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Principled sure independence screening for Cox models

with ultra-high-dimensional covariates

Sihai Dave Zhao and Yi Li

Abstract

It is rather challenging for current variable selectors to handle situations where the

number of covariates under consideration is ultra-high. Consider a motivating clinical

trial of bortezomib for the treatment of multiple myeloma, where overall survival and

expression levels of 9072 probesets were measured for each of 112 patients with the

goal of identifying genes that predict survival after treatment. This dataset defies

analysis even with regularized regression. Some remedies have been proposed for the

linear model and for generalized linear models, but there are few solutions in the

survival setting and, to our knowledge, no theoretical support. Furthermore, existing

strategies often involve tuning parameters that are difficult to interpret. In this paper

we propose and theoretically justify a principled method for reducing dimensionality in

the analysis of censored data by selecting only the important covariates. Our procedure

involves a tuning parameter that has a simple interpretation as the desired false positive

rate. We present simulation results and apply the proposed procedure to analyze the

aforementioned myeloma study.

KEYWORDS: Principled sure independence screening; Multiple myeloma; variable

selection; sure independence screening; Cox model; ultra-high-dimensional covariates.

RUNNING TITLE: Principled sure independence screening
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1 Introduction

An urgent need has emerged in the field of biomedicine for statistical procedures capable

of analyzing and interpreting vast quantities of data. Selecting the best predictors of an

outcome is a key step in this process, but traditional methods of variable selection, such as

best subset selection or backward selection, have been found to be unstable and inaccurate

when the dimension of the covariates is close to the number of observations. Furthermore,

when there are more covariates than observations, as is often the case in genomic studies,

these methods can fail completely.

To address these issues, recent work has focused on regularized regression procedures

such as the lasso (Tibshirani, 1996) and adaptive lasso (Zou, 2006), the elastic net (Zou and

Hastie, 2005), the smoothly clipped absolute deviation estimator (Fan and Li, 2001), and the

Dantzig selector (Candès and Tao, 2007). These methods can handle the high-dimension-

low-sample-size paradigm, have superior predictive accuracy, and under certain conditions

can achieve the oracle property (Fan and Li, 2001): they are as accurate and efficient as an

estimator which knows a priori which variables are truly important.

However, these procedures only work well with a moderate number of covariates. When

the dimension of the covariates is ultra-high, both traditional and regularization methods

have problems with speed, stability, and accuracy (Fan and Lv, 2008). For example, many

of the bounds on the accuracy of these methods involve factors of log pn, where pn is the

dimension of the covariates (Candès and Tao, 2007; Wainwright, 2009). Thus the theoret-

ical performance of these methods degrades as pn becomes very large, yet this ultra-high

dimensionality characterizes many real-world biological datasets. Our work in this paper is

motivated by one such dataset, in the area of multiple myeloma.

Multiple myeloma is the world’s second-most common hematological cancer and patients

often present with bone lesions, immunological disorders, and renal failure. An effective

treatment is still being sought, as only about 10% of patients survive 10 years after diag-

nosis. A deeper understanding of the molecular etiology of this disease would lead to novel
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therapeutic targets and more accurate risk classification systems. We studied overall survival

for 112 multiple myeloma patients enrolled in a clinical trial of bortezomib (Mulligan et al.,

2007). With expression level measurements on 9072 probesets, this dataset defies analysis

even with regularized regression.

Without tools to deal with this type of ultra-high dimensionality, many analysts have first

employed an ad-hoc initial univariate screening step to reduce the number of covariates under

consideration. The remaining covariates could then be fed to one of the more sophisticated

regularization techniques in a second stage. But it was only recently that Fan and Lv (2008)

placed this ad-hoc practice on firm theoretical ground. They showed that screening could

indeed improve the performance of regularization methods. They suggested fitting marginal

regression models for each covariate, choosing a threshold, and retaining those covariates for

which the magnitudes of the parameter estimates are above the threshold. When the data

come from an ordinary linear model with normal errors, Fan and Lv (2008) showed that this

pre-screening procedure, which they termed sure independence screening (SIS), has desirable

theoretical properties. Fan and Song (2010) later gave theoretical justification for using SIS

with generalized linear models.

