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Summary:

Occupational, environmental, and nutritional epidemiologists are often interested in estimating

the prospective effect of time-varying exposure variables such as cumulative exposure or cumulative

updated average exposure, in relation to chronic disease endpoints such as cancer incidence and

mortality. From exposure validation studies, it is apparent that many of the variables of interest are

measured with moderate to substantial error. Although the ordinary regression calibration approach

is approximately valid and efficient for measurement error correction of relative risk estimates from

the Cox model with time-independent point exposures when the disease is rare, it is not adaptable

for use with time-varying exposures. By re-calibrating the measurement error model within each

risk set, a risk set regression calibration method is proposed for this setting. An algorithm for a

bias-corrected point estimate of the relative risk using an RRC approach is presented, followed by

the derivation of an estimate of its variance, resulting in a sandwich estimator. Emphasis is on

methods applicable to the main study/external validation study design, which arises in important

applications. Simulation studies under several assumptions about the error model were carried out,

which demonstrated the validity and efficiency of the method in finite samples. The method was

applied to a study of diet and cancer from Harvard’s Health Professionals Follow-up Study (HPFS).

Key words: Cox proportional hazards model, Measurement error, Risk set regression calibration,

Time-varying covariates.
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Survival analysis with error-prone time-varying covariates: a risk set calibration approach 1

1. Introduction

Many epidemiological studies involve survival data with covariates measured with error: the

true covariate value c, as defined by some “gold standard”, is represented approximately by a

surrogate measure C. Often, interest centers on cumulatively updated total or cumulatively

updated average levels of a time-varying exposure, which are computed from a series of error-

prone point exposure measurements. For example, in prospective studies of diet and health

such as the Nurses’ Health Study (Hunter et al., 1996), the primary exposure variable is the

cumulatively updated average dietary intake of a given nutrient. Similarly, in prospective

studies of the effects of air pollution on health, there is often interest in the effect of

cumulative exposure to specific pollutants (Zanobetti et al., 2000). Typically the surrogate

point exposures are measured once at each point of a specified grid, and are validated at

timepoints in a coarser grid (e.g., Willett et al., 1985; Brauer et al., 2003). There is a practical

need for statistical methods suited specifically for such applications.

Covariate measurement error in the Cox survival regression model was first addressed by

Prentice (1982), in the setting of a time-invariant exposure. Under certain assumptions,

with a linear Gaussian model for c given C, the regression calibration estimator emerged.

In the Cox model, the regression calibration estimator is not consistent, but it is a good

approximation under certain conditions. In later papers by many authors, more accurate

methods were developed for various settings; see Zucker (2005) for a review. We note in

particular the risk set regression calibration estimator, which Xie et al. (2001) developed

in the setting of a time-invariant exposure under a main/reliability study design. Xie et al.

(2001) assumed the classical homoscedastic measurement error model C = c+ǫ, with E(ǫ) =

0 and V ar(ǫ) constant.

Time-varying covariates are more challenging to handle. A number of papers have dealt

with measurement error in time-varying covariates. Huang and Wang (2000) presented an
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elegant solution for the setting where the classical homoscedastic error model applies and

replicate measurements of the surrogate covariate are available on all (or a sizeable sample

of) study individuals at all times at which events occur.

In practice, as noted above, measurements on the surrogate are usually available only on

an intermittent basis. A common strategy is to use the last available covariate measurements,

although this strategy can lead to some bias (Raboud et al., 1993). A number of authors

have developed more sophisticated methods, based on the joint modeling paradigm. A joint

model consists of a model for the covariate process (often a mixed linear model) and a model

for the hazard of the relevant event given the covariate (typically a Cox model). Considerable

work along this line has been published; Tsiatis and Davidian (2004) provide a recent review.

The joint modeling approach has a number of features that impede its use in applica-

tions. The approach is computationally intensive. In addition, it puts an undesirable focus

on modeling the exposure process, which requires significant effort but is of no intrinsic

interest to the investigators. Moreover, model checking is problematic, because the covariate

measurement times are typically too few and too sparse for effective model checking.

As we stated at the outset, we are specifically interested in epidemiological applications

involving cumulatively updated total or average exposure. The Willett’s classic textbook

on nutritional epidemiology cities hundreds of papers which use the cumulatively updated

average exposure variable in survival data models, and, similarly, the environmental epi-

demiology textbooks by Thomas and by Savitz and Steenland cite hundreds of papers using

the cumulative exposure and distributed lagged exposure variable in survival data models

(Willett, 1998; Thomas, 2009; Steenland and Savitz, 1997). Commonly, in these studies, the

point exposures are subject to considerable measurement error, while the error induced by

carrying forward the most recent cumulative exposure value is less serious. This motivates

an effort to develop methods for analyzing the effect of cumulative exposure in the presence
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of measurement error in the point exposures, without invoking the complex joint modeling

approach. Methodology of this sort would have immediate applicability in a wide range

of large-scale epidemiological studies, including in our own work Harvard’s Nurses’ Health

Studies, the Harvard Professionals Follow-Up Study, the Harvard Six Cities Study, and many

others. It would allow cumulative exposure effects to be assessed in a practical way that meets

the needs of the applied reality.

The purpose of this paper is to develop such a method. Our approach is to extend the

risk set regression calibration method of Xie et al. (2001) from the setting of a time-

invariant covariate with a classical measurement model to the setting of cumulative exposure

with respect to a time-varying covariate. We work with a measurement error model that

is substantially more general than the classical model, and our method is appropriately

designed to handle this more complex error structure. Instead of the replicate measures

setting, we work under the main study/validation study design, which is suitable for studies

in nutritional and environmental epidemiology, where a gold standard measure of exposure,

or an unbiased measure thereof, often exists.

Section 2 presents notation and background. Section 3 presents the method. In Section

4, we derive the variance of the proposed estimator for the case of the main study /

external validation design. Section 5 presents simulation studies of the method for a range of

scenarios motivated by practical applications, including time-varying exposures with different

correlation structures, and rare and common disease settings. In Section 6, we illustrate the

method on data from the Health Professionals’ Follow-Up Study (HPFS) concerning the

relationship between total calcium intake and risk of fatal prostate cancer. Section 7 provides

a discussion.
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2. Definition and preliminary results

The Cox model (Cox, 1972) for censored survival data specifies the hazard rate λ(t) for the

survival time T of an individual with s-dimensional covariate vector c to have the form

λ(t; c) = λ0(t) exp{βtc}, t > 0, (1)

where β is a s-vector of regression coefficients and λ0(t) is the underlying hazard function.

In the survival data setting with time-invariant covariates, a main/external validation study

design consists of data {Ci,Wi, Ti, Di}, i = 1, · · · , n1 in the main study, and {ci,Ci,Wi, Ti},

i = n1 + 1, · · · , n in the validation study. Because data on the outcome, Di is not available

in the validation study, we call this an external validation study. Here, c is the p1-vector of

true exposure which is subject to measurement error, and, in the main study, we observe

a vector of surrogate variables C instead. W is a p2-vector of error-free covariates . T is

the follow-up time, which is defined as the minimum of the potential failure time T 0 and

potential censoring time V , i.e. T = min(T 0, V, t∗), where t∗ is the end of follow up; D is

an indicator for failure from the event of interest, n1 is the sample size of the main study,

n2 is the sample size of the validation study, and n = n1 + n2. Typically, c is expensive to

measure, and hence n1 >> n2. In what follows, we start by reviewing the ordinary regression

calibration method for several different error models.

