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SUMMARY

Risk prediction procedures can be quite useful for the patient’s treatment selection, prevention

strategy or disease management in evidence-based medicine. Often potentially important new

predictors are available on top of the conventional markers. The question is how to quantify the

improvement from the new markers for prediction of the patient’s risk for cost-benefit decisions.

The standard method using the area under the receiver operating characteristic curve (AUROC)

to measure the added value may not be sensitive enough to capture incremental improvements

from the new markers. In this article, we address this issue for the case that the response variable

is the time, possibly censored, to a specific event of interest. We present graphical and numerical

methods for evaluating the predictive ability of the new markers. Our proposal includes most

of the recent procedures in the literature as special cases for alternatives to the AUROC-based

methods. The new inference procedures are theoretically justified and illustrated with data from

a cancer study to evaluate a new gene score for the prediction of patient’s survival.

Keywords: Area under the receiver operating characteristic curve; C-statistic; Cox’s regression;

Gaussian process; Integrated discrimination improvement; Improvement in the area under the

curve; Risk prediction.
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1. INTRODUCTION

Consider the case that the response variable T is the time to a specific event of interest, which

is possibly censored. Also let Z be its corresponding vector of baseline covariates or predictors.

Suppose that we are interested in predicting the risk p(Z) =pr(T ≤ t0 | Z), where t0 is a pre-

specified time point. Let Z(1) be a function of Z, which consists of the “conventional” predictor

values and Z(2) be a function of Z, which contains Z(1), but also new predictor values. The

question is whether a prediction model with Z(2) can improve the predictive ability over a model

with Z(1). The next question would be how to quantify the added value from the new markers

for cost-benefit decisions.

A commonly used statistical method to answer the first question is to fit the data with

a “working” survival model, for example, the Cox proportional hazards model, with Z(2) and

then utilize statistical significance tests for association of the new markers with the risk to

identify important new predictors. Unfortunately this approach sheds little light on the degree

of improvement from new markers. To answer the second question, a popular procedure is to

use the improvement in the area under the receiver operating characteristic curve (AUROC),

that is, compute the difference between two AUROC’s based on Z(1) and Z(2) (D’Agostino et al.,

1997; Bamber, 1975; Hanley & McNeil, 1982). Recently the time-specific AUROC methods have

been modified to deal with the censored event time data (Heagerty and Zheng, 2005; Cai and

Cheng, 2008; Uno et al, 2009). The resulting summary measures are called C-statistics (Harrell

et al., 1996; Pencina & D’Agostino, 2004). However, it has been shown that these metrics

are not sensitive enough to capture a meaningful improvement from the new markers over the

conventional counterparts (Pepe et al., 2004; Greenland & O’Malley, 2005; Ware, 2006). One

possible reason is that the difference of two AUROC’s does not leverage the pairing information

2

http://biostats.bepress.com/harvardbiostat/paper107



of two risk scores within each study subject.

Recently, a number of new measures to quantify incremental values have been proposed (Cook

et al., 2006; Pencina et al., 2008). For the case in which there are no prespecified or well-defined

risk categories, Pencina et al. (2008) introduced the “integrated discrimination improvement”

(IDI) index and an “improvement in the AUROC” (IAUC) as new criteria for evaluating the

added value of new markers. Specifically, for a random independent subject, which is not in the

study sample, let Z = Z0, Z(1) = Z0
(1) and Z(2) = Z0

(2) denote its covariate vectors and let T = T 0

denote event time. With the censored event time data, let p̂2(Z
0
(2)) and p̂1(Z

0
(1)) be two estimates

for p(Z0), for example, via two survival working models. Define D̂(Z0) = p̂2(Z
0
(2)) − p̂1(Z

0
(1)).

