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1. Introduction’

Analysis of binary observations from nested designs has been the focus of
much recent interest. Simple one level nesting of subunits within blocks is
commonly encountered in empirical studies. Two or more observations made
on the same individual serves as a simple example. The observations may be
on different outcome variables or they may be repea.te.d ordered or unordered
observations on the same variable. It is natural to view the outcomes within
each block as a multivariate binary response and assume independence between
blocks. The nature of the outcome variables and the empirical problem guides
the choice of parametrisation for the multinomial block probabilities. For
modelling effects of covariates on marginal response probabilities allowance
has to be made for the fact that observations within a block are likely to be
more similar than observations between blocks. And a decision has to be made

‘whether the regression parameters should reflect effects of covariates on the
individual response probabilities or on the group prevalence (Zeger, Liang and
Albert, 1988).

When modelling individual response probabilities the regression model is
specified conditionally on observations belonging to a block, and the form for
the heterogeneity between blocks is given. Williams (1982), Stiratelli, Laird
and Ware (1984) and Laird (1989) capture block heterogeneity by specifying
some parameters as random variables. Williams deals with repeated unordered
observations and block specific covariates, which reduces the problem to that
of overdispersion relative to the binomial for the block totals. For the special

case where covariate values vary within blocks, but take the same values across
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blocks, it is appropriate to use a conditional analysis (Breslow and Day, 1980,
Chapter 7). Conditioning on the block totals blots out the between block vari-
ation, which in this case does not contribute information about the regression .
parameters.

When modelling group prevalence, the marginal probabilities constitute av-
erages over blocks and the similarity between units within a block is modelled
by specxfymcr a within block dependence structure. McCullagh and Nelder
(1989) introduce a general multivariate logistic model specifying logistic trans-
forms of the marginal response probabilties combined with a general log odds
ratio structure for the association. Their model js flexible and does not a pri-
ori assume absense of higher order interactions. A major drawback is that
although a one to one relationship may exist between the multinomial prob-
abilites in the joint distribution and the model parameters, there does not in
general exist an explicit analytic expression for the former set of parameters in
terms of the latter. If such analytic expressions were available, then full max-
imum likelihood inference for the model parameters would be feasible, even if
the relationship had a complicated nonlinear form.

Liang and Zeger (1986) and Zeger and Liang (1986) use a set of generalized
estimating equations to estimate parameters in the marginal logits. Instead
of specifying a full distribution for the multivariate binary response within 2
block, they make assumptions about means, variances and correlations. When
correlations are used to describe dependence between binary variables, the
value of the coeficient is constrained, in order for the probabilities in the joint

distribution to remain in the unit interval. Liang and Zeger use simple cor-

http://biostats.bepress.com/uwbiostat/paper101



relation structures without constraints, thus setting up generalized estimating
equations or quasi likelihood equations that in general do not correspond to a
probability distribution. They show, however, that even for misspecified cor-
relation structure the estimates of the marginal logit para;meters are consistent
and asymptotically normally distributed. They base inference about the pa-
rameters in the marginal logits on a Wald type statistic, using an estimator
for the parameter covariance matrix, which is robust against misspecification
of the association structure. Prentice (1988), Sharples (1989) and Zhao and
Prentice (1989) discuss extensions of Liang’s and Zeger’s estimating equations,
which allow more efficient estimation of the correlation parameters.

in this paper we focus on regression models for bivariate binary responses.
When only one or two subunits are observed within each block, the multinomial
response probabilities can be expressed explicitly in terms of the parameters
in the marginal logits and the log odds ratio (Dale 1986, Palmgren 1989). The
multinomial response probabilities can alternatively be expressed in terms of
the marginal logits and the correlation coefficient. We discuss maximum like-
lihood estimation using the IRLS algorithm in GLIM for fitting exponential .
family nonlinear models (Ekholm et al, 1986). The nonlinear model formula-
tion is flexible and the algorithm is fast, whereby the computational difficulties
(McCullagh, 1989) in obtaining maximum likelihood estimates for this bivari-
ate logistic model are largely overcome.

Our model differs from the bivariate binary regression model discussed by
Rosner (1984). He deals with effects of covariates on individual response prob-

abilities, and he accounts for block heterogeneity by assuming a beta-binomial
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distribution. He also uses a log linear parametrisation. McCullagh and Nelder
(1989, Chapter 6) give a comparison of the interpretation of the log linear
parameters and the parameters in the bivariate logistic model.