Prentice (1982) shows that if λ(t|c,W) = λ0(t) exp(βt
1c + βt

2W), i.e. if the proportional

hazards model holds in the perfectly measured covariates, if λ(t|c,C,W) = λ(t|c,W), i.e.

measurement error is non-differential and if λ(t|C, no censorship in[0, t)) = λ(t|C), i.e. if

there is random censorship conditional on the observed main study data, then

λ(t|C,W) = λ0(t)E(exp(βt
1c + βt

2W)|C,W, T > t)

= λ0(t) exp(βt
2W)E(exp(βt

1c)|C,W, T > t)

≈ λ0(t) exp(βt
2W)E(exp(βt

1c)|C,W), (2)
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where β1 and β2 are respectively p1-vector and p2-vector of regression coefficients corre-

sponding to c and W, and following Prentice (1982), T > t can be dropped out when the

event is rare.

From (2), we see that the critical quantity is E(exp(βt
1c)|C,W). There are two basic

ways of dealing with this quantity: exact evaluation or approximation. Exact evaluation

requires assuming a model for the full distribution of (c|C,W). Approximation can be

carried out using moment assumptions only. The simplest approximation involves modeling

only the conditional mean µc(C,W) = E(c|C,W), and uses the first-order approximation

E(exp(βt
1c)|C,W) ≈ exp(βt

1µc). This approach leads naturally to imputing µc(C,W) for

c and running a standard Cox analysis. A more sophisticated approximation can be carried

out by introducing models for both the conditional mean µc(C,W) = E(c|C,W) and the

conditional variance Σc(C,W) = Cov(c|C,W). The approximation is given by

λ(t|C,W) ≈ λ0(t) exp(βt
2W) exp(βt

1µc +
1

2
βt

1Σcβ1), (3)

which is obtained from a second-order Taylor approximation to the cumulant generating

function of (c|C,W). In the special case where (c|C,W) is multivariate normal, the second

order approximation is exact (Prentice (1982)); however, the approximation can be used

even in the non-normal case. The first-order approximation is the approach most commonly

taken.

Equation (3) allows for a semi-parametric error model (c|C,W), where only the conditional

mean and covariance of (c|C,W), rather than the whole distribution, needs to be specified.

For the ordinary regression calibration method, the multivariate results are similar to those

given for the logistic regression model in Rosner et al. (1990). For one-dimensional β without

any error-free covariates, when the disease is rare, or β is small, or if the measurement error

variance is small and constant, the ordinary regression calibration estimator is given by
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β̂orc = β̂naive/α̂1 and V̂ar(β̂orc) = 1

α̂2
1

V̂ar(β̂) + β̂2

α̂4
1

V̂ar(α̂1) (Spiegelman et al., 1997), where

β̂naive is the naive Cox regression estimate using the surrogate measure C directly, and α̂1

is obtained in the validation study by fitting the linear regression model given by E(c|C) =

α0 + α1C and Var(c|C) = σ2.

3. Risk set regression calibration for time-varying exposures in a main

study/validation study design

The validity of the ordinary regression calibration method depends on the rare disease

assumption, i.e. when Pr(T > t) ≈ 1, as shown in (2). Risk set regression calibration is

an attempt to improve the estimator by recalibrating within each risk set (Xie et al., 2001).

Here, we consider the first order approximation of (2) as

λ(t|C,W) = λ0(t)E(exp(βt
1c + βt

2W)|C,W, T > t)

≈ λ0(t) exp(βt
2W) exp(βt

1E(c|C,W, T > t)). (4)

Although T > t is retained in (4), whenever Var(c|C,W, T > t) and higher order moments

are not constants or are not independent of time, an asymptotic bias is expected to be incor-

porated due to the effect of the higher order moments. Xie et al. (2001) explored analytically

the asymptotic bias of the RRC estimate and derived the sandwich variance estimator for the

main/reliability study design, in which one or more additional measurements are obtained

from a random subsample of study subjects, under the assumption that the classic additive

homoscedastic error model is suitable for the data at hand. Since the assumption of classical

additive error in a time-invariant exposure is rarely suitable in nutritional and environmental

epidemiology, it was necessary to extend the risk set regression calibration method to time-

varying exposures in the main study/external validation study design, assuming a more

general measurement error model.
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With a time-varying point exposure, a main/external validation study design consists of

data {Ci(t),Wi(t), Ti, Di}, i = 1, · · · , n1 in the main study, and {ci(t),Ci(t),Wi(t), Ti},

i = n1 + 1, · · · , n in the validation study, where the time-varying surrogate exposure Ci(t)

is measured at a discrete grid of time points and the true exposure ci(t) is also measured on

certain occasions in the validation study. The gold standard ci(t) is usually measured much

less frequently than the surrogate Ci(t).

The exposure variables of interest in these studies are, as noted in the introduction,

generally some function of the time-varying point exposures. Denote the function of the

time-varying true exposure ci(t) as xi(t), and the function of the time-varying surrogate

exposure Ci(t) as Xi(t). Time-varying error-free covariates, and functions of these error-

free covariates, are denoted by Zi(t). Then, the main/external validation study data take

the form {Xi(t),Zi(t), Ti, Di}, i = 1, · · · , n1 for the main study, and {xi(t),Xi(t),Zi(t), Ti},

i = n1 + 1, · · · , n for the validation study, and (4) becomes

λ(t|X(t),Z(t)) ≈ λ0(t) exp(βt
1E(x(t)|X(t),Z(t), T > t) + βt

2Z(t)).

The basic idea here is that the measurement error model

E(xi(t)|Xi(t),Zi(t)) = α0(t) +α1(t)Xi(t) +α2(t)Zi(t) (5)

is re-estimated from the validation study at each main study failure time, and the true

exposure is re-estimated for everyone at risk. Then, β̂RRC will solve

n1
∑

i=1

∫ t∗

0

















x̂i(ψ̂, t)

Zi(t)






− S(1)(β, ψ̂, t)

S(0)(β, ψ̂, t)











Ni( dt) = 0 (6)

where

S(0)(β, ψ̂, t) = n1
−1

n1
∑

i=1

Ym(i, t) exp{βt
1x̂i(ψ̂, t) + βt

2Zi(t)},
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and

S(1)(β, ψ̂, t) = n1
−1

n1
∑

i=1

Ym(i, t)







x̂i(ψ̂, t)

Zi(t)






exp{βt

1x̂i(ψ̂, t) + βt
2Zi(t)}.

Here, β = (β1,β2), Ni(t) = I(Ti 6 t, Di = 1) is the counting process corresponding to Ti.

Ni(dt) = 1 if the subject i fails at the failure time t, Ni(dt) = 0 otherwise. Ym(i, tl) = I(Ti >

tl) is the risk process indicator in the main study, the subscript ‘m’ indicates the main study,

the subscript ‘v’ indicates the validation study. dim(α0(tl)) = p1, dim(α1(tl)) = p1 × p1,

dim(α2(tl)) = p1 × p2, ψ(tl) = (α0(tl),α1(tl),α2(tl)), l = 1, · · · , r, and r is the number of

unique failure time in the main study. Next, we explain how to obtain estimates of α0(tl),

α1(tl), α2(tl):

1. Order the unique failure times that occur in the main study as t1 < t2 < · · · < tr. Find

the r risk sets Rm(tl), l = 1, 2, · · · , r, where Rm(tl) is the set of individuals in the main

study who are alive and uncensored at a time just prior to tl. Generate the risk process

indicator Ym(i, tl) so that Ym(i, tl) = 1 if i ∈ Rm(tl), and Ym(i, tl) = 0 otherwise.