Then, the IDI index is the limit of

E{D̂(Z0) | T 0 ≤ t0} −E{D̂(Z0) | T 0 > t0}, (1.1)

as the sample size goes to infinity. The IAUC is the limit of

pr(D̂(Z0) ≥ 0 | T 0 ≤ t0) − pr(D̂(Z0) ≥ 0 | T 0 > t0). (1.2)

Pepe et al. (2008) discussed the IDI extensively and connected it to other interesting dis-

crimination measures between cases and controls. Note that (1.1) is composed of two marginal

differences. The first one is the difference of two marginal means, p̂2(·) and p̂1(·), for those who

will develop the event. The second part of (1.1) is the difference of these two marginal means for

those subjects who will not have the event. The pairing information between p̂2(·) and p̂1(·) from

the same subject is not utilized to compute the IDI index. On the other hand, (1.2) does take

advantage of such pairing information. Under the usual random censorship model in survival

analysis, the large sample properties of the existing estimators for the IDI index and IAUC have
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not been studied in the literature for inferences. The standard bootstrapping method may not

work due to the fact that the estimation procedures are not smooth.

In this article, we generalize the above discrimination measures by considering two distribution

functions based on the paired difference D̂(·). The first one is

Fn(s) = pr(D̂(Z0) ≤ s| T 0 ≤ t0}, (1.3)

and the second one is

Gn(u) = pr(D̂(Z0) ≤ u| T 0 > t0}, (1.4)

where (s, u) ∈ [−1, 1] × [−1, 1] and the probabilities are with respect to the data and (T 0, Z0).

If we know (1.3) and (1.4), a plot of these two functions jointly can be quite informative as

shown in Figure 1 as an example. If there is no difference between two competing working

models, Fn(·) ≈ Gn(·), and thus we expect that Fn(·) − Gn(·) would be symmetric around 0.

The larger the separation between these two curves, the larger the improvement in performance

of the new markers with respect to the older ones. Any metric which quantifies the distance

between these two curves would be a reasonable measure of the added value. The IDI index is

simply the area between these two curves and the IAUC is the vertical distance between these

two functions evaluated at s = u = 0 (the distance between two gray dots in Figure 1). In this

paper, in the presence of censoring, we proposed consistent estimators for the limits of (1.3) and

(1.4). Furthermore, we show that as a process of (s, u), the joint distribution of the standardized

estimators for (1.3) and (1.4) is asymptotically Gaussian. We then show that this limiting

distribution can be approximated easily via a perturbation-resampling method, which is similar

to wild bootstrapping (Wu, 1986). With this approximation, one can then make inferences about

any “smooth” function of (1.3) and (1.4), for example, confidence interval estimates for the IDI
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and IAUC. We also derive inference procedures for other distance metrics between the above two

curves, for example, the difference of two medians from (1.3) and (1.4) (the horizontal distance

between two black dots in Figure 1). Lastly, we illustrate the new proposal with the data from

a breast cancer study to evaluate the degree of improvement from a new gene expression score

over the conventional clinical markers for predicting metastasis or mortality.

2. ESTIMATING THE DISTRIBUTION OF THE DIFFERENCE BETWEEN

TWO COMPETING RISK SCORES

Consider a general case that the event time T may not be observed completely. Let C be

the censoring variable, which is independent of T and Z. One can observe X = min(T, C) and a

binary indicator function ∆, which is one if T is observed. Let {(Ti, Ci, Zi)}, i = 1, · · · , n, be n in-

dependent copies of (T, C, Z). Let (Xi,∆i, Z(1i), Z(2i)) be the ith counterpart of (X,∆, Z(1), Z(2)),

in the sample. Also, let p̂k(Z(k)) be an estimator for p(Z) with the data {(Xi,∆i, Z(ki)), i =

1, · · · , n}, k = 1, 2.

To obtain estimates p̂k(Z(k)), k = 1, 2, one may use the conventional Cox regression models

(Cox, 1972). Specifically, at time point t, we model the cumulative hazard function Λ(t;Z(k)) of

T given Z(k) as Λk0(t) exp(β ′
kZ(k)), where Λk0(·) is the underlying cumulative hazard function,

and βk, is an unknown vector of parameters, for k = 1, 2. It is important to note that most likely

these models are not correctly specified. On the other hand, under a mild regularity condition,

the standard maximum partial likelihood estimator β̂k for βk converges to a constant vector, as

n→ ∞ (Hjort, 1992). This stability feature is essential for developing the large sample properties

of estimators for Fn and Gn. Using the standard Breslow estimator Λ̂k0(t) for Λk0(t) (Kalbfleish
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& Prentice, 2002), one may estimate the risk p(Z0) by

p̂k(Z
0
(k)) = 1 − exp{Λ̂k0(t0) exp(β̂ ′

kZ
0
(k))}, k = 1, 2, (2.7)

where Λ̂k0(t) =
∑n

i=1

∫ t

0

{

∑n
j=1 Yj(s)e

β̂′

k
Z(kj)