But two important problems remain. First, one common type of outcome data seen in

clinical settings, including in our myeloma dataset, are survival times, which are subject to

censoring. Regularized regression methods for censored observations have been studied, as

reviewed in Li (2008), but these are subject to the same issues mentioned above when the

dimension of the covariates is ultra-high. There is thus a need for a pre-screening procedure

in this setting, but the results of Fan and Lv (2008) and Fan and Song (2010) cannot

be applied because the issue of censoring is not addressed. Several ad-hoc solutions are

available from Tibshirani (2009) and Fan et al. (2010), but none of these proposals has much

theoretical support. The extension of the theoretical sure screening results to censored data

is not immediate because it turns out that certain conditions on the relationship between the

covariates and the censoring distribution are required for screening to have good theoretical
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properties, an issue which does not emerge with uncensored data.

The second problem is that existing screening procedures require choosing a threshold

to dictate how many variables to retain, but there are no principled methods for making

such a choice, making the resulting screened models difficult to evaluate. The threshold can

be thought of as a regularization parameter, which in the regression setting is ordinarily

chosen by optimizing out-of-sample prediction error using cross-validation or generalized

cross-validation. However, this approach is unavailable for screening procedures because no

prediction rule is ever generated.

In this paper we provide a screening method for censored survival data with ultra-high-

dimensional covariates. We also propose a new, principled method for choosing the number of

covariates to retain based on specifying the desired false positive rate. Finally, we give, to our

knowledge, the first theoretical justifications of the sure independence screening procedure

for censored data. Under the asymptotic framework where the number of covariates can

grow with the sample size, we show that with probably going to 1, our procedure will select

all of the important variables with a false positive rate close to the prespecified level.

Our paper is organized as follows. We briefly review sure independence screening for

generalized linear models in Section 2. In Section 3 we discuss the implementation and the

theoretical properties of our principled sure independence screening procedure, and present

simulation results in Section 4. Section 5 describes our analysis of the myeloma dataset, and

we conclude with a discussion in Section 6. All proofs are given in the Appendix.

2 Sure independence screening in generalized linear

models

We first briefly review the sure independence screening formulation of Fan and Song (2010).

For subjects i = 1, . . . , n let Zi = (Zi1, . . . , Zipn) be the pn-dimensional covariate vector.

Assuming that observations Yi come from an exponential family, we model E(Yi | Zi) as
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some function of a linear predictor αT
0 Zi with parameter vector α0 = (α01, . . . , α0pn). When

pn is much larger than n we are unable to estimate α0 with conventional procedures. To

reduce pn, sure independence screening proceeds by regressing Yi on each Zij individually to

calculate marginal maximum likelihood estimates β̂j. The final screened model retains all

covariates j : |β̂j| ≥ γn for some prespecified constant cutoff γn.

Fan and Song (2010) showed that under certain conditions, if γn follows an ideal rate,

this procedure has two desirable properties, namely the sure screening property and the size

control property. The former stipulates that the screened model will contain the true model

with a probability approaching 1. The latter states that if log(pn) = o(n1−2κ) where κ < 1/2,

the probability that the size of the screened model will be at most O{n2κλmax(Σ)} will also

go to 1, where Σ = var(Zi) and λmax(Σ) is the largest eigenvalue of Σ.

These results, however, are restricted to non-censored generalized linear models. Further-

more, it is difficult to translate the ideal rate for γn into a method for selecting the cutoff in

practice. Fan and Lv (2008) suggest n/log(n) or n− 1 as the number of covariates to retain

after screening, but without theoretical justification. To address these issues, we investigate

here a reliable pre-screening procedure in a survival setting, where the outcomes are subject

to right censoring, and propose a principled method for choosing γn based on controlling the

false positive rate.