2. Find the r risk sets Rv(tl), l = 1, 2, · · · , r, in the validation study. Generate the risk

process indicator Yv(i, tl) = I(Ti > tl), so that Yv(i, tl) = 1 if i ∈ Rv(tl), and Yv(i, tl) = 0

otherwise. For any given t, let X∗
i (t), x∗

i (t) and Z∗
i (t) be the most recent observed values

of Xi(t), xi(t) and Zi(t) prior to t. We then run, for each failure time tl, a regression of

x∗
i (tl) on X∗

i (tl) and Z∗
i (tl) on the subjects in Rv(tl), obtaining α̂0(tl), α̂1(tl), α̂2(tl).

3. Estimate x̂i(tl) = [α̂0(tl)+ α̂1(tl)X
∗
i (tl)+ α̂2(tl)Z

∗
i (tl)] ·Ym(i, tl) for each subject i in the

risk set Rm(tl) in the main study, l = 1, 2, · · · , r.

4. Fit the “naive” cox model on (x̂i(tl),Zi(tl), Ym(i, tl), Ti, Di) to get the risk set regression

calibration estimator β̂RRC .

Non-differential measurement error and random censorship are also required here to en-

sure validity of estimation and inference, as in the original regression calibration estimate
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discussed in Section 2. In addition, we assume that the measurement error model (5) that

holds in the validation study is applicable to the main study as well. This assumption is the

transportability assumption discussed by Carroll et al. (2006).

4. Var(β̂rrc) for the main/ external validation study

We write the score equation (6) as
∑n1

i=1 Uβi(β|ψ̂) = 0, where

Uβi(β|ψ̂) = Di

















x̂i(Ti)

Zi(Ti)






− S(1)(β, ψ̂, Ti)

S(0)(β, ψ̂, Ti)











, (7)

with ψ̂ = (ψ̂(t1), ψ̂(t2), · · · , ψ̂(tr)), dim(ψ̂) = p1×(p1+p2+1)r and dim(Uβi) = (p1+p2)×1.

Define Û∗(β̂, ψ̂) =
∑n1

i=1
∂Uβi(β|ψ)

∂ψ
|(β,ψ)=(β̂,ψ̂), then dim(Û∗) = (p1 + p2) × p1(p1 + p2 + 1)r.

Denote the covariance matrix of ψ̂ as Vψ̂, so dim(Vψ̂) = p1(p1 + p2 + 1)r× p1(p1 + p2 + 1)r.

In the validation study, ψ̂ solves

n2
∑

i=1

Uψi,j(ψ) = 0, (8)

where Uψi,j(ψ) = (Ut
α0i,j(ψ),Ut

α1i,j(ψ),Ut
α2i,j(ψ)) is defined as follows

Uα0i,j(ψ) = Yv(i, tj)[xi −α0(tj) −α1(tj)Xi −α2(tj)Zi]
t

Uα1i,j(ψ) = Yv(i, tj)Xi[xi −α0(tj) −α1(tj)Xi −α2(tj)Zi]
t

Uα2i,j(ψ) = Yv(i, tj)Zi[xi −α0(tj) −α1(tj)Xi −α2(tj)Zi]
t (9)

for j = 1, · · · , r, i = 1, · · · , n2, dim(Uα0i,j) = 1 × p1, dim(Uα1i,j) = p1 × p1, dim(Uα2i,j) =

p2×p1, dim(Uψi,j(ψ)) = p1× (p1 +p2 +1), Uψi = (Uψi,1,Uψi,2, · · · ,Uψi,r) and dim(Uψi) =

p1 × (p1 + p2 + 1)r.

Then, as shown in Appendix B, Cov(ψ̂) can be estimated by 1
n2

V̂ψ̂, with V̂ψ̂ constructed

as

V̂ψ̂ =

[

1

n2

n2
∑

i=1

∂Uψi(ψ)

∂ψ

]−1 [

1

n2

n2
∑

i=1

Uψi(ψ) ⊗ UT
ψi(ψ)

][

1

n2

n2
∑

i=1

∂Uψi(ψ)

∂ψ

]−1
∣

∣

∣ψ=ψ̂ . (10)

http://biostats.bepress.com/harvardbiostat/paper110
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Following the derivation in Appendix B, we have

V̂ar(β̂rrc) =
1

n1

Î−1
β Ĥβ,ψÎ

−1
β (11)

where

Î−1
β =

[

1

n1

n1
∑

i=1

∂Uβi(β|ψ̂)

∂β

]−1
∣

∣

∣β=β̂ , (12)

Ĥβ,ψ = Ĥβ +
1

n1n2
Û∗(β,ψ)V̂ψÛ

∗(β,ψ)T ,

Ĥβ =
1

n1

n1
∑

i=1

Ũβi(β, ψ̂)ŨT
βi(β, ψ̂)|β=β̂, (13)

with

Ũβi(β, ψ̂) =Uβi(β|ψ̂) −
n1
∑

j=1

DjYm(i, Tj) exp(βt
1x̂i(Tj) + βt

2Zi(Tj))

n1S(0)(β, ψ̂, Tj)

·

















x̂i(ψ̂, Tj)

Zi(Tj)






− S(1)(β, ψ̂, Tj)

S(0)(β, ψ̂, Tj)











.

The asymptotic distribution theory proven in Appendix B follows arguments in Andersen

and Gill (1982) and Lin and Wei (1989); the reader is referred to Appendix B for further

details.

5. A simulation study under the main study/external validation study

We report finite-sample simulation results for our proposed method under the main study /

external validation study design, following the algorithm in Sections 3 and 4. We consider

a single error-prone covariate c with surrogate C. All simulation results are based on 1000

replications.

We consider two event rate scenarios: rare disease and common disease. Motivated by our

real data set, the Health Professional Follow-up Study, we set the number of events to be

around 500. For the rare disease situation, we set the cumulative event rate at 1%, and thus

Hosted by The Berkeley Electronic Press



Survival analysis with error-prone time-varying covariates: a risk set calibration approach 11

the main study sample size is set at n1 = 50, 000. For the common disease situation, we set

the cumulative event rate at 50%, and thus the main study sample size is set at n1=1000.

The cases we considered for the validation study size were n2 = 150 and n2 = 1, 000. A

validation sample size of n2 = 150 is very common in nutritional epidemiology studies. The

case of n2 = 500 is less common, but does arise in some applications, particularly when two

or more validation studies can be combined, as in the example in Section 6.

We take the baseline hazard function to be of the Weibull form λ0(t) = θν(νt)θ−1, with

θ = 6, which is typical of many epithelial cancers (Armitage and Doll (1961); Breslow and

Day (1993)). Censoring is assumed exponential with a rate of 1% per year. The maximum

follow-up time is taken to be t∗ =50 years. The parameter ν is set to achieve the specified

cumulative event rate.

In preliminary simulations, we examined the case where the covariate is time-invariant, and

compared the ORC method to the RRC method. These results are summarized in Appendix

A.1. The parameter which describes the extent of measurement error, ρ = Corr(c, C) was

varied across the values 0.3, 0.6, 0.9. The key parameter in the simulation comparisons is

η = β2Var(c|C) = (1 − ρ2)β2σ2, where β is the regression coefficient and σ2 is the variance

of the true exposure. When η is small, the ORC method was adequate, but when η is large,

the RRC method was clearly superior. These findings are consistent with those of Xie et al.

(2001).

We turn now to the time-varying exposure situation. In line with the motivating example

in Section 6, we worked with the cumulatively updated average exposure (Hu et al., 1999).

The true and surrogate exposures, x(t) and X(t), were defined as follows:

x(t) =
1

tk − t0

k
∑

m=1

c(tm−1)(tm − tm−1), X(t) =
1

tk − t0

k
∑

m=1

C(tm−1)(tm − tm−1), (14)

for t ∈ [tk, tk+1) with 1 6 k 6 p, where the set {t0, t1, t2, · · · , tp} are the times at which ci(t)

is measured. Ci(t) can be measured on the same time scale, or, as is typically the case in
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applications, Ci(t) is measured on a much finer time scale. In the simulation study below,

we used the same time scale for ci(t) and Ci(t).