}−1

dNi(s), Ni(t) = I(Xi ≤ t)∆i, I(·) is the indicator

function and Yi(t) = I(Xi ≥ t). The difference D̂(Z0) can then be defined accordingly. From

the large sample stability property of β̂k, it follows that D̂(·) converges to a finite deterministic

function D(·), as n→ ∞. Also, let the limits of Fn and Gn be denoted by F and G, respectively.

To estimate F and G in the presence of censoring, one may use the technique employed by

Chen et al. (1995). Specifically, let

F̂ (s) =

∑n
i=1 ∆i{Ĥ(Xi)}−1I{D̂(Zi) ≤ s, Xi ≤ t0}

∑n
i=1 ∆i{Ĥ(Xi)}−1I(Xi ≤ t0)

and

Ĝ(s) =

∑n
i=1 I{D̂(Zi) ≤ s, Xi > t0}

∑n
i=1 I(Xi > t0)

,

where Ĥ(·) is the Kaplan-Meier estimator for the censoring distribution, H(t) = pr(C > t). The

proof of uniform consistency of the above estimators is given in the Appendix. Heuristically, the

expected value of n−1× numerator of F̂ (·) is approximately equal to

E[∆1{H(X1)}−1I{D(Z1) ≤ s,X1 ≤ t0}]

= E[∆1{H(T1)}−1I{D(Z1) ≤ s, T1 ≤ t0 | T1, Z1}] ≈ pr{D(Z1) ≤ s, T1 ≤ t0}.

Similarly, the expected value of the standardized denominator of F̂ is approximately equal to

pr(T1 ≤ t0).

To make further inferences about F (·) and G(·) or functions thereof, in the Appendix we

show that as n → ∞, the joint distribution of WF (s) =
√
n{F̂ (s) − F (s)} and WG(u) =

6
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√
n{Ĝ(u)−G(u)} converges to a mean-zero Gaussian process indexed by (s, u) ∈ [−1, 1]×[−1, 1].

However, with the conventional method, the covariance functions of these limiting processes,

which involves the unknown density functions, cannot be estimated well. On the other hand,

a perturbation-resampling method, which is similar to a “wild” bootstrapping procedure, can

be utilized to generate independent realizations of a process which has the same distribution

of the above limiting Gaussian process. Specifically, let (x, δ, z), F̃ (·) and G̃(·) be the observed

value of (X,∆, Z), F̂ (·) and Ĝ(·). Let {Vi, i = 1, . . . , n}, be a random sample from the standard

exponential distribution. let W ∗
F (s) = n1/2{F ∗(s) − F̃ (s)} and W ∗

G(u) = n1/2{G∗(u) − G̃(u)}

where

F ∗(s) =

∑n
i=1 δi{H∗(xi)}−1I{D∗(zi) ≤ s, xi < t0}Vi

∑n
i=1 δi{H∗(xi)}−1I(xi < t0)Vi

, (2.8)

G∗(u) =

∑n
i=1 I{D∗(zi) ≤ u, xi ≥ t0}Vi

∑n
i=1 I(xi ≥ t0)Vi

, (2.9)

where H∗(·) and D∗(·) are perturbed counterparts of Ĥ(·) and D̂(·) by the same set of {Vi},

respectively. The details are given in the Appendix. It can be shown that when n is large, the joint

unconditional distribution of the process {WF (·),WG(·)} can be approximately well with that of

the process {W ∗
F (·),W ∗

G(·)}. In practice, the distribution of {WF (·),WG(·)} can be approximated

by a large number of realizations from {W ∗
F (·),W ∗

G(·)} via realized {Vi, i = 1, · · · , n}. It is

interesting to note that F ∗(·) and G∗(·) are non-decreasing functions.