3 Principled Cox sure independence screening

3.1 Method

In the context of survival analysis, we assume that the underlying survival times Ti follow a

Cox model (Cox, 1972) with the true hazard function

λ(x; Zi) = λ0(x) exp(αT
0 Zi), (1)
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where λ0(x) is unspecified. Let C̃i be potential censoring times, which are independent

of Ti conditional on Zi. Furthermore let τ > 0 be the finite study duration such that

P{min(C̃i, τ) < Ti} < 1, ensuring that enough events will be observed over [0, τ ]. The

effective censoring times are thus Ci = min(C̃i, τ). We observe Xi = min(Ti, Ci), and

δi = I(Ti ≤ Ci). Without loss of generality, we assume throughout that E(Zij) = 0 for all j.

To perform an initial screening procedure, we propose to fit marginal Cox regressions,

possibly misspecified, for each Zij individually, namely λ∗0(x) exp(βZij). Let Ni(t) = I(Xi ≤

t, δi = 1) be independent counting processes for each subject i and Yi(t) = I(Xi ≥ t) be the

at-risk processes. For k = 0, 1, . . ., define

S
(k)
j (x) = n−1

n∑
i=1

Zk
ijYi(x)λ(x; Zi), s

(k)
j (x) = E{S(k)(x)},

S
(k)
j (β, x) = n−1

n∑
i=1

Zk
ijYi(x) exp(βZij), s

(k)
j (β, x) = E{S(k)(β, x)}.

Then the maximum marginal partial likelihood estimator β̂j solves the estimating equation

Uj(β) =
n∑
i=1

∫ τ

0

{
Zij −

S
(1)
j (β, x)

S
(0)
j (β, x)

}
dNi(x) = 0. (2)

Finally, let β0j be the solution to the limiting estimation equation

uj(β) =

∫ τ

0

{
s

(1)
j (x)−

s
(1)
j (β, x)

s
(0)
j (β, x)

s
(0)
j (x)

}
dx. (3)

Define the information matrix to be Ij(β) = −∂Uj/∂β at β̂j. We will denote the final

screened model by M̂ = {j : Ij(β̂j)
1/2|β̂j| ≥ γn}. We would like a practical way of choosing

γn such that we can achieve the sure screening property while controlling the false positive

rate, or the proportion of unimportant covariates we incorrectly include in M̂. If the true

model M = {j : α0j 6= 0} has size |M| = sn, then the expected false positive rate can be
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written as

E


∣∣∣M̂ ∩Mc

∣∣∣
|Mc|

 =
1

pn − sn

∑
j∈Mc

P
{
Ij(β̂j)

1/2|β̂j| ≥ γn

}
. (4)

We can show that Ij(β̂j)
1/2β̂j has an asymptotically standard normal distribution, so we see

that γn corresponds to controlling the expected false positive rate at 2{1 − Φ(γn)}, where

Φ(·) is the standard normal cumulative distribution function.

However, we would like the false positive rate to decrease to 0 as pn increases with n,

though it can never exactly equal 0 or else γn =∞. One sensible way to do this would be to

first fix the number of false positives f that we are willing to tolerate, which would correspond

to a false positive rate of f/(pn − sn). Because sn is unknown, we can be conservative by

letting γn = Φ−1{1 − qn/2)} where qn = f/pn, so that the expected false positive rate is

2{1 − Φ(γn)} = qn ≤ f/(pn − sn). We can show that this procedure maintains the sure

screening property, and more precise arguments will be given later (Theorems 4 and 5).

We term this method a principled Cox sure independence screening procedure (abbrevi-

ated PSIS), as the cutoff γn is selected to control the false positive rate. Specifically, PSIS

is implemented as follows:

1. Fit a marginal Cox model for each of the covariates according to equation (2) to get

parameter estimates β̂j and variance estimates Ij(β̂j)
−1.