The true and surrogate cumulatively updated average exposures were generated as follows:

1. The true exposure ci ∼ MV N(µc,Σc), where ci is a p−vector with p as the number

of the observation time points, µc is the mean vector and Σc is a covariance matrix.

Without loss of generality, we consider a simple case with µc = 0 and Σc such that

Σc(j, k) = 1 if j = k and Σc(j, k) = ρ
|j−k|τ

I if j 6= k, with τ = 0 or 1. When τ = 0,

a compound symmetry covariance structure is obtained, and the intra-class correlation

ρICS
was set at 0.3, 0.6, 0.9. When τ = 1, an AR(1) structure is obtained. To put these

two covariance scenarios on an equal footing, we set the average correlation of ρIAR
over

[0, t∗] equal to ρICS
, i.e.,

1

t∗

∫ t∗

0

(ρIAR
)tdt = ρICS

. (15)

Solving this equation, we obtained the corresponding values of ρIAR
as 0.938, 0.978,

0.996.

2. Cij = cij+eij , eij ∼ N(0, ∆), with the measurement error variance ∆ given by ∆ = 1
ρ2−1,

where ρ is the correlation between Cij and cij and varied as 0.3, 0.6, 0.9.

3. A cumulative average exposure x(t) and X(t) was then generated by

xi(tk) =
1

tk − t0

k
∑

m=1

ci(tm−1)(tm − tm−1), Xi(tk) =
1

tk − t0

k
∑

m=1

Ci(tm−1)(tm − tm−1),

for 1 6 k 6 p, over the time points {t0, t1, t2, · · · , tp}. In applications, time could be

expressed in terms of participant’s age, time on the study, calendar year, or in some

other appropriate manner. In our simulations, for simplicity, we set tj = 5 ∗ j, for

j = 0, 1, · · · , 10. Thus, there were 10 exposure measurements in total over the study

period of t∗ = 50 years. This scheme was patterned after the measurement schedule in

our motivating example, HPFS, and the other Harvard cohort studies.
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The survival data were generated according to the hazard model λ(t|x(t)) = λ0(t) exp(βx(t)),

where x(t) is as defined in (14). Appendix A.2 presents details of the data generation.

Since survival is usually measured on a finer time scale than that defined by the exposure

measurement schedule, we generated the survival time on a finer time scale, based on tj = j,

for j = 0, 1, · · · , 50.

Table 1 presents the results for the compound symmetry structure. The results for the

AR(1) structure, which were similar, are presented in Appendix A.3. Overall, the RRC

estimator performed very well in this time-varying cumulatively updated average exposure

setting, with the good performance being robust across different levels of the autocorrelation

in the true exposure process and the different correlation structures. The bias was very

small for all scenarios and became even smaller as the autocorrelation became higher. An

increased bias was seen with the AR(1) correlation structure when the autocorrelation was

low, consistent with the fact that within-person variability increases more quickly with time

for the AR(1) structure than the CS structure. However, the worst bias seen was only 5%.

The coverage probability was nearly accurate in all cases considered. Increasing the frequency

of exposure measurements improved the results even more (data not shown), although the

bias was already minimal with the exposure frequencies investigated here.

[Table 1 about here.]

6. Motivating example

We illustrated our method in the Health Professionals’ Follow-Up Study (HPFS) of the

relationship between the total calcium intake and risk of fatal prostate cancer (Giovannucci

et al., 2006). HPFS is an ongoing prospective cohort study of cancer and heart disease among

51529 U.S. male health professionals who responded to a mailed baseline questionnaire in

1986, asking about demographics, family history of disease, diet, smoking, physical activity,
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medications and other lifestyle factors. Every two years, study participants receive question-

naires to update health status information and potential risk factors. Total vitamin E intake

was the only important confounder in this study. The food frequency questionnaire (FFQ)

were administered in 1986, 1990, 1994, 1998 and 2002 to assess dietary intake, including

total calcium and vitamin E. After excluding men with a history of cancer at baseline, or

who did not adequately complete the 1986 dietary questionnaire, there were 390703 person-

year observed in the main study with 357 fatal prostate cancer cases among 47760 subjects

between 1986 to 2008. In our analysis, we used age as the time scale, as is more suitable

for epidemiologic studies of chronic disease (Korn, Graubard, and Midthune, 1997), hence a

left-truncated analysis is implied here.

The FFQ measures dietary intake with some degree of error and more reliable information

can be obtained from a diet record(DR) (Willett, 1998). In the HPFS validation study, 2

weeks of weighed diet records (DR) were observed in 127 person-years among 127 study

participants. To increase the validation study sample size, we included another dietary

validation study, the Eating at America’s Table Study (EATS) to our analysis (Subar et al.,

2001). EATS is a study that was designed to validate the Diet History Questionnaire (DHQ),

a food frequency questionnaire (FFQ) similar to the one used in HPFS. In EATS, the

exposures was validated by four telephone-administered 24-hour dietary recalls. The left

half of Table 2 compares the basic characteristics of these two validation studies, which are

very similar. To ascertain the validity of the transportability assumption of EATS to HPFS,

we ran a regression analysis of DR on FFQ for each study, adjusting for age in 5-year age

groups. The slope for total calcium intake was 0.445 in EATS and 0.371 in HPFS. For total

vitamin E, the slope was 0.818 in EATS and 0.762 in HPFS. Because they were so similar, we

accepted the reasonableness of the transportability assumption here. The rightmost major
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column of Table 2 shows the basic characteristics of the HPFS main study, so they can be

compared to the characteristics of the two validation studies.

We empirically investigated the suitability of the transportability assumption with further

analysis. We defined a binary indicator Studyind with value 1 if the study was HPFS and 0

if the study was EATS, and then ran the regression model

Calcdr = γ0 + γ1Calcffq + γ2Calcffq ∗ Studyind, (16)

and similarly for vitamin E. To test the hypothesis that there is no between-studies variation

in the slope, i.e. γ2 = 0 by age group, we fit regression models by 5-year age groups to the

combined validation study, using model (16). We found that the null hypothesis was accepted

for most age groups, except in age group 56 - 60, the p−value for the total calcium intake by

study interaction was less than 0.001, and in age group older than 71, the p−value for the

total vitamin E intake by study interaction was less than 0.03. So in our analysis, when we

considered both total calcium intake and total vitamin E intake as error-prone exposures, we

excluded the EATS study participants from the risk sets in those ages. When we considered

only the total calcium intake to be measured with error, we kept the EATS study participants

in the risk set of age 71 and older, but we excluded the EATS study subjects from the age

of 56 - 60 risk sets.

Table 3 gives the results of the RRC method for time-varying exposures developed in

this paper compared to the naive Cox approach. The relative risks are given in units of

1838 mg/day for total calcium intake to facilitate comparison of the result reported in

the original publication of these data (Giovannucci et al., 2006), where 1838 mg/day was

the difference between the median of the top quintile and the median of bottom quintile.

We performed the analysis using only the HPFS validation study and using both HPFS

and EATS validation studies. Because the HPFS validation study had 127 person-year

observations for 127 subjects, we grouped the risk sets by 4-year age interval to stabilize
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the estimates. This was not necessary when we included both validation studies. The results

show that with more data in the validation study, more stable and reasonable estimates

are obtained. From the results including both HPFS and EATS validation studies, we can

see that the under-estimation of the effect of calcium intake on fatal prostate cancer from

the naive Cox approach was corrected by the RRC estimate. Total calcium intake had a

significant positive association with fatal prostate cancer and the total vitamin E intake was

weakly inversely associated, perhaps not associated at all.