Now, to make inferences about a “differentiable” function (van der Vaart, 1998, Chapter

20) H{F (·), G(·)} of {WF (·),WG(·)}, the distribution of n1/2[H{F̂ (·), Ĝ(·)} − H{F (·), G(·)}]

can be approximated by the conditional (on the data) distribution of n1/2[H{F ∗(·), G∗(·)} −

H{F̃ (·), G̃(·)}]. Note that under the sup-norm metric or topology, one can use this approximation

to construct confidence intervals for the IDI and IAUC. Moreover, for making inference about
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the difference of two medians, we let H(F,G) = F−1(1/2) −G−1(1/2).

3. EXAMPLE

We illustrate the proposed method with the data from a breast cancer study to evaluate the

predictive value of a new biomarker, “wound-response gene expression signature”, for patient’s sur-

vival (Chang et al., 2005). For each patient, this gene score was derived from her microarray gene

expression data. The data set consists of 295 breast cancer patient files. Each file is composed of a

patient’s clinical outcomes (metastasis/death or censoring time), the gene score, and conventional

markers collected at time of surgery, including age, tumor diameter, number of positive lymph-

node, tumor grade, vascular invasion, estrogen receptor status, chemo/hormonal therapy or not,

and mastectomy or breast conserving surgery. The data are available at http://microarray-

pubs.stanford.edu/wound_NKI/explore.html. The gene expression data and the conventional

biomarker values were collected at the Netherlands Cancer Institute by van’t Veer et al. (2002)

and van de Vijver et al. (2002) to investigate the predictive ability of a gene score based on 70

specific gene expression data. The scoring system created by Chang et al. (2005) is different

from the so-called Dutch 70 scoring system. For this data set, the median follow-up duration

among the 295 patients was 6.7 years and the range was from 0.05 to 18.3 years (van de Vijver,

2002). Here, we are interested in quantifying the added value from the gene score by Chang et

al. over the above conventional predictors.

For illustration, we let T be the time to either the first metastasis or death. The Kaplan-Meier

curve based on the entire event times is given in Figure 1. The ten year event-free survival rate is

61.5%. Now, to evaluate the added value of the gene score over the conventional markers, we let

Z be the vector of all the aforementioned baseline covariate values. Furthermore, let Z(2) = Z,
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and Z(1) be the vector without the gene score. Let t0 = 10 (years). We fit the data with two

Cox proportional hazards models described in Section 2 with Z(1) and Z(2), respectively. The

regression coefficient estimates with the corresponding standard error estimates are reported

in Table 1. Although some regression parameters are not statistically significantly different

from 0, we include all the covariates in our analysis. For the ith patient with covariate vector

Zi in the sample, we then obtain a pair of risk scores {p̂1(Z(1i)), p̂2(Z(2i))} for approximating

p(Zi). In Figure 2, we present a scatter diagram whose x-axis and y-axis are p̂1(·) and p̂2(·),

respectively. The black dots represent the subjects who had events, the gray ones are those who

were event-free, and the open circles are for the censored observations before ten years. If there

are relatively few censored observations, visually this type of plot can be quite informative to

examine the added value of the gene score. If the gene score is “useless”, one would expect that

the black and gray dots are symmetrically distributed around the 45-degree line. For the present

case, the black dots tend to scatter above the 45-degree line and the gray ones are under the

diagonal line, indicating that the gene score indeed improves prediction. Moreover, this diagram

provides the “conventional” risk score value and the contrast between two scores within each

patient qualitatively and also quantitatively. Note that the observed standard C-statistics with

and without the gene score are 0.71 and 0.69, respectively. The improvement from the gene score

in C-statistic is only 0.02, and the corresponding 0.95 confidence interval is (-0.01, 0.05), which

covers null value zero.

Next we plot the estimated distribution functions F̂ (·) and Ĝ(·) in Figure 3. Graphically the

gene score appears to provide extra information regarding the prediction of the ten year event

rates. The area between two curves is an estimated IDI index, which is 0.05 with a 0.95 confidence

interval of (0.02, 0.09). The vertical distance between two gray dots is an estimated IAUC, which
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is 0.27 with a 0.95 confidence interval of (0.09, 0.45). The horizontal distance between two black

dots is an estimate of the median difference, which is 0.06 with a 0.95 confidence interval of (0.02,

0.10). Note that to obtain the standard error estimates, we utilized the perturbation-resampling

method discussed in Section 2 with 1000 realized independent samples of the unit exponential.