We illustrate use of the bivariate logistic model and maximum likelihood
estimation on two data set. For the classical British coalminers data, marginal
logits of breathlessness and wheeze as functions of age are shown to be highly
insensitive to prespecified values of the log odds ratio. Corresponding stabil-
ity for the marginal regression parameters is not present if the association is
modelled using the correlation coefficient. In the second example we model
discrete time survival of total hip arthroplasties as function of patient specific
and hip specific covariates. One third of the arthroplasties were bilateral, and
the bivariate logistic models provides an opportunity to formulate and compare
survival for bilateral and unilateral prostheses.

In both examples we also look at inference about the regression parameters
in the marginal logits when the assumption of independence within blocks is
used. In Section § we use simulated data to evaluate the performance of es-
timates and standard errors under independence. Liang’s and Zeger's robust
version of the standard errors appear to make allowance for the misspecified
association when the covariates are block specific, but not when they are sub-

unit specific.
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9. The Bivariate Logistic Model

Let Y = (Y;,Y3) denote a bivariate binary response with distribution given
by the four multinomial probabilities mx = pr(Y1 = kYo =1), k,1=0,1. Let
7, = T + T0, 71 = Tt To1 and ¥ = 711700/ (m10701) denote the marginal
probabilities and the odds ratio. The probability 1 is expressed in terms of

7., *1 and ¥ in the following way:

%(t/)—l)"{a—\/az_-i—b} f#1
T = , (1)
.71 ify =1,

with @ = 1+ (7. +m1) (¥ —1) and b = —4¢( —1)m. 7, (Dale, 1986; Palmgren,
1989). The other multinomial probabilities follow from the margins. The
bivariate logistic model is specified by expressing logit 7y, logit =, and log ¥
as linear predictors p1z, B2z and vz, respectively. The covariate vector £ may
include block specific and subunit specific covariates. For covariate values
associated with Y; but not with Y2 the corresponding elements in B, are set to
zero, and similarly for 1.

To set up likelihood equations for the parameters § = (B1, B2, y) we use
as technical device the connection between the multinomial and the Poisson
distributions. Let Iy = 1if 1 = kand Y, = land Iy =0 otherwise, and
define Iy, k,I = 1,0 to be independent Poisson(xy) variates. By definition
Sula=1 a.nd Ekl 7y = 1, yielding identical large sample likelihood inference
for © = (711, T10,7 To1, Too) from the multinomial and Poisson likelihoods (Birch,
1963; Palmgren, 1981).

For observations Y; = (Y, Yi2) with covariate vectors i, 1 =1,..., 7 the
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Poisson based likelihood equations have the form "

zn: D:V‘—I(L —_ 7r,~) = 0, - (2) -

=1
with J; = (11, o, Tor, Joo); » i = (711, 710, 7oy, 7o0); , Vi = diag(m11, T10, o1, Too )i
and D; a 4 xp matrix with p the dimension of B = (b1, P2,7) and the columns
of D; given by D;, = (?a_?f’ %’;” —a’-;,ﬂ;‘- %’99- for s=1,...,p. Estimates for 3 are
obtained by starting from an arbitrary value G, sufficiently close to 4 and

iteratively computing values By4;, t = 0,1, ... from the linear expressions
Biw1 = ZD‘:V—ID ZD': I - Trt)1 3)

where D;,, V;, and 7;, are evaluated at ﬂ,. Provided that the likelihood function
has a unique maximum the algorithm will converge to the maximum likelihood
estimates (Green, 1984). The estimated asymptotic covariance matrix for the
maximum likelihood estimate § = (,31, Ba, 3 %) is given by the inverse of the

Fisher information matrix
Z(8) = (D D), (4)

evaluated at 5. In Appendix A we show that I(B) is block diagonal with
zeroes for elements corresponding to (51,‘/) and (Bz, 7).