[Table 2 about here.]

[Table 3 about here.]

7. Discussion

In this paper, we have considered the Cox survival regression model with time-dependent

covariates subject to measurement error. We derived a bias-corrected point and interval

estimate of the relative risk using a RRC approach. We emphasized the main study/external

validation study design, which arises commonly in nutritional epidemiology, but has been

given less attention in the literature than other designs, particularly in the setting of time-

varying covariates. We focused on cumulatively updated total or average exposure, which is

often of interest in nutritional and environmental epidemiology, but the approach could also

be applied to analysis of time-varying point exposures. In addition, the approach extends in

a straightforward way to cover left truncation. A FORTRAN program for the method is avail-

able at http://www.hsph.harvard.edu/faculty/spiegelman/rrc timevarying method.f.

Simulation studies in the setting of cumulatively updated average exposure showed that the

method performs very well.

Clearly, the effectiveness of the method depends on the size of the validation study. The

analysis of the HPFS data in Section 6 illustrates this point. When we used only the data
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from the 127 participants in the HPFS validation study, and with vitamin E assumed to be

measured without error, a very wide confidence interval for the effect of calcium intake was

obtained, leading to results that were not very meaningful. When we included validation

data data from the 573 men in the EATS study, the results were much more reasonable, and

significant p-values for both calcium intake and vitamin E were obtained, even when both

these nutrients were regarded as subject to with error.

To date, most validation studies available in nutritional epidemiology have only one mea-

surement per subject. Only the Nurses Health Study has validation data repeatedly assessed

over time, and this is among a small number of subjects. The limited validation data makes it

challenging to implement measurement error correction for time-varying exposures. However,

we understand that new validation studies are underway, including one within our own

group at the Nurses Health Study, involving a much larger number of subjects and repeated

exposure assessments over time. Such expanded validation studies will provide a firmer basis

of measurement error correction, and the method we have developed here provides a practical

and reliable way for carrying out such correction.

In summary, measurement error in time-varying covariates, including those that are func-

tions of a series of exposure measurements available up to a failure time, is an extremely

common problem in nutritional and environmental epidemiology. The method developed

in this paper provides a mechanism for handling this problem that is well-suited to these

applications.
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Appendices

A. Some details for the simulation study in Section 5

A.1 Preliminary simulations for time-invariant exposures

We considered a conditional normal error model with a time-invariant covariate, with key

parameters motivated by the Health Professionals’ Follow-up Study (HPFS) as considered

in Section 6. In this model, we first generated the true exposure c ∼ N(E(c), Var(c)) with

E(c) = 0.45, Var(c) = 0.0225 as in HPFS. The surrogate exposure C has E(C) = 0.5,

Var(C) = 0.04. Define ω = Var(C)/Var(c). For each c, we generated the surrogate exposure C

from the conditional distribution C|c, which also had a normal distribution with conditional
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mean E(C|c) = α+ξc and variance Var(C|c) = ω(1−ρ2)Var(c), where ρ = Corr(c, C), which

we allowed to vary as 0.3, 0.6, 0.9, ξ = ρ
√

ω and α = E(C) − ξE(c).

The survival time T 0 was generated by T 0 = 1
ν
(−e−βc log(1 − U1))

1/θ with U1 ∼ U(0, 1).

Then, the follow-up time, T = min(T 0, V, t∗), for t∗ = 50 and V is the censoring time

assuming to be exponential with a rate of 1% per year. And, the event indicator, D =

I(T 0 6 min(V, t∗)).

The simulation results are given in Table 4. We found equally good performance of the

ORC and RRC methods with Var(c) = 0.0225. When we increased Var(c) to be greater than

1, for example, as shown in lower part of Table 4, with the means chosen as previously, but

with Var(c) = 1.0 and Var(C) = 2.0, then the results indicated a clear advantage of the

RRC method over the ORC method, especially in the common disease situation. Additional

simulations demonstrated that this advantage became even greater when Var(c) got even

bigger (data not shown).

Figure 1 shows the percent change in the regression slope α̂1(t) as a function of the failure

time t, where the percent change of α̂1(t) is with respect to the value of α̂1 from the ORC

method, and is defined as 100 ∗ [α̂1(t) − α̂1]/α̂1. We fitted a lowess smoother to the data

from 1000 simulations. We can see from Figure 1 that, with a relatively big variance, i.e.

Var(c) = 1 in the conditional normal error model, there was a big change of α̂1(t) with

respect to the baseline value of α̂1 estimated by ORC when the disease was common, while

the change was much smaller when the disease was rare. However, with a small variance, i.e.

Var(c) = 0.0225, the changes in α̂1(t) over time were both very small no matter whether the

disease was common or rare. This exactly explained why the RRC estimates were superior

in the scenario with big Var(c), especially in the common disease situation, and agreed with

the results presented in Table 4.

[Table 4 about here.]
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[Figure 1 about here.]

A.2 Simulation of survival data for time-varying exposures

The following is the way to generate the survival time T 0 for cumulatively updated average

exposure x(t).

The cumulative incidence function for T 0 was

F (t|x(t)) = 1 − exp(−
∫ t

0

λ(s|x(s)) ds) = 1 − exp(−θνθ

∫ t

0

sθ−1 exp(βx(s)) ds) (A.1)

If tk 6 t < tk+1 for some integer k, we next derived the cumulative incidence function for

the cumulatively updated average exposure, x(t), which is

F (t|x(t)) = 1 − exp

{

−θνθ

(

k−1
∑

i=0

∫ ti+1

ti

sθ−1 exp(βx(s)) ds +

∫ t

tk

sθ−1 exp(βx(s)) ds

)}

= 1 − exp

{

−θνθ

(

k−1
∑

i=0

exp(βx(ti))

∫ ti+1

ti

sθ−1 ds + exp(βx(tk))

∫ t

tk

sθ−1 ds

)}

= 1 − exp

{

−νθ

(

k−1
∑

i=0

exp(βx(ti))(t
θ
i+1 − tθi ) + exp(βx(tk))(t

θ − tθk)

)}

(A.2)

with t0 = 0, x(0) = 0. For each subject i, we generated the censoring time Vi in the same

way as in Appendix A.1. Then, for each subject i, we calculated Fij using (A.2) as

Fij = 1 − exp

{

−νθ

(

j−1
∑

u=0

exp(βxi(tu))(t
θ
u+1 − tθu)

)}

at each observation time tj , j = 1, · · · , p. After generating Ui ∼ U(0, 1), if Fij 6 Ui < Fi,j+1,

we solved the following equation for t:

Ui = 1 − exp

{

−νθ

(

j−1
∑

i=0

exp(βx(ti))(t
θ
i+1 − tθi ) + exp(βx(tj))(t

θ − tθj )

)}

. (A.3)

Then the solution of (A.3) will be the survival time, which is given by

T 0
i =

{

tθj − exp(−βx(tj))

(

ν−θ log(1 − Ui) +

j−1
∑

i=0

exp(βx(ti))(t
θ
i+1 − tθi )

)}

1

θ

. (A.4)

Hosted by The Berkeley Electronic Press



Survival analysis with error-prone time-varying covariates: a risk set calibration approach 23

If Ui > Fi,p, then we set T 0
i to be a big constant M > t∗. The follow up time Ti =

min(T 0
i , Vi, t

∗) and Di = I(T 0
i 6 min(Vi, t

∗)).

A.3 The results with AR(1) correlation structure for time-varying exposures

Table 5 presents the results for the AR(1) covariance structure using ρIAR
= 0.938, 0.978,

0.996, which can be compared with the results in Table 1 for the CS covariance structure in

the paper.

[Table 5 about here.]