2. Fix the false positive rate qn = f/pn and let γn = Φ−1(1− qn/2).

3. Retain covariates j : Ij(β̂j)
1/2|β̂j| ≥ γn.

Our cutoff selection procedure is related to false discovery rate (FDR) methods (Ben-

jamini and Hochberg, 1995; Benjamini and Yekutieli, 2001). In particular, the FDR is

defined as |M̂ ∩ Mc|/|M̂|, which is simply the product of the false positive rate in (4)

and |Mc|/|M̂|, which is less than pn/|M̂|. Therefore, controlling the false positive rate at

qn = f/pn is equivalent to controlling the FDR at f/|M̂|, conditional on |M̂|. Bunea et al.

(2006) have in fact shown that FDR methods can also have the sure screening property,
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though only in the linear regression case.

Our screening procedure resembles the “marginal ranking” methods for censored outcome

data proposed by various authors (Fan et al., 2010; Tibshirani, 2009). However, to our

knowledge, none of these proposals has much theoretical support. A much more aggressive

method of control has been proposed by Fan et al. (2010). We show below that our proposed

procedure maintains the sure screening property, and will also control the false positive rate

at close to the nominal level. Fan and Lv (2008) also proposed an iterative sure independence

screening procedure (ISIS) for linear models, which they showed can perform better than

SIS. However, they were unable to offer theoretical support. In this paper we focus on first

understanding non-iterative screening for the Cox model.

3.2 Theoretical properties

First, under certain assumptions, we find that we can distinguish α0j, j ∈ M from α0j,

j ∈ Mc in the presence of censoring. It is this guarantee that makes marginal screening

approaches even possible.

Theorem 1 Under regularity conditions 1 and 2 and Assumptions 1–3 in the Appendix,

β0j = 0 if and only if α0j = 0, for all j = 1, . . . , pn.

Following Struthers and Kalbfleisch (1986) and under regularity conditions 1 and 2 in

the Appendix, we know that the β̂j are consistent for β0j. It is therefore natural to ask how

accurate these estimates are, and we can give a tail probability bound for β̂j.

Theorem 2 Under regularity conditions 1–5 and Assumptions 1–3 in the Appendix,

P
{√

n|β̂j − β0j| ≥ 4K[1 + C exp{2K(A+ L)}](1 + t)/H
}
≤ exp(−t2/2)

for all j = 1, . . . , pn, where K is the bound on the covariates Zij for all j, C =
∫ τ

0
λ0(x)dx <

∞, A is the bound on the parameters α0j for all j, L =
∑pn

i=1 |α0j| and is bounded by regularity

condition 3, and H is defined in regularity condition 5.
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Theorem 2 is important as it suggests that |β̂j − β0j| is at most on the order of n−1/2

with high probability. Hence in order to detect covariate j ∈M, we need |β0j| to be at least

O(n−1/2), which is indeed the case as shown by the following theorem.

Theorem 3 Under regularity conditions 1 and 2 and Assumptions 1–3 in the Appendix,

minj∈M |β0j| ≥ c2n
−κ, where κ < 1/2 and c2 is a positive constant.

Because the |β0j| are large enough to be detected with our marginal Cox regressions, and

because they reflect the importance of the Zij in the true joint model, we can prove that our

procedure maintains the sure screening property and controls the false positive rate at close

to the nominal level.

Theorem 4 (Sure screening property) Under regularity conditions 1–5 and Assump-

tions 1–3 in the Appendix, if we choose γn = Φ−1(1 − qn/2), then for κ < 1/2 and

log(pn) = O(n1/2−κ), there exists a constant c3 > 0 such that

P(M⊆ M̂) ≥ 1− sn exp(−c3n
1−2κ).

Theorem 5 (False positive control property) Under regularity conditions 1–5 and As-

sumptions 1–3 in the Appendix, if we choose γn = Φ−1(1 − qn/2), then there exists some

c4 > 0 such that

E

(
|M̂ ∩Mc|
|Mc|

)
≤ qn + c4n

−1/2,

where |M̂ ∩Mc|/|Mc| can be interpreted as the false positive rate.