It could be, that for some blocks only one of the two responses Y, and
Y:; is observed. If only Y, is observed, then the likelihood equations (2) and
the expressions in (3) and (4) are modified by replacing I;, m; and V; with
Ii = (Iu + ho, Jor + Joo)i, mi = (13 + 710, %oy + To0) and V; = diag(my; +

T10y To1 + Too). The matrix 6f derivatives D; is modified accordingly. Note

http://biostats.bepress.com/uwbiostat/paper101



that 7; now has the form

r: = lexp(Biz:){1 + exp(Brz:)} ", {1 +exp(Brz:)} ']

and that the incomplete observations contribute no information about the
association. Corresponding modifications are made if only Y;, is observed.

From (1) it is clear that the elements of the matrices D; are rather com-

plicated expressions of the parameters B = (b1, Bz,7). Ekholm et al (1986)
prov1de a general set of macros NLIN in GLIM which construct the D; ma-
trices in each iteration by forming numerical derivatives from the nonlinear

expressions m; = m;(f). We use the macros NLIN extensively in the sections

that follow.

3. Corfela.tion versus Odds Ratio

The correlation coefficient p = corr(Y1,Y2) could be an alternative to the

odds ratio as measure of association between the two responses in a block.

Instead of expression (1) we have

T =TT+ P\/“'T-(l —m)7a(l = Ta) . )

and if p is restricted, so that 0 < (T, 71,0) S min(r,., 7.1) then maximum
likelihood estimation is carried out as in Section 2. Note that if ;y, =73 =7
and 7 > 0.5, then p may take any value in the interval [-1, 1}. If 7 < 0.5, then
the lower bound is —=(1 — x)~!, the upper bound remaining at 1. However,

if By # B2 or if there are subunit specific covariates, then 7. and 7, may be

8
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very different in some blocks. For v, = 7 and 71 = k7 the correlation p is

restricted to the interval

- 7('\//:(1 —m) M (l—km) 1< p< (1- ﬂ')\/k(l =)7L — kx)-1, (6) )

For 7 = 0.8 and k = 0.2 the upper bound in (6) is as low as 0.21.

We compare use of the odds ratio and the correlation coefficient as mea-
sures of association by analysing the data in Table 1. These data were first
presented by Ashford and Sowden (1970) and concern selfreported symptoms
of breathlessness and wheeze among working coalminers in Britain, classified
into nine five year age groups. They have subsequently been used as illustra-
tion in several text books on categorical data analysis. McCullagh and Nelder
(1989) give a thorough motivation for applying the bivariate logistic model to
these data, and they report the fit for a model with linear age effect for the
marginal logits and the log odds ratio. McCullagh (1989) states that it does
not appear possible to fit the bivariate logistic model with currently available
computer packages. We do, however, in Appendix B fit the same model as Mec-
Cullagh, using the GLIM procedure given in Section 2. All standard output in
GLIM is available. Note in particular the block diagonal structure for the pa-
rameter correlation matrix. We further fit a sequence of models assuming fixed
constant log odds ratio, log 9, in the range [0, 6]. For log odds ratio values far
from the maximum likelihood estimate, log ¢ = 2.8 (s.e.(log 1,5) = 0.06), the
overall fit of the model is very bad. However, Figure la shows the stability
of the slope parameter in relation to jts standard error, even for grossly mis-
specified values for the odds ratio. The stability of the intercept parameters,

although not reported, was equally striking. Another feature of F igure la is

9
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that the standard errors for the slope estimates do not vary nearly at all with
. Age is here a block specific covariate with different intercepts and slopes
for the two margins. If, however, the parameters were restricted to be the
same for the margins, then the standard errors would decrease with decreasing
association. The degree of association determines the amount of information
available in the data about the joint parameters. We return to this question

in Section 5.

Figure 1b shows the estimates for the corresponding slope parameters when
" the correlations coefficient p is used as measure of association, and p is given
fixed values in the range [0, 0.5]. For p > 0.52 the algorithm converged to
negative estimated cell frequencies and stopped. The maximurn likelihood
estimate § = 0.49 (s.e.(p) = 0.009) is very close to this upper bound. The
most striking feature of Figure 1b is, however, how much more unstable the
’slope parameter estimates are when the correlation is used instead of the odds
ratio.

Cox and Reid (1987) state that an important consequence of two parameters
being orthogonal is that the maximum likelihood estimate of one parameter
varies only slowly with given values of the other parameter. This consequence
of ¥ being orthogonal to 8; and f; (cf. Appendix A) is, indeed, exerhpli-
fied in Figure la. In contrast, the covariance matrix for the estimates 51, ,éz

and p is not block diagonal and the slope estimates are sensitive to values for p.