4. REMARKS

If there are very few censored observations before t0, the scatter diagram like Figure 3 is quite

informative to evaluate the added value of the new markers. For each subject, one can easily

see the incremental value of the risk score with the new markers as well as the corresponding

“conventional” score. For example, in Figure 3, for the subjects who had events, it appears that

the addition of the gene score does help when the conventional score is, say, more than 0.4.

Unfortunately, for the cancer example, the censoring proportion at year 10 is about 40%. Figure

3 by itself is not particularly useful. The distribution function plot in Figure 4 is informative for

the contrast of two scoring systems. However, it is not clear how to add the information of the

conventional score to such plots to explore where the gain would be from the new markers.

If we have pre-specified risk categories, for example, 0-10, 10-20, > 20 per cent ten-year risk,

one may use the net reclassification improvement (NRI) suggested by Cook et al. (2006) and

Pencina et al. (2008). With the perturbation-resampling method, it would be straightforward

to obtain an approximation to the distribution of the estimator of NRI. The confidence intervals

for such a metric can be obtained accordingly.

For the analysis of the data from the cancer study presented in Section 3, we discretized

the event time using ten-year cutoff time point to define “cases” and “controls”. Such a binary

outcome variable may not be able to capture differences between long and short term survivors.
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It would be interesting to generalize the inference procedures for the binary to ordinal categorical

outcomes or continuous responses.

5. APPENDIX

Let θk = (log {Λ0k(t0)} , β ′
k)

′ be a vector of parameters for k=1,2, and let pk(Z(k); θk) =

1− e− exp{(1,Z′

(k)
)θk} and D(Z; θ1, θ2) = p2(Z(2); θ2)− p1(Z(1); θ1). Suppose that the estimator θ̂k =

(

log
{

Λ̂0k(t0)
}

, β̂ ′
k

)′

converges to θk0, as n → ∞, and then p̂k(Z(k)) = pk(Z(k); θ̂k) and D̂(Z) =

p2(Z(2); θ̂2) − p1(Z(1); θ̂1). Furthermore, we denote the parameter space for θk by Bk, k = 1, 2.

To derive the asymptotic properties, we assume that Bk is compact set containing θk0 and Z(k)

has bounded support. We also assume that D(Z; θ1, θ2) is a continuous random variable with a

density function continuous in θ1 ∈ B1 and θ2 ∈ B2.

Firstly, we will show the uniform consistency of F̂ (s) and Ĝ(u). To this end, let

F̂ (s, θ1, θ2) =

∑n
i=1 ∆iĤ(Xi)

−1I{D(Zi; θ1, θ2) ≤ s, Xi ≤ t0}
∑n

i=1 ∆iĤ(Xi)−1I(Xi ≤ t0)
.

It follows, from the uniform consistency of Ĥ(·) (Kalbfleish & Prentice, 2002) and a uniform law

of large numbers (Pollard, 1990), that

sup
(s,θ1,θ2)∈[−1,1]×B1×B2

∣

∣

∣F̂ (s, θ1, θ2) − F (s, θ1, θ2)
∣

∣

∣ → 0,

where

F (s, θ1, θ2) = pr{D(Z; θ1, θ2) ≤ s | T ≤ t0}.

Coupled with the convergence of θ̂k → θk0, this implies that F̂ (s, θ̂1, θ̂2) is uniformly consistent

for F (s, θ10, θ20) = F (s). The uniform consistency of Ĝ(·) is shown with the same argument.

Secondary, to derive the limiting distribution of WF (s) =
√
n

{

F̂ (s) − F (s)
}

let

WFa(s, θ1, θ2) = n1/2
{

F̂ (s, θ1, θ2) − F (s, θ1, θ2)
}
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and

WFb(s) = n1/2
{

F (s, θ̂1, θ̂2) − F (s)
}

.