It is often assumed that the true model is sparse and sn is small (Candès and Tao, 2007),

in which case Theorem 4 indicates that we will be able to retain all important covariates with

high probability. The probability bound will converge to 1 if log(pn) = O(n1/2−κ), which is

comparable to the rates allowed in Fan and Lv (2008) and Fan and Song (2010). That pn is

allowed to incease exponentially justifies the use of sure independence screening in the Cox

model when pn is ultra-high-dimensional.
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4 Simulations

To evaluate the finite-sample performance of our sure screening and false positive control

properties, we performed PSIS on simulated datasets generated from Cox models and exam-

ined its average false positive and negative rates. We simulated 200 datasets, each consisting

of pn = 1000 covariates and n = 100 subjects. We generated the covariates from a multivari-

ate normal distribution where the mean was 0 and the correlation between components Zij

and Zik was ρ|j−k| for ρ = 0.5, and 0.9. Survival times were generated from Cox models with

baseline hazards of λ0(x) = 1 and linear predictors αT
0 Zi for different parameter vectors α0.

We let the number of non-zero elements of α0 be either sn = 5 or 15 and set the first sn

components of α0 to be either all equal to 0.35 or all equal to 0.7. Censoring times were

generated uniformly between 0 and c, where c was taken such that the rate of censoring was

approximately 50%.

To explore how a few popular regularized regression techniques were affected by PSIS

with different values of qn, we followed PSIS by either lasso (Tibshirani, 1997), adaptive lasso

(Zhang and Lu, 2007), or SCAD (Fan and Li, 2002). Since the initial parameter estimates

required by adaptive lasso do not exist when pn > n, we first apply ordinary lasso to reduce

pn and then apply adaptive lasso using the remaining covariates. To select the tuning

parameters for these methods, we used the default procedures provided in the corresponding

R packages. For lasso and lasso-adaptive lasso, we used the 5-fold cross-validated partial

likelihood (Verweij and van Houwelingern, 1993) using the package penalized (Goeman,

2010). For SCAD we implemented the one-step estimator of Zou and Li (2008) with AIC

using the package SIS. We denote these two-stage procedures by PSIS-L, PSIS-L-A, and

PSIS-S, respectively.

Numerical results for our sure screening and false positive control properties, when α0j =

0.35, are reported in Table 1. The results when α0j = 0.7 are similar and are omitted for

the sake of space. We consider qn = 10r for r = −6, . . . ,−2, and also ranging from 0.1 to

1 (corresponding to no screening) in increments of 0.1. The results support our principled

10

http://biostats.bepress.com/harvardbiostat/paper111



cutoff procedure: when ρ = 0.5, the observed false positive rates closely match the nominal

qn, and when ρ = 0.9 the rates match for qn ≥ 10−3. For qn < 10−3 the observed rates are

higher than the nominal rates, but since pn = 1000 here, qn = 10−3 already corresponds to

allowing only one false positive.

Figure 1 plots the average false negative rates for PSIS against qn, which increase as qn

decreases but don’t rise dramatically until qn < 0.01. For a given qn the false negative rates

decrease with larger α0j. The performance of PSIS is not noticeably affected by the amount

of correlation. These results suggest that the tolerable false positive rate can be set fairly

low and the false negative rate will not suffer much.

The average false negative rates for PSIS-L, PSIS-L-A, and PSIS-S are also plotted in

Figure 1. The corresponding false positive rates are all very low and so are not plotted (see

Table 1). When α0j = 0.7, the false negative rates for most values of qn are below 20%,

though they can rise to 40% when ρ = 0.9. When α0j = 0.35, however, the false negative

rates can go as high as 60% even when qn is not small. This is most likely due to a low

signal-to-noise ratio, which the regularized regressions find difficult to detect. However, we

can see from the plots and from Table 1 that when qn is small and the covariates are not too

highly correlated, the PSIS-L, PSIS-L-A, and PSIS-S false negative rates are actually lower

than the false negative rates after running lasso, lasso-adaptive lasso, or SCAD alone (i.e.

qn = 1). This supports the use of PSIS prior to running regularized regression.