B. Asymptotic distribution theory for β̂rrc

B.1 Approximate consistency of β̂rrc

We assume the following regularity conditions:

1. supt∈[0,t∗]‖α̂0(t) −α0(t)‖
p−→ 0, supt∈[0,t∗]‖α̂1(t) −α1(t)‖

p−→ 0,

supt∈[0,t∗]‖α̂2(t) −α2(t)‖
p−→ 0.

2. s(0)(β, t), s(1)(β, t) and s(2)(β, t) are continuous functions of β ∈ B, uniformly in t ∈

[0, t∗]. s(0)(β, t), s(1)(β, t) and s(2)(β, t) are bounded on B × [0, t∗]; s(0)(β, t) is bounded

away from zero on B × [0, t∗].

3. Define

S(2)(β, t) = n1
−1

n1
∑

i=1

Ym(i, t)







x̂i(t)

Zi(t)







⊗2

exp{βt
1x̂i(t) + βt

2Zi(t)},

then for j = 0, 1, 2, supt∈[0,t∗],β∈B‖S(j)(β, t) − s(j)(β, t)‖ p−→ 0. For a vector v, we denote

v⊗0 = 1, v⊗1 = v, v⊗2 = vv′.

Denote the left-hand side of equation (6) as U(β) and notice that U(β) = ∂L(β)/∂β,

where L(β) is the log-likelihood function with the expression:

n−1
1 L(β) = n−1

1

n1
∑

i=1

∫ t∗

0

[(βt
1x̂i(t) + βt

2Zi(t)) − log{S(0)(β, ψ̂, t)}]Ni(dt).
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We can show that, under the regularity condition 1 - 3, n−1
1 L(β)

P−→ H(β) with

H(β) =

∫ t∗

0

[βts(1)(t) − log{s(0)(β, t)}s(0)(t)] dt

for each β in its parameter space B, with s(m)(β, t) and s(m)(t) defined as follows:

s(m)(β, t) = E









Ym(t)







x̃i(ψ̂, t)

Zi(t)







⊗m

exp{βt
1x̃(t) + βt

2Z(t)}









,

where x̃(t) = α0(t) +α1(t)X(t) +α2(t)Z(t), and

s(m)(t) = λ0(t)E









Ym(t)







x̃i(ψ̂, t)

Zi(t)







⊗m

E
{

exp(βt
01x(t) + βt

02Z(t))|T > t,X(t),Z(t)
}









,

where m = 0, 1, 2, β0 = (β01,β02) is the true value of β = (β1,β2).

Then, the first derivative, h(β)
.
= ∂H(β)/∂β, is

h(β) =

∫ t∗

0

[s(1)(t) − {s(1)(β, t)/s0(β, t)}s(0)(t)] dt

and the second derivative, −I(β)
.
= ∂2H(β)/∂β2, is

−I(β) = −
∫ t∗

0

[

s(2)(β, t)

s(0)(β, t)
−
{

s(1)(β, t)

s(0)(β, t)

}⊗2
]

s(0)(t) dt.

We assume I(β) is positive definite, then the second derivative is negative definite. Set

h(β∗) = 0, thus H(β) is a concave function with a unique maximum at β = β∗. Since β̂rrc

maximizes the concave function n−1
1 L(β), by convex analysis (Andersen and Gill, 1982), we

have β̂rrc
P−→ β∗.

B.2 Asymptotic normality of β̂rrc

Since the regression coefficients ψ(t) = (α0(t),α1(t),α2(t)) are estimated from the validation

study, the variability of these estimates needs to be taken into account. We write the score

equation (6) as U(β,ψ) to indicate explicitly the dependence on ψ(t). Denote the true value

of ψ(t) by ψ0(t), which is now estimated by ψ̂(t). Then, our estimating equation (6) is now
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U(β̂rrc, ψ̂) = 0. Using Taylor’s theorem, we can write

0 = U(β̂rrc, ψ̂) ≈ U(β∗,ψ0) +
∂U(β∗,ψ0)

∂β
(β̂rrc − β∗) +

∂U(β∗,ψ0)

∂ψ
(ψ̂ −ψ0).

Then,

n
1

2

1 (β̂rrc − β∗) ≈
[

−n−1
1 · ∂U(β∗,ψ0)

∂β

]−1

· n− 1

2

1

[

U(β∗,ψ0) +
∂U(β∗,ψ0)

∂ψ
(ψ̂ −ψ0)

]

.

Set

Î(β∗) = −n−1
1

∂U(β∗,ψ0)

∂β
= n−1

1

n1
∑

i=1

∫ t∗

0

[

S(2)(β∗, t)

S(0)(β∗, t)
−
{

S(1)(β∗, t)

S(0)(β∗, t)

}⊗2
]

Ni(dt),

then it can be easily verified that Î(β∗)
P−→ I(β∗) by following the proof in Anderson and

Gill(1982). The matrix Î(β∗) can be estimated by Îβ in (12).

Also, it can be shown by following an argument similar to one used in the proof of theorem

2.1 in Lin and Wei (1989), that n
− 1

2

1 U(β∗) is asymptotically equivalent to n
− 1

2

1

∑n1

i=1 Gi(β
∗),

where

Gi(β
∗) =

∫ t∗

0

















x̂i(t)

Zi(t)






− s(1)(β∗, t)

s(0)(β∗, t)











Ni(dt)

−
∫ t∗

0

Ym(i, t) exp(β∗
1x̂i(t) + β∗

2Zi(t))

s(0)(β∗, t)

















x̂i(t)

Zi(t)






− s(1)(β∗, t)

s(0)(β∗, t)











F̃ (dt)

with F̃ (t) = E(
∑n1

i=1 Ni(t)/n1).

So n
− 1

2

1 U(β∗)
D−→ N(0,M1(β

∗)) by the multivariate central limit theorem, with M1(β
∗) =

E(Gi(β
∗)⊗2), which can be estimated by Ĥβ in (13).

To show the asymptotic normality of ψ̂, denote the left-hand side of (8) as Uψ(ψ). Then

Uψ(ψ̂) = 0. By the Taylor theorem, we have

0 = Uψ(ψ̂) ≈ Uψ(ψ0) +
∂Uψ

∂ψ
(ψ0)(ψ̂ −ψ0),
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and it follows that

n
1

2

2 (ψ̂ −ψ0) ≈ −
[

1

n2

∂Uψ

∂ψ
(ψ0)

]−1

n
− 1

2

2 Uψ(ψ0)

Hence, similar reasoning shows that n
1

2

2 (ψ̂ − ψ0)
D−→ N(0,M2(ψ0)) and M2(ψ0) can be

estimated by V̂ψ̂ in (10).

Therefore, n
1

2

1 (β̂ − β∗) is asymptotically normal with zero mean and covariance matrix

V (β∗) = Î(β∗)−1M̃(β∗)Î(β∗)−1, with M̃(β∗) = M1(β
∗) + 1

n1n2

∂U(β∗,ψ0)
∂ψ

M2(ψ0)(
∂U(β∗,ψ0)

∂ψ
)T .

V (β∗) can be consistently estimated by Î−1
β Ĥβ,ψÎ

−1
β in (11).

20 November 2009
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Figure 1. Plots were based on α̂1(t) from the conditional error model simulation with both
Var(c) = 1.0 and Var(c) = 0.0225 scenario, ρ = Corr(c, C) = 0.3.
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Table 1

Results for simulation of cumulatively updated average exposure with a compound symmetry covariance structure,
for different intra-class correlation ρICS

.