Note that

WF (s) = WFa(s, θ̂1, θ̂2) +WFb(s), (5.1)

we will first show the stochastic equicontinuity of the process WFa
(s, θ1, θ2) indexed by s, θ1 and

θ2. To this end, it is adequate to show that

n−1/2
n

∑

i=1

[

∆i

Ĥ(Xi)
I{D(Zi; θ1, θ2) ≤ s,Xi ≤ t0} − pr{D(Zi; θ1, θ2) ≤ s, Ti ≤ t0}

]

(5.2)

is tight. From the standard asymptotic theory for the Kaplan-Meier estimator (Kalbfleish and

Prentice, 2002),

∆i

H(Xi)
= 1 −

∫ τ

0

dMi(u)

H(u)
and 1 − Ĥ(Xi)

H(Xi)
=

∫ Xi

0

dM(u)

πX(u)
+ op(n

−1/2),

where πX(t) = pr(Xi ≥ t), Mi(t) = I(Xi ≤ t,∆i = 0) −
∫ t

0
I(Xi ≥ u)dΛC(u), M(t) =

∑n
i=1Mi(t)/n, and ΛC(·) is the cumulative hazard function for the common censoring variable.

Using the aforementioned relationship (Bang & Tsiatis, 2000), (5.2) can be rewritten as

n−1/2

n
∑

i=1

[I{D(Zi; θ1, θ2) ≤ s, Ti ≤ t0} − pr{D(Zi; θ1, θ2) ≤ s, Ti ≤ t0}]

− n−1/2

n
∑

i=1

∫ τ

0

dMi(u)

H(u)
[I{D(Zi; θ1, θ2) ≤ s, Ti ≤ t0} −m(θ1, θ2, s, u)]

=n−1/2

n
∑

i=1

[

I{D(Zi; θ1, θ2) ≤ s, Ti ≤ t0}
{

1 −
∫ τ

0

dMi(u)

H(u)

}

− pr{D(Zi; θ1, θ2) ≤ s, Ti ≤ t0}
]

+ n−1/2

n
∑

i=1

∫ τ

0

m(θ1, θ2, s, u)
dMi(u)

H(u)
, (5.3)

where

m(θ1, θ2, s, u) = pr{D(Z; θ1, θ2) ≤ s, T < t0 | T ≥ u}.
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To prove that (5.2) is tight in θ1, θ2 and s, one only needs to show that F = {D(z, θ1, θ2) − s :

θ1, θ2, s} is Donsker since the last term in (5.3) only involves a smooth deterministic function in

(θ1, θ2, s). Since Bk is bounded, it can be covered by Nk = O(ǫ−dk) balls centered at θk[j] ∈ Bk

with a radius of ǫ, where j = 1, · · · , Nk and dk is the dimension of θk, k = 1, 2. Coupled with

the fact that Z has a bounded support, it implies that for any θk ∈ Bk, one can find 1 ≤

jk ≤ Nk such that |θ′k[jk]z̃k − θ′kz̃k| ≤ C1kǫ for a positive constant C1k, where z̃k = (1, z′k)
′ and

zk ∈ support of Z(k). Furthermore, we can select N3 = O(ǫ−1) points in the interval [−1, 1] such

that −1 = s1 < s2 < · · · < sN3 = 1 and si − si−1 ≤ ǫ. Therefore for any θ1, θ2 and s, we can

find j1, j2 and j3, such that |{D(z; θ1, θ2) − s} − {e− exp(θ′
1[j1]

z̃1) − e
− exp(θ′

2[j2]
z̃2) − sj3}| ≤ C2ǫ. In

the following, we will estimate the bracketing number of F . Let

lijk(z) = I(e− exp(θ′
1[i]

z̃1) − e− exp(θ′
2[j]

z̃2) − sk + C2ǫ ≤ 0)

and

uijk(z) = I(e
− exp(θ′

1[i]
z̃1) − e

− exp(θ′
2[j]

z̃2) − sk − C2ǫ ≤ 0),

where 1 ≤ i ≤ N1, 1 ≤ j ≤ N2, 1 ≤ k ≤ N3. The brackets [lijk(z), uijk(z)], 1 ≤ i ≤ N1, 1 ≤ j ≤

N2, 1 ≤ k ≤ N3 covers F and

E[{uijk(Z) − lijk(Z)}2] = pr(|e− exp{(1,Z′

(1)
)θ1[i]} − e− exp{(1,Z′

(2)
)θ2[i]} − sk| < C2ǫ)

≤ sup
θ1,θ2,s

pr(|D(Z, θ1, θ2) − s| ≤ C2ǫ) ≤ C3ǫ,

since the density function of D(Z, θ1, θ2) is uniformly bounded. Therefore, the bracketing number

of F is O(ǫ−2(d1+d2+1)) and thus F is Donsker. Thus, WFa(·, θ1, θ2) is tight and asymptotically,

WFa(·, θ̂1, θ̂2) is equivalent to WFa(·, θ10, θ20), uniformly in s.