10
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4. Survival of hip prostheses

. We illustrate use of the bivariate logistic model by analysing discrete time
survival of total hip prostheses as function of patient specific and hip specific
covariates. The data, which are described in detail in Turula (1989) con-
sist of 2681 primary hip arthroplasties performed between 1967 and 1986 at
the Helsinki Invalid Foundation Hospital. For 432 patients the arthroplasty
was performed bilaterally, involving 864 hips. Of the unilaterally performed
arthroplasties, 1072 concerned the right hip and 745 the left hip. In all cases
considered here primary osteoarthrosis was the reason for the operation. The
patients were followed till May 1988 and failure of the prosthesis was defined
as the replacement or removal of one or more components for any reason other
than infection. During follow-up a total of 22% of the prostheses failed. There
is some indication that different failure mechanisms opera.te for the left and
the right hip and that unilateral and bilateral arthroplasties differ (Turula, |
1989). For the bilaterally treated patients the two hips were not operated on
the same occasion, but the operations were close in time.

We analyse the effect on survival of gender, age and weight at the time of
operation, payclass and operation Score. The payclass covariate is an indicator
for private or non private patients. Private patients were usually operated by
highly skilled staff surgeons. The operation score is computed as the sum on
the log scale of the length of the operation and the amount of blood lost during
the operation. The score is an indication of the difficulty of the operation
(Turula, 1989). For bilateral arthroplasties, age and weight at the time of the

left and right operation are not identical, but very similar. The operations
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were usually both performed in the same payclass. We may thus view age,
génder, weight and payclass as patient specific covariates and opefation score
as a hip specific covariate.

The first twelve years of follow-up are divided into three year intervals.
The hazard is assumed constant within each interval and also after twelve
years of follow-up. We first describe the model for bilateral prostheses. Let
ny; and ny; denote the number of right and left hips, respectively at risk
in the beginning of interval 7, j = 1,...,5. In general ny; # n,j;, since
the two hips in a pair may have different follow up times. We write n; for
the number of pairs at risk at the beginning of interval j, and ny; — n; and
n2; — n; for the number of single hips at risk in the beginning of interval j.
Let (Y1, Yie;)y =1, ... l, n; denote a bivariate binary response for patient :
with both hips at risk at the beginning of interval j. We set Y};; = 1 if the
right hip failed during that interval and zero otherwise, and similarly for ¥};
and the left hip. The joint multinomial probabilities are defined in terms of
the conditional marginal failure probabilities 7i1; and ip; and the conditional
odds ratio ¢; using the expression in (1). Note that although the same hip may
contribute to the denominator in several risk sets, conditioning on the status
at the beginning of each interval induces independence between responses in
the different intervals.

For bilaterally treated patients with a single hip at risk in the beginning of
interval j, we observe only one of the responses Yi;; and Yn2j, with respective
failure probabilities m4y; and Tmaj, k=1, ... ,ny; —nj, m =1, ... ,n9; — nj.

The marginal failure probabilities are assumed not to depend on whether the

12
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other hip in the pair was at risk or not. For unilateral prostheses the responses
and the failure probabilites are defined in a way analogous to those for single
bilateral prostheses at risk.

We thus define failure at time ¢, ¢ = 0,3, 6,9 years as the conditional prob-
ability of failing in the next three years, given that one is currently at risk. At
time ¢t = 12 the failure probability refers to the rest of the follow up period.
Correspondingly, survival is defined as the probability of surviving for at least
another three years (till the end of the follow-up period), given that one is
currently at risk. We assume the covariates to have constant effect on the logit
of the failure probabilities. An alternative would be to use the complementary
log -log link (McCullagh, 1980).

In Table 2 we report the analysis of deviance from imposing equality con-
straints on parameters for the right and left hips. For unilateral prostheses no
difference is seen neither in the baseline probabilities nor in the effects of co-
variates. Baseline is here defined as a 62 year old non privately operated male
patient, who weighs 71 kg and has operation score 11.8. For bilateral prosthe-
ses there is a significant drop in the maximized likelihood when the baseline
probabilities are set equal. No difference is seen for effects of covariates.