Estimated β̂(ŜE[β̂]) Percent Bias(%) 95% CI Coverage(%)
ρICS

ρ Naive RRC Naive RRC Naive RRC

n1 = 50000, n2 = 150, Rare disease

0.3 0.3 0.117(0.036) 0.502(0.179) -76.6 0.4 0.0 95.6
0.6 0.318(0.058) 0.500(0.098) -36.3 0.1 12.8 94.1
0.9 0.464(0.070) 0.499(0.077) -7.3 -0.3 91.2 95.6

0.6 0.3 0.172(0.032) 0.509(0.118) -65.6 1.7 0.0 95.0
0.6 0.373(0.048) 0.498(0.069) -25.4 -0.4 24.5 95.6
0.9 0.474(0.054) 0.495(0.057) -5.1 -0.9 92.6 94.9

0.9 0.3 0.212(0.030) 0.502(0.090) -57.5 0.3 0.0 94.2
0.6 0.405(0.041) 0.503(0.056) -19.1 0.6 37.4 95.0
0.9 0.486(0.045) 0.501(0.047) -2.9 0.2 92.8 94.5

n1 = 50000, n2 = 500, Rare disease

0.3 0.3 0.119(0.036) 0.501(0.157) -76.2 0.2 0.0 94.5
0.6 0.313(0.058) 0.489(0.093) -37.3 -2.1 9.0 95.2
0.9 0.460(0.070) 0.494(0.076) -8.0 -1.1 90.8 93.7

0.6 0.3 0.172(0.033) 0.499(0.101) -65.6 -0.2 0.0 95.0
0.6 0.374(0.048) 0.499(0.066) -25.2 -0.2 24.6 95.2
0.9 0.474(0.054) 0.495(0.057) -5.2 -0.9 91.6 94.4

0.9 0.3 0.215(0.030) 0.506(0.077) -57.0 1.2 0.0 94.9
0.6 0.403(0.041) 0.498(0.052) -19.5 -0.3 34.2 94.4
0.9 0.486(0.045) 0.501(0.047) -2.9 0.2 94.4 95.4

n1 = 1000, n2 = 150, Common disease

0.3 0.3 0.105(0.035) 0.492(0.193) -79.1 -1.5 0.0 94.5
0.6 0.293(0.058) 0.490(0.103) -41.3 -2.1 4.7 94.4
0.9 0.438(0.071) 0.490(0.078) -12.5 -2.0 87.3 95.6

0.6 0.3 0.153(0.033) 0.509(0.135) -69.4 1.8 0.0 94.1
0.6 0.352(0.049) 0.503(0.076) -29.6 0.7 14.3 94.8
0.9 0.457(0.057) 0.498(0.061) -8.5 -0.5 88.2 95.1

0.9 0.3 0.185(0.031) 0.502(0.107) -62.9 0.3 0.0 94.3
0.6 0.380(0.044) 0.504(0.063) -24.1 0.8 22.0 94.1
0.9 0.466(0.049) 0.501(0.052) -6.8 0.1 89.8 94.6

n1 = 1000, n2 = 500, Common disease

0.3 0.3 0.103(0.035) 0.483(0.167) -79.3 -3.3 0.0 94.7
0.6 0.297(0.058) 0.497(0.096) -40.7 -0.7 6.1 95.4
0.9 0.440(0.071) 0.492(0.077) -12.1 -1.7 86.9 94.7

0.6 0.3 0.152(0.033) 0.498(0.113) -69.6 -0.4 0.0 93.8
0.6 0.348(0.049) 0.497(0.071) -30.5 -0.5 12.5 93.9
0.9 0.460(0.057) 0.501(0.060) -8.0 0.1 89.9 95.0

0.9 0.3 0.187(0.031) 0.504(0.089) -62.5 0.8 0.0 96.2
0.6 0.378(0.044) 0.503(0.059) -24.3 0.5 21.8 93.9
0.9 0.464(0.049) 0.498(0.051) -7.3 -0.4 88.3 95.5

True β = 0.5, the study duration t∗ = 50, the number of simulation replications B = 1000.
In the rare disease situation, the cumulative incidence is about 1% with n1 = 50000.
In the common disease situation, the cumulative incidence is about 50% with n1 = 1000.
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Table 2

Basic characteristics of the study population.

Validation study Main study

Variable Exposure HPFS (n21 = 127, Age:(39 - 75)) EATS (n22 = 446, Age:(21 - 76)) HPFS(n1 = 47760)

type Mean(s.d.) Range Correlation Mean(s.d.) Range Correlation Mean(s.d.) Range

Total calciuma DR 0.43(0.12) (0.24, 0.87) 0.46(0.16) (0.18, 1.02) - -

(1838 mg/day) FFQ 0.47(0.17) (0.25, 1.17) 0.51 0.53(0.22) (0.14, 1.54) 0.61 0.50(0.21) (0.07,3.96)

Total vitamin Eb DR 1.32(0.42) (0.85, 2.72) 1.36(0.56) (0.57, 3.03) - -

(mg/day) FFQ 1.20(0.49) (0.71, 2.97) 0.89 1.33(0.53) (0.33, 2.87) 0.79 1.42(0.54) (0.48,3.02)

aTotal calcium intake is energy adjusted and the unit is 1838 mg/day.
bTotal vitamin E intake is energy adjusted and log10 transformed.
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Table 3

Estimated coefficients and standard errors for HPFS of the relationship between total calcium intake and the fatal prostate cancer incidence.

Total Calcium intakea Total Vitamin E intakeb

Method Validation study Estimate(S.E.) RR(95% C.I.) p-value Estimate(S.E.) RR(95% C.I.) p-value

Uncorrected N/A 0.587(0.239) 1.80[1.13,2.87] 0.014 -0.274(0.103) 0.76[0.62,0.93] 0.008

RRC, HPFS 0.623(0.653) 1.87[0.52,6.71] 0.340 -0.342(0.160) 0.71[0.52,0.97] 0.033
Vit-E error-free HPFS + EATS 1.359(0.500) 3.89[1.46,10.37] 0.007 -0.374(0.120) 0.69[0.54,0.87] 0.002

RRC, Cal,Vit-E HPFS 0.150(0.766) 1.16[0.26,5.22] 0.845 -0.203(0.447) 0.82[0.34,1.96] 0.650
both error-prone HPFS + EATS 0.734(0.371) 2.08[1.01,4.31] 0.048 -0.370(0.201) 0.69[0.47,1.02] 0.065

aTotal calcium intake is energy adjusted and the unit is 1838 mg/day.
bTotal vitamin E intake is energy adjusted and log10 transformed.
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Table 4

Results for simulation of time-invariant exposure with a conditional normal error model, for different correlation ρ
between c and C.

Estimated β̂(ŜE[β̂]) Percent Bias(%) 95% CI Coverage(%)
ρ Naive ORC RRC Naive ORC RRC Naive ORC RRC