Next by a Taylor series expansion,

WFb(s) = Ḟθ1(s, θ10, θ20)n
1/2

(

θ̂1 − θ10

)

+ Ḟθ2(s, θ10, θ20)n
1/2

(

θ̂2 − θ20

)

+ op(1) (5.4).
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where Ḟθk
= ∂F

∂θk
. Since regardless of model adequacy, the maximum partial likelihood estimator

θ̂k is a regular estimator, i.e.,

n1/2
(

θ̂k − θk0

)

= n−1/2
n

∑

i=1

ψki + op(1)

where ψk1, · · · , ψkn are n i.i.d mean zero random variables. Coupled with (5.1), (5.3) and (5.4),

WF (s) = n−1/2
n

∑

i=1

πF (s, Zi, Xi,∆i) + op(1)

where

πF (s, Zi, Xi,∆i) =

Ḟθ1(s, θ10, θ20)ψ1i + Ḟθ2(s, θ10, θ20)ψ2i +
I{D(Zi; θ10, θ20) ≤ s, Ti ≤ t0}

{1 − ST (t0)}
− F (s)

−
∫ τ

0

dMi(u)

{1 − ST (t0)}H(u)
[I{D(Zi; θ10, θ20) ≤ s, Ti ≤ t0} −m(θ10, θ20, s, u)]

− F (s)

[

I(Ti ≤ t0)

1 − ST (t0)
− 1 −

∫ τ

0

dMi(u)

{1 − ST (t0)}H(u)
{I(Ti ≤ t0) − pr(Ti ≤ t0|T ≥ u)}

]

,

where ST (t0) = pr(T > t0). Similarly, one may show that

WG(u) = n−1/2

n
∑

i=1

πG(u, Zi, Xi,∆i) + op(1)

uniformly in u. Therefore









WF (s)

WG(u)









= n−1/2

n
∑

i=1









πF (s;Zi, Xi,∆i)

πG(u;Zi, Xi,∆i)









+ op(1)

Following the similar arguments as above, one may show that the class of functions

{πF (s; z, x, δ), πG(u; z, x, δ)}′ indexed by s and u is Donsker and thus {WF (s),WG(u)}′ converges

to a mean zero two-dimensional Gaussian process on [−1, 1] × [−1, 1].
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The perturbed version of Ĥ in (2.7) is given by

H∗(t) = H̃(t) − H̃(t)

n
∑

i=1

Vi

∫ t

0

{
n

∑

j=1

I(xj > u)}−1dM̃i(u),

where H̃(·) is the observed Ĥ(·), M̃i(t) = I(xi ≤ t, δi = 0)−
∫ t

0
I(xi > u)dΛ̃C(u), and Λ̃C(·) is the

observed Nelson-Aalan estimator of the cumulative hazard function for the censoring variable C.

D∗(·) in (2.8) and (2.9) is given by

D∗(z) = p∗2(z(2)) − p∗1(z(1))

= exp{Λ∗
1(t0) exp(β∗′

1 z(1))} − exp{Λ∗
2(t0) exp(β∗′

2 z(2))},

where β∗
k and Λ∗

k(t0) are given as Cai et al. (2009), i.e., β∗
k − β̃k and log{Λ∗

k0(t)} − log
{

Λ̃k0(t)
}

are

Ãk
−1

n
∑

i=1

δi

[

(Vi − 1)

{

z(ki) −
S̃

(1)
k (xi, β̃k)

S̃
(0)
k (xi, β̃k)

}

−
n−1

∑n
j=1(Vj − 1)I(xj ≥ xi)e

β̂′

k
z(kj)