To assess the robustness of our procedure, we also generated 200 datasets from log-normal

models. Each dataset had n = 100 and pn = 1000, and covariates Zi were generated using

the same procedure as above, for ρ = 0.5 or 0.9. Survival times Ti were generated according

to log(Ti) = αT
0 Zi + εi, where εi followed a standard normal distribution and α0 had sn = 5

or 15 nonzero elements all equal to either 0.35 or 0.7. Censoring times were generated as

before.

Figure 2 and Table 2 show that PSIS can still perform very well when the Cox model is

misspecified. Again, the numerical results when α0j = 0.7 are omitted from Table 2 to save
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space. These results follow the same trends as those of the correctly specified simulations

discussed above. In particular, the principled cutoff procedure still shows good performance,

and using PSIS when qn is small can still lead to lower false negative rates than when qn = 1.

5 Analysis of the myeloma study

Recent advances in understanding the biological mechanisms underlying multiple myeloma

have offered new possibilities for therapy (Hideshima et al., 2007). Time-to-event outcomes

offer information about the progression of the disease, and in this vein several studies have

examined the relationship between gene expression levels and survival (Decaux et al., 2008).

In one such study conducted by Millennium Pharmaceuticals (Mulligan et al., 2007), mRNA

expression levels were collected using Affymetrix U133A/B arrays from myeloma cells of 80

patients enrolled in a clinical trial of bortezomib (accession number GSE9782, trial 039).

Median survival time was 684 days after randomization, and 50% of the observations were

censored. We apply our methods to this data.

Expression values were measured for 44760 probesets, encompassing more than 22000

genes, and were log2-transformed. Following Mulligan et al. (2007), we retained only the

9200 probesets with strongest between-sample variance relative to their in-sample replicate

variance, and after removing duplicate probesets we were left with 9072 covariates. We

perform PSIS and choose qn = 0.0001, for two reasons. First, our simulation results suggest

that for large ρ, the true false positive rate could be significantly larger than our nominal

level, and genetic datasets are probably highly correlated. Second, gene expression levels

are very likely related to the survival outcomes, but only weakly so. Many of our genes

are probably not sufficiently important, in the sense of Assumption 2, so allowing even a

small false positive rate would result in including a huge number of genes. For these reasons,

we want to control the false positive rate to the extent possible, but on the other hand we

cannot allow f = 0 or else γn =∞. Thus we considered f = 1, which leads to our choice of
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qn = 0.0001.

We cannot directly evaluate the performance of PSIS because we do not know which genes

are “truly” important. Instead, we run PSIS to get a screened model M̂ and also randomly

select |M̂| probesets. We then compare the prediction accuracies of PSIS-L, PSIS-L-A, and

PSIS-S to those obtained by fitting lasso, lasso-adaptive lasso, and SCAD on the randomly

selected probesets. Using random genes as negative controls is common in these type of

experiments (Hofmann et al., 2002; Aerts et al., 2006; Fan et al., 2010). We also fit the

regularized regression procedures on the full dataset, without any screening (i.e. qn = 1).

For each of these methods, we randomly set aside 60 patients in a training set and 20

patients in a testing set. We then use the models fit in the training set to calculate scores for

each subject in the testing set, and evaluate the predictive performance using the C-statistic

(Uno et al., 2009). We repeat this entire process 200 times. Better performances from the

screened methods would provide evidence that PSIS is indeed finding predictively important

genes.

Table 3 reports the average C-statistics and model sizes obtained by our different meth-

ods. We see that PSIS-L, PSIS-L-A, and PSIS-S perform significantly better than the corre-

sponding regressions fit using randomly selected probesets. When we do not screen the data,

SCAD fails, and lasso and lasso-adaptive lasso do not perform as well as the screened ver-

sions. Furthermore, screened methods have by far the least variable C-statistics, suggesting

that they are more stable estimators.