Table 3 gives the conditional survival probabilities at baseline. For bilateral
prostheses, but not for unilateral prostheses, the survival probability is decreas-
ing. The significant difference in baseline survival for the bilateral right and
left prostheses apparently stems from a faster decrease for the right hip. Since
the model fit was worse when restricting the parameters to be equal, we do not

report the joint survival probabilities for the bilateral prostheses. The odds

13 -
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ratio for the two bilaterally treated hips is positive and close to significant.
In Tables 4 and 5 we report the covariate effects for the unilateral and
bilateral prostheses, respectively. The pattern is very similar in the two tables
and there is no difference between right and left hips. Survival is significantly
higher for women, and high operation score has a significant negative effect on

survival.

In Table 5 we also show the estimates and the robust standard errors from
assurniﬁg independence between the left and the right hip. The form for the ro-
bust covariance matrix is given in expression (8) in the next Section. Inference
from the independence model is virtually identical to that from the bivariate
logistic model. When solving Zeger and Liang’s generalized estimating equa-
tions for unspecified correlation between the right and left hip, the correlation
estimate was -0.02. This implies a slightly weeker dependence than what was
indicated by the odds ratio estimate in Table 3. Apparently, however, little is
lost for these data if one assumes independence between outcomes on the right
and the left hip. In the next section we take a closer look at properties of the
bivariate logistic model and the independence model, when the association is

stronger than in these data.

5. Independence and Robust Standard Errors

The orthogonality of the marginal logits and the log odds ratio suggests

that if the bivariate logistic model is true, then nearly unbiased and normally

14
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distributed estimates of the marginal logit parameters are obtained, even if we
wrongly assume independence within blocks.

- The likelihood equations under independence are -

ZD Yi-m) =0, (7)

with ¥; = (1, Y5):, m; = (‘rl ,-rl) Vi = diag{m (1 - m ), m,(1 - 71)}: and
D; = a’iag{%%, %%21};. Equations identical to (7) are obtained from (1) and
(2) when 7y = 7, 7.

Although solving equations (7) gives nearly the correct parameter estimates,
the model based covariance matrix for the estimates, £;(3) = (T, D;Vi~'D;)-1
does not in general reflect the true variation. Zeger and Liang (1986) suggest
the following modification, expected to be robust against misspecification of

the dependence

Sa(f) = n(ZD VD) (30 D) Vileou(Y)V D)3 DV, Dy)- (8)

=1 =1

where cov(Y) = E(Y; — m;)(Y; = m;)’ is the empirical covariance matmx If the
independence assumption is true, then Zg(ﬂ) reduces to ;(4).
To evaluate the performance of the independence assumption and the use of

robust standard errors we performed a small simulation study using the model
logitw,, = fz,
logitr; = fhz,
logp = +.

. We set up two experiments. In experiment (a) the covariate was block spe-

cific and in experiment (b) it was subunit specific. The covariate values were

15
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generated as
(a) z; ~ N(0,1), z2 =11
(b) £, ~ N(0,1), z2 ~ N(0,1), z1and z; independent.

For given x-values, data sets of 250 bivariate binary observations were gen-
erated from the above model with 8, = B, = 1 and v = 6. In each of the
experiments data was replicated 400 times and the following models, all hav-

ing zero intercepts were fitted each time:

(i) The bivariate logistic model in (1) and (2) with different slope parameters

for the marginal logits and with constant odds ratio.

(ii) The independence model in (7) with different slope parameters. Here the

model based and the robust standard errors coincide.

~ (iii) The bivariate logistic model in (1) and (2) with equal slope parameters

for the marginal logits and with constant odds ratio.

(iv) The independence model in (7) with equal slope parameters for the mar-

ginal logits. Both model based and robust standard errors were computed.

For Model (ii) the model based covariance matrix T:(B) is diagonal, and
if we assume binomial variance for the observations, then diag{Zr(8)} =
diag{E1(B)}. For Model (iv) the robust standard errors were computed as the

square root of

Vi (1l = ma)zd + 2 2(min — Tamia)TaZa + Liwia(l — 7i1)Th
(imin (1 — mi)zh + Tima(l = mia)zh}? ©)

b

varR(ﬁ) =

16
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with 7. = 71.(8), 71 = m:1(B) and 7y = (B, 7). Expression'(l) was «
used for m:11(B, %) with 4 obtained from the fit of model (iii).