{

S̃
(0)
k (xi, β̃k)z(kj) − S̃

(1)
k (xi, β̂k)

}

S̃
(0)
k (xi, β̃k)2



 ,

and

n−1

Λ̃k0(t)

n
∑

i=1

I(xi ≤ t)δi

{

(Vi − 1)

S̃
(0)
k (xi, β̃k)

−
n−1

∑n
j=1(Vj − 1)I(xj ≥ xi)e

β̃′

k
z(kj) + S̃

(1)
k (xi, β̃K)′(β∗

k − β̃k)

S̃
(0)
k (xi, β̃k)2

}

,

respectively, where β̃k is the observed β̂k, Λ̃k0(t) is the observed Λ̂k0(t), S̃
(m)
k (t, βk) = n−1

∑n
i=1 I(xi ≥

t)eβkz(ki)z⊗m
(ki) ,

Ãk =

∫





S̃
(2)
k (t, β̃k)

S̃
(0)
k (t, β̃k)

−
{

S̃
(1)
k (t, β̃k)

S̃
(0)
k (t, β̃k)

}⊗2


 S̃
(0)
k (t, β̃k)dΛ̃k0(t)

and for any vector x, x⊗0 = 1, x⊗1 = x, x⊗2 = x′x.
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Now, let θ∗k = (log {Λ∗
0k(t0)} , β∗′

k ) and θ̃k0 be the observed θ̂k0, it can be shown that n1/2
(

θ∗k − θ̃k

)

conditional on data and n1/2
(

θ̂k − θk0

)

converges to the same limiting normal distribution (Cai

et al., 2009). Furthermore, using similar expressions given as (5.1), (5.3), and (5.4), it is also

straightforward to show that {W ∗
F (s),W ∗

G(u)}′ can be approximated by

n−1/2
∑n

i=1{π̃F (s; zi, xi, δi), π̃G(u; zi, xi, δi)}′(Vi − 1), where π̃F (s; z, x, δ) and π̃G(u; z, x, δ) are ob-

served counterparts of πF (s; z, d, δ) and πG(u; z, d, δ), respectively. Therefore, by functional delta

method, the distribution of WH = n1/2[H{F̂ (·), Ĝ(·)} − H{F (·), G(·)}] can be approximated by

that of W ∗
H = n1/2[H{F ∗(·), G∗(·)}−H{F̃ (·), G̃(·)}] conditional on the observed data in the sense

that pr{|W ∗
H −WH | ≥ ǫ|(Zi, Xi,∆i), i = 1, · · · , n} converges to 0 in probability for any ǫ > 0.
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Table 1. Estimates of regression parameters for Cox’s models with breast cancer data

Model without gene score Model with gene score

Est.(1) SE(2) p(3) Est. SE p

Age/10 [yrs] -0.47 0.17 0.01 -0.57 0.18 0.00

Diameter of tumor [cm] 0.19 0.11 0.10 0.18 0.12 0.12

Lymph nodes 0.00 0.08 0.98 -0.01 0.08 0.90

Grade = 2 vs 1 1.00 0.35 0.00 0.74 0.35 0.04

Grade = 3 vs 1 1.11 0.35 0.00 0.66 0.37 0.08

Vascular invasion 1-3 vs 0 0.08 0.37 0.83 -0.10 0.37 0.78

Vascular invasion >3 vs 0 0.81 0.62 0.19 0.64 0.63 0.30

Estrogen Status=Positive -0.39 0.23 0.09 -0.16 0.24 0.51

Chemo or Hormonal =Yes -0.54 0.33 0.11 -0.49 0.33 0.14

Mastectomy=Yes 0.13 0.21 0.54 0.21 0.22 0.34

Gene score - - - 2.43 0.67 0.00

(1) Estimate

(2) Standard error estimate

(3) p-value
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Figure 1. A hypothetical example for distribution functions of D̂ for subjects with events and

for those without
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Figure 2. Kaplan-Meier estimate for metastasis/death with breast cancer data
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Figure 3. Scatter diagram of p̂1 vs. p̂2 for “with event” and “without event” with breast cancer

data
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Figure 4. Empirical distribution function with D̂(s) for “with event” and “without event” with

breast cancer data
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