We next apply PSIS-L-A with qn = 0.0001 to all 80 patients. While Table 3 shows

that PSIS-L exhibits higher predictive power, we choose to use PSIS-L-A because of the

selection consistency of the adaptive lasso (Zou, 2006; Zhang and Lu, 2007). Table 4 gives

the probesets we found to have nonzero parameter estimates, as well as their estimated

coefficients. These results indicate that PSIS is an effective way to identify predictively

important genes while controlling the false positive rate, and that implementing PSIS before

regularized regression can lead to more computationally amenable, interpretable models with
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high predictive power.

6 Discussion

This paper advances the field in three distinct ways. First, we have demonstrated that

with censored outcomes, sure independence screening using marginal Cox regressions is a

theoretically justified, effective way to reduce ultra-high-dimensional data to moderate sizes

before applying more sophisticated variable selection procedures. In particular, we have

described new, necessary condition on the dependence between the covariates and the cen-

soring distribution. Second, we have provided a simple, principled method to select the

number of variables to retain after screening and illustrated its effectiveness with simulated

data. Our procedure could be easily extended to other screening methods. Finally, we have

demonstrated through the motivating myeloma example that pre-screening may improve risk

classification and identify predictive genes. There are a number of ways to broaden the scope

of our method. So far we have dealt only with covariates that are constant in time, and we

have not considered tied observations. Our method could also be extended to multivariate

survival, competing risks, and other extensions of the Cox model.

While our simulations suggest that PSIS performs well even with correlated covariates, it

would be interesting to explore other screening methods proposed specifically to deal with this

situation. One approach is the ISIS method of Fan and Lv (2008), which starts with an initial

model of potentially important covariates, regresses the residuals from the working model

on each of the remaining covariates to expand the working model, and iterates this process

in order to capture any important covariates that would be missed in univariate screening.

Residuals are unavailable with censored observations, but Fan et al. (2010) generalized this

iterative idea by working instead with log-likelihood ratios. Their formulation is easily

applied to the log-partial likelihood of the Cox model, which they have implemented in

the R package SIS. However, the theoretical properties of this procedure have not been
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investigated.

Finally, our theoretical analysis of sure independence screening touches on some philo-

sophical questions about notions of variable importance. Biological phenomena often arise

from the complex interactions of genes and other factors whose individual effects can be

fairly weak but still non-zero. Thus merely having a non-zero contribution to the model is

not a useful notion of importance, because then nearly every variable would be important.

It may be more useful to conceive of importance as a finite sample property, in the sense

that covariates whose signals are higher than the noise level of the estimator being used are

to be considered important. In our method, for instance, the so-called important covariates

satisfy Theorem 3, or else they could not be detected by marginal Cox regressions. Perhaps

a good variable selection technique is one that, instead of selecting every variable with a non-

zero contribution to the outcome, retains only those variables that, for a given n, meet the

finite-sample definition of importance as defined in Theorem 3. The sure screening property

of our method indicates that as n increases, we get closer to achieving this goal.
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A Appendix

Let the true hazard function λ(x; Zi) be given by (1), and denote the true survival functions

of Ti and Ci as ST (x; Zi) = exp{− exp(αT0 Zi)Λ0(x)} and SC(x; Zi) = P(Ci > x|Zi), where

Λ0(x) =
∫ x

0
λ0(s)ds. To conserve space we will write these as ST and SC . For simplicity we

will drop the subject-specific subscripts i, except in the proof of Theorem 2. We will also

need the following regularity conditions. We use notation introduced in Section 3.1.

Condition 1 There exists a neighborhood B of β0j such that for each t <∞,

sup
x∈[0,t],β∈B

|S(0)
j (β, x)− s(0)

j (β, x)| → 0

in probability as n → ∞, s
(0)
j (β, x) is bounded away from zero on B × [0, t], and s

(0)
j (β, x)

and s
(1)
j (β, x) are bounded on B × [0, t].

Condition 2 For each t <∞ and j = 1, . . . , pn,
∫ t

0
s

(2)
j (x)dx <∞.

Condition 3 The true parameter vector α0 belongs to a compact set such that each compo-

nent α0j is bounded by a positive constant A. Furthermore, ‖α0‖1 = O(1).
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Condition 4 With τ (the study duration) such that P