In both experiments and in each data set the estimated slope parameters -
were virtually identical for all four models. The results of the simulations in
terms of averages over the 400 replications are given in Table 6 for models (i)
and (ii) and in Table 7 for models (iii) and (iv). We focus on the behavior of
the estimated standard errors.

A feature of both Table 6 and Table 7 is that in experiment (b), where
the covariate is subunit specific the standard errors are Fonsistently smaller
than in experiment (a). In the absense of measurement error and for finite
odds ratios, different covariate values for the two responses adds information
about the variation that is not attributed to a "common cause’. This is coupled
with less knowledge about the magnitude of the 'common cause’, i.e. in larger
standard error for the odds ratio itself.

Table 6 shows that if the parameters are not restricted to be equal in the two
margins and the covariate is block specific, then there is no need to account for
possible dependence within blocks. The analysis sepa'rates into the estimation
of ordinary logistic models for each of the two responses. This supports the
finding in Section 4 where, regardless of the value for the odds ratio, the same
inference is obtained for the effect of age on the prevalence of wheeze and
breathlessness. If the covariate is subunit specific, then model (ii) is inefficient.

We turn to Table 7, where the parameters in the two marginal logits are re-
stricted to be equal. In experiment (a), where the covariate is block specific the

model based standard error from model (iv) is on average considerably smaller
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and more variable than the standard error from the true model (iii). This is to
be expected, since under independence we wrongly assume information about
the joint parameter from two independent observations in each block. If the
observations are dependent their joint "information value” lies between that of
one and two independent observations. However, in experiment (a) the mean
and the dispersion of the robust standard error from model (iv) corresponds
very well to the true standard error. Comparison between model (iii) and (iv)
in experiment (b), where the covariate is subunit specific, suggests that infer-
ence based on the independence assumption is again inefficient, regardless of
whether the model based or the robust version of the standard error is used.
The model based standard error appears to be more labile than the robust
standard error.

This simulation experiment is limited in scope. With som caution one could,
however, summarize as follows: For block specific covariates the assumption
of independence, coupled with use of robust standard errors seems to produce
correct inference. This procedure is simple, since standard statistical software
can be used to obtain the estimates. Computation of the standard errors in
(8) involves matrix manipulation, but conceptually the procedure is straight
forward. If subunit specific covariates are the focus of interest and the pa-
rameters in the margins are restricted to be equal, one might be willing to set
up the more complicated model described in Section 2 in order to get efficient
estimates. Alternatively one could use the generalized estimating equations

with nonzero correlation. The efficiency of this latter procedure is not known.

18
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APPENDIX A. ' i
Orthogonality of cov(By, B2 7).

We show that reparametrisation of the multinomial probabilities #;, w0,
To1 and oo, With ;; mi;; = 0 using monotone transformations f, ¢ and 4 of
respectively the marginal probabilites 1, = m; + 70, 71 = 7y + 7o; and
the odds ratio ¢ = m1mee/(10%01), implies that the elements correspond-
ing to {f(71.), h(¥)} and {g(x,), ()} in the Fisher information matrix are
zero. The property of parameter orthogonality between (logit 7, log®) and
(logit my., logp) was noted by McCullagh (1989), but it was not formally mo-
tivated. '

The log likelihood for a multinomial observation ¥ = (Y1, Yio, Yo1, Yoo)’
with E(Y) = (m11, 10, To1, Too) is logl = 2i; Yijlogmi;. For f = f(,.) and

h = k(%) the corresponding element in the Fisher information matrix is

321051, _a‘ll'u 67711 1 1 1 1 67r1_ 1 1
) = B Gt Tt ) "o G P et (A

Using the expression in (1) for ¢ 1 we have

Omy 1 1,02 1,, _1,. Oa 0b
';97"—5(¢—1) 1{5?—5(4 +b) ’(20-5'*'5)}» (A2)
with 5 o 5
a T, b _ v _72_
5}":‘(1/""1)-57 ) 5"}'-"4¢(¢“1)ﬂ--1 af .

After some manipulation we write (A2) as

Oy Om, T11 + Ty } = omy, ;:'.',' + Tri' }

C8f T 8f ‘14 (mo+ 7o) - 1)

19
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from which it is clear that the right hand side of (Al) is zero. The derivation
is analogous for g(r;) and A(7).

