote the bivariate y? distribution function with v d.f. corresponding to
the density (14). Integrating (14) over the quadrant [u,oo] X [v,00] gives

0 k 2
Pi I'(v/2) (,,/2) U\ A(w/2) (v
FI/(U7 v; pz]) FV(U)FI/(U) + fu+2 fu+2 r %l 2P I//2 T k) E 5 ﬁk—l 9 )

where we have used the property that the integral of f,(t)L, Jo o) (t/2) over [u,00) is
(v/E) fuga(u )ﬁ,(:_/lz (u/2) for k > 1. Replacing in (5) and then (7) gives that the overdisper-
sion term W, (u) is (15). O

Proof of Theorem 4. Let R ~ NB(r,p) denote the common parametrization of the NB
distribution with probability mass function

PIR=k]l=————p"(1 — k=0,1,2,... 2
[R = k] BT p'(1—-p)", 0,1,2, (25)
where 0 < p < 1 and r > 0. This parametrization is related to ours by
1-p 1 1 1
=20 w=2>0 = ey ()
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It is easy to show that the case w = 0, R ~ Poisson()), is obtained as the continuous limit
of the above NB distribuition as w — 0 such that A remains constant. The same is true for
the moments of R, which are continuous functions of w.

(i) From (25), P[R > 0] =1—p" =1 — (1 4+ wA\)~"/¢, which becomes 1 — exp(—\) in the
limit as w — 0.

(ii) For the mean, we have that

boma
RV1

where P[R > 0] = v(\,w) and P[R = 0] = 1 — y(\,w) by definition. All that remains to
get (18) is the conditional expectation, which for w > 0 is equal to

Hﬁﬁhﬁ{ ]:mm%Pm=m+q%ﬁ>ﬂpm>m}

1 L KDkt ko P “)”k+rﬁ/l .
E[R‘R> 0} S 1—pr — kE KIT(r) Prl=p)" = I ET(r) J, (1=t)" dt

T 1 t ‘X’Fk r 1 1 —¢"
__P / d B 1)y gy = P / dt.
L= J, =0 2 KI(r) 1—p ), G-t

Replacing (26) and making the change of variable ¢t = 1/(1+wz) gives (19). The case w =0
is obtained by similar calculations for the Poisson distribution or by taking the limit of (19)
as w — 0.

(iii) For the second moment, we have

E[FDR | = E [(ﬁ@”f)z] — <poma>2{P[R =0+ [%

Again, to get (20), we only need the conditional expectation, which for w > 0 is equal to

1 1l K IT(k+T), ro D m>ﬂk+r{/%1—ﬂml
E|:R2 R>0:| = 1—pr 2 L2 k"F(?") p( p) - 1—pr ! k"F(T‘) 2 dt

1 00
P’ dt 1T(k+r),,
= —715 1—1¢
[ Sy
Following the argument in part (ii) of the proof, the last sum above is equal to (1 —

t"E[(1/S)|S > 0], where S ~ NB(r,t). Then the change of variable t = 1/(1 + wx)
and replacing (26) gives (21).

R>@Pm>m}

(iv) For the distribution, FDR takes values on the discrete set a1, ag, ... where a = poma/k.
Ifap1 <z<ag k=1,2,..., then

P[F/DT{gx] =

[mma<pmm]:Pm2k+H:1—HR§M:1—F%)

RVv1 = k+1

If T > a1 = poma, then x is greater than the largest value that FDR can take, so clearly
P[FDR < z] = 1.
(v)Ifqg<1—F(1), k= F1(1—-q), then

poma
E+1

P [FDR < a41] = FDRg ]—ﬂR>k+]—1—ﬂmzq
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because F'(k) <1 — ¢ by definition of k. But for all € > 0,

P[ﬁ)?{gak+1—a] :P[F/ﬁ{g?mg] —PR>k+2 =1-F(k+1)<q

Ifg>1-F(1),
P[F/D\Rgal}:P[F{D\Rgpoma]:P[R\/lzl]zlzq

but for all € > 0,

P[F/D\Rgal—s}zp[ﬁ)ﬁgpoma}
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Figure 1: Effect of correlation on the rate of discovery R,,(u)/m under the complete null
for m = 100: (a) Expectation. (b) Standard deviation. Plotted in both panels are: the
true value assuming independence (black solid), the true value assuming an exchangeable
correlation structure with p = 0.2 (gray solid), and the value calculated using the polynomial
expansion (13) (gray dashed).
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Figure 2: Effect of correlation under the complete null for m = 100. (a) Expectation of
FDR as a function of threshold. (b) Percentiles 5 and 95 of FDR as a function of threshold.
All the 95th percentile lines overlap at the right edge. (¢) Bias of FDR as a function of the
true FDR. (d) Standard error of FDR as a function of the true FDR. Plotted in all panels
are: the true value for the estimator assuming independence (black solid), the true value
for the estimator assuming an exchangeable correlation structure with p = 0.2 (gray solid),
and the value estimated by the NB model (gray dashed). Also, in panels (a) and (b): true
FDR assuming independence (black dotted), true FDR assuming exhangeable correlation
(gray dotted).
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Figure 3: Effect of correlation on the rate of discovery R,,(u)/m for m = 100 and 95%
signal with © = 2. (a) Expectation. (b) Standard deviation. Plotted in both panels are:
the true value assuming independence (black solid), the true value assuming an exchangeable
correlation structure with p = 0.2 (gray solid), and the value calculated using the polynomial
expansion (13) (gray dashed).
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Figure 4: Effect of correlation for m = 100 and 95% signal with p = 2. (a) Expectation of
FDR as a function of threshold. (b) Percentiles 5 and 95 of FDR as a function of threshold.
All the 95th percentile lines overlap at the right edge. (¢) Bias of FDR as a function of the
true FDR. (d) Standard error of FDR as a function of the true FDR. Plotted in all panels
are: the true value for the estimator assuming independence (black solid), the true value
for the estimator assuming an exchangeable correlation structure with p = 0.2 (gray solid),
and the value estimated by the NB model (gray dashed). Also, in panels (a) and (b): true
FDR assuming independence (black dotted), true FDR assuming exhangeable correlation
(gray dotted).
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Figure 5: The diabetes microarray data. (a) Histogram of the m = 10983 test statistics
converted to normal scale. Superimposed is the N(0,1) density. (b) Histogram of 499500
pairwise sample correlations from 1000 genes randomly sampled out of m = 10983. Super-
imposed in black: histogram corrected for random sampling. (c) FDR curves: FDR (black
solid); percentiles 5 and 95 estimated by the NB model assuming independence (black
dashed); percentiles 5 and 95 estimated by the NB model assuming the pairwise correla-
tions from the data (gray dashed); percentiles 5 and 95 estimated by permutations (black
dotted). All the 95th percentile lines overlap at the right edge.
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