Parameters : E(c) = 0.45, Var(c) = 0.0225, E(C) = 0.5, Var(C) = 0.04

n1 = 50000, n2 = 150, Rare disease

0.3 0.114(0.223) 0.590(1.361) 0.559(1.313) -77.2 18.0 11.7 59.9 96.9 98.1

0.6 0.226(0.223) 0.509(0.509) 0.512(0.514) -54.7 1.7 2.4 76.2 95.5 95.4

0.9 0.339(0.223) 0.504(0.333) 0.505(0.333) -32.2 0.7 1.0 88.7 95.2 94.7

n1 = 50000, n2 = 500, Rare disease

0.3 0.114(0.223) 0.524(1.029) 0.539(1.052) -77.2 4.9 7.9 58.1 95.9 96.6

0.6 0.224(0.223) 0.500(0.500) 0.501(0.502) -55.2 0.0 0.3 75.6 96.4 96.7

0.9 0.335(0.223) 0.497(0.331) 0.497(0.331) -33.0 -0.6 -0.6 87.7 95.5 95.3

n1 = 1000, n2 = 150, Common disease

0.3 0.109(0.224) 0.503(1.112) 0.512(1.275) -78.1 0.6 2.4 58.7 97.6 98.6

0.6 0.230(0.225) 0.520(0.513) 0.523(0.527) -54.0 4.0 4.6 78.2 95.2 95.9

0.9 0.341(0.225) 0.505(0.334) 0.507(0.336) -31.7 1.0 1.3 88.9 94.7 95.4

n1 = 1000, n2 = 500, Common disease

0.3 0.115(0.225) 0.515(1.034) 0.530(1.086) -77.1 3.1 6.0 59.4 95.7 96.7

0.6 0.227(0.224) 0.508(0.503) 0.509(0.506) -54.5 1.6 1.7 77.0 95.9 96.0

0.9 0.334(0.225) 0.494(0.333) 0.494(0.334) -33.3 -1.2 -1.1 88.3 94.7 95.0

Parameters : E(c) = 0.45, Var(c) = 1.0, E(C) = 0.5, Var(C) = 2.0

n1 = 50000, n2 = 150, Rare disease

0.3 0.107(0.032) 0.557(0.316) 0.566(0.327) -78.6 11.4 13.2 0.0 94.8 93.8

0.6 0.211(0.032) 0.505(0.095) 0.507(0.103) -57.7 0.9 1.5 0.0 96.0 95.5

0.9 0.319(0.032) 0.502(0.054) 0.503(0.056) -36.3 0.4 0.7 0.0 94.5 94.9

n1 = 50000, n2 = 500, Rare disease

0.3 0.105(0.032) 0.508(0.172) 0.516(0.185) -79.0 1.6 3.2 0.0 95.8 95.8

0.6 0.212(0.032) 0.501(0.081) 0.503(0.084) -57.6 0.2 0.6 0.0 95.8 95.8

0.9 0.318(0.032) 0.500(0.051) 0.500(0.052) -36.5 -0.1 0.0 0.0 95.9 95.6

n1 = 1000, n2 = 150, Common disease

0.3 0.095(0.032) 0.474(0.220) 0.494(0.276) -81.1 -5.3 -1.1 0.0 89.1 89.1

0.6 0.198(0.032) 0.473(0.095) 0.506(0.116) -60.4 -5.3 1.3 0.0 91.6 93.8

0.9 0.311(0.033) 0.490(0.056) 0.500(0.061) -37.7 -2.1 0.0 0.0 94.6 95.6

n1 = 1000, n2 = 500, Common disease

0.3 0.095(0.032) 0.457(0.170) 0.506(0.207) -81.0 -8.6 1.3 0.0 93.6 95.1

0.6 0.198(0.032) 0.468(0.082) 0.500(0.093) -60.5 -6.4 0.0 0.0 91.3 94.7

0.9 0.310(0.033) 0.487(0.053) 0.497(0.056) -38.0 -2.6 -0.5 0.0 94.3 95.6

True β = 0.5, the study duration t∗ = 50, the number of simulation replications B = 1000.
In the rare disease situation, the cumulative incidence is about 1% with n1 = 50000.
In the common disease situation, the cumulative incidence is about 50% with n1 = 1000.
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Table 5

Results for simulation of cumulatively updated average exposure with an AR(1) covariance structure, for different
intra-class correlation ρIAR

.

Estimated β̂(ŜE[β̂]) Percent Bias(%) 95% CI Coverage(%)
ρIAR

ρ Naive RRC Naive RRC Naive RRC

n1 = 50000, n2 = 150, Rare disease

0.938 0.3 0.202(0.031) 0.500(0.095) -59.7 0.0 0.0 95.2
0.6 0.396(0.043) 0.500(0.059) -20.9 0.0 30.6 94.6
0.9 0.482(0.047) 0.499(0.049) -3.6 -0.3 92.7 94.8

0.978 0.3 0.216(0.030) 0.506(0.089) -56.7 1.2 0.0 94.2
0.6 0.405(0.040) 0.498(0.055) -19.0 -0.5 33.7 95.7
0.9 0.482(0.044) 0.497(0.046) -3.6 -0.7 94.3 96.1

0.996 0.3 0.223(0.029) 0.503(0.085) -55.4 0.7 0.0 94.4
0.6 0.411(0.039) 0.504(0.053) -17.8 0.7 39.5 94.6
0.9 0.486(0.043) 0.501(0.045) -2.7 0.1 93.2 94.5

n1 = 50000, n2 = 500, Rare disease

0.938 0.3 0.204(0.031) 0.501(0.081) -59.2 0.3 0.0 94.5
0.6 0.392(0.043) 0.492(0.055) -21.7 -1.6 25.7 94.6
0.9 0.481(0.047) 0.497(0.049) -3.8 -0.5 92.1 93.5

0.978 0.3 0.216(0.030) 0.498(0.074) -56.9 -0.5 0.0 94.5
0.6 0.405(0.040) 0.499(0.051) -18.9 -0.1 35.4 94.6
0.9 0.481(0.044) 0.496(0.046) -3.8 -0.8 92.4 93.7

0.996 0.3 0.225(0.029) 0.506(0.072) -55.0 1.2 0.0 95.3
0.6 0.409(0.039) 0.498(0.049) -18.3 -0.3 37.1 94.2
0.9 0.486(0.043) 0.501(0.044) -2.7 0.1 94.2 95.1

n1 = 1000, n2 = 150, Common disease

0.938 0.3 0.178(0.031) 0.496(0.109) -64.5 -0.9 0.0 93.7
0.6 0.368(0.045) 0.493(0.065) -26.3 -1.4 17.4 94.8
0.9 0.460(0.050) 0.495(0.054) -8.0 -1.0 87.9 96.0

0.978 0.3 0.190(0.031) 0.507(0.105) -62.0 1.5 0.0 93.5
0.6 0.382(0.044) 0.502(0.062) -23.6 0.5 22.1 94.1
0.9 0.464(0.048) 0.499(0.051) -7.1 -0.3 88.9 95.4

0.996 0.3 0.194(0.030) 0.501(0.101) -61.3 0.1 0.0 93.9
0.6 0.385(0.043) 0.503(0.061) -22.9 0.7 23.1 94.4
0.9 0.467(0.047) 0.501(0.050) -6.6 0.1 89.4 94.3

n1 = 1000, n2 = 500, Common disease

0.938 0.3 0.176(0.031) 0.489(0.092) -64.7 -2.2 0.0 94.6
0.6 0.370(0.045) 0.498(0.060) -25.9 -0.5 17.4 95.6
0.9 0.461(0.050) 0.496(0.053) -7.8 -0.8 88.1 94.4

0.978 0.3 0.189(0.031) 0.497(0.086) -62.1 -0.6 0.0 94.1
0.6 0.378(0.044) 0.498(0.057) -24.4 -0.4 19.9 93.7
0.9 0.467(0.048) 0.501(0.051) -6.7 0.2 89.1 94.1

0.996 0.3 0.195(0.030) 0.503(0.084) -60.9 0.6 0.0 96.3
0.6 0.384(0.043) 0.502(0.056) -23.3 0.3 23.4 93.3
0.9 0.465(0.047) 0.498(0.049) -7.0 -0.3 88.2 95.3

True β = 0.5, the study duration t∗ = 50, the number of simulation replications B = 1000.
In the rare disease situation, the cumulative incidence is about 1% with n1 = 50000.
In the common disease situation, the cumulative incidence is about 50% with n1 = 1000.
ρIAR

= 0.938, 0.978, 0.996 are respectively in an equal footing with ρICS
= 0.3, 0.6, 0.9 according to the equation (15).
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