If & is defined as A = A(p), with p the correlation coefficient, and if (3) is
used instead of (1), then the right hand side of (Al) is not zero.

20
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SIS TLNULA D

USE OF NLIN MACROS TO FIT THE BIVARIATE LOGISTIC MODEL FOR THE DATA IN TABLZ 1.

(o] GLIM 3.77 update 0 (copyright)1985 Royal Statistical Society, London

(o] }
(1] $C READ IN MACROS NLIN

(1]

(i) $C READ IN DATA -
(1] Sunits 36

(i] $data y Sread >
(i] 9 7 95 1841 23 9 105 1654 54 19 177 1863 5
(1] 121 48 257 2357 169 54 273 1778 269 88 324 1712

(i] 404 117 245 1324 406 152 225 967 372 106 132 526

{i] Svar 9 x nn :
{(i] $assign x=-4,-3,-2,-1,0,1,2,3,4

(1] $assign nn=1952,l791,2113,2783,2274,2393,2090,1750,1136

(1]

(i] $C CONSTRUCT INDICES AND MAKE N INTO A LONG VECTOR

{i] Svar 9 i il i2 i3 $cal i=%gl(9,1) : il=4*i-3 ; j2=il+1

[1i] §cal i3=il+2 : i4=i1+3 : j=%gl(9,4) : n=nn (j)

{i]

{(i] $C DEFINE THE POISSON DISTRIBUTION

(i} $mac m3 $cal %va=%£fv+0.0001 $Sendmac!

[i] Smac m4 $cal ¥di=2* ($yv*%log (syv/%fv) +3fv-%yv) $Sendmac

(i]

[i] $C EXPRESS FITTED VALUES AS FUNCTIONS OF PARAMETERS

(i) $mac fv!

{i] $var 9 pia pib psi k1l k2 k3 sll sl12 s21 s22

(1] $cal pia=%exp(p(l)+p(2)*x) : pia=pia/(l+pia)

(i) $cal pib=%exp (p(3)+p(4)*x) : pib=pib/ (1+pib)

[i] $cal psi=%exp(p(5S)+p(6) *x) )

(1] $cal k1=(0.5/(psi-1)) : k2=1+(pia+pib)*(psi-1)

{i] $cal k3=4*psi*(l-psi)*pia*pib : k4=kl*(k2-%sqrt (k2*k2+k3))

(1] $cal sll=%ne(psi,l)*kd+%eq(psi,l)*pia*pib! ‘

[i] $cal sl2=pia-sll : s2l=pib-sll : s22=1-s11-s12-s21!

(1] §var 36 ss $cal ss(il)=sll : ss(i2)=s12 : ss(i3)=s21 : $s(i4) =s:
{i] Scal %l=n*ss!

(i] $$endmac!

(i}

(i} $C GIVE INITIAL VALUES, DEFINE Y-VARIATE AND CALL MACRO NLIN

(1] $assign p=-2,0.5,-1.5,0.3,3,-0.1

(1] Syvar y

fi] S$use nlin $scale 1.0

(1] S$use fit $disp e ¢ $

(o] scaled deviance = 30.394 at cycle 3

(o] . d.E. = 30

(o] ‘

(o] estimate s.e. parameter

(0] 1 -2.262 0.02989 Pl

(o] 2 0.5145 0.01207 P2

[o] 3 -1.488 0.02056 P3

[o] 4 0.3254 0.008868 P4

[o] 5 3.022 0.06973 PS5

(o] 6 -0.1314 0.02844 Pé

(o] scale parameter taken as 1.000

(o]
(o] Correlations of parameter estimates -

[o] 1 1.0000

(o] 2 -0.6202 1.0000 .
(e} - 3 0.4219 -0.1648 1.0000 -
(o] 4 -0.1478 0.4297 -~0.3420 1.0000 .
{o] 5 0.0000 0.0000 0.0000 0.0000 1.0000

(o] 6

0.0001 -0.0001 -0.0000 =-0.0000 -0.5966 1.0000
(o} 1 2 3 4 g 6
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Table 1: Working coalminers in UK collieries classified by age and self reported .
symptoms of breathlessness and wheeze.

B U

Age-group Breathlessness No Breathlessness )

in years Wheeze No Wheeze Wheeze No Wheeze Total ’
20-24 9 7 95 1841 1952
25-29 23 9 105 - 1654 1791
30-34 54 19 177 1863 2113
35-39 121 48 257 2357 2783
40-44 169 54 273 1778 2274
45-49 269 88 324 1712 2393
50-54 404 117 245 1324 2090
55-59 406 152 225 967 1750
60-64 372 106 132 526 1136
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Table 2: Analysis of Deviance. Comparison is made to a model which has different
baseline probabilities and different effects of covariates for the right and the left h; ps.

Unilateral Prostheses

Restrictions A Deviance A d.f. p-va.iue

Equal baseline

probabilities 4.6 5 0.47
Equal covariate
effects 3.5 5 0.62
Equal baseline
and covariate effects 10.8 10 0.37

Bilateral Prostheses

Restrictions A Deviance A d.f. p-value

Equal baseline

probabilities 12.7 3 0.03
Equal covariate
effects 5.9 ) 0.39
Equal baseline
and covariate effects 21.3 10 0.001

Hosted by The Berkeley Electronic Press



Table 5: Bilateral prostheses. Effects of covariates on the logit probability of -+
survival for at least another three years. Standard errors in parentheses. .

Bivariate Logistic Model  Independence Model?

Right hip Left hip Jointly Jointly

Age -0.017  -0.002 -0.011" -0.010
(0.013) (0.015) (0.010) (0.010)

Sex 0.48 0.65!  0.53! 0.521
(0.27) (0.31) (0.21) (0.20)

Weight 0.017  -0.007  0.007 0.007
(0.013) (0.015) (0.010) (0.010)

Payclass 0.37 0.17 0.28 0.26
(0.24)  (0.29) (0.17) (0.18)

Operation Score -0.24  -0.53*  -0.34! -0.34!
(0.13) (0.20) (0.12) : (0.12)

1p<0.05

2 Robust s.e.
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Table 6: Simulation results for bivariate logistic model (i) and independence
model (ii), when 8, and f, are estimated separately. Means and S.D.’s taken over
400 replicated data sets of 250 bivariate binary observations. True parameter values:
Br = Py =1and v = 6. In experiment (2) x is block specific, in experiment (b)
subunit specific.

Experiment (a): Experiment (b:)
Model (i): Model(ii): Model (i): Model (ii):
Bl :
Mean 1.000 1.003 1.003 1.000
S.D. 0.174 0.175 0.146 0.175

Model Based S.E.(B,) :

Mean 0.171 0.173 0.138 0.172
S.D. 0.012 0.013 0.013 0.013
Bz :

Mean 1.006 1.008 1.004 1.011
S.D. 0.168 0.170 0.132 0.175 .

Model Based S.E.(f;) :

Mean 0.172 0.173 0.132 0.167
S.D. 0.012 0.013 0.011 0.012
’.71 -

Mean 6.18 6.98

S.D. 0.77 ' 1.94

S.E.(7):

Mean 0.66 1.81

S.D. 0.12 1.15
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Table 7: Simulation results for bivariate logistlic model (iii) and independence

model (iv), when f; = By = B. Means and S.D.’s taken over 400 replicated data *
sets of 250 bivariate binary observations. True parameter values: 8; = 8, = 1 and -

7 = 6. In experiment (a) x is block specific, in experiment (b) subunit specific. -
Experiment (a): Experiment (b:)
Model (iii): Model(iv): Model (jii): Model (iv):
B
Mean 1.003 1.003 1.001 1.000

S.D. 0.167 0.168 0.110 0.127

Model Based S.E.(f3) :

Mean 0.167 0.122 0.108 0.120
S.D. 0.011 0.071 0.007 - 0.070
Robust S.E(f) :

Mean 0.167 0.123
S.D. 0.012 0.006
i : :

Mean 6.08 6.87 '

S.D. 0.68 1.91

S.E.(}):

Mean 0.64 1.76

S.D. 0.09 1.18
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Figure la: Maximum likelihood‘estimates for the effect of a five year increase in
age on the logit of breathlessness (f;) and wheeze (8;) for prespecified values of the
log odds ratio log .
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Figure 1b: Maximum likelihood estimates for the effect of a five year increase in
age on the logit for breathlessness (5;) and for wheeze (B2) for prespecified values
of the correlation coefficient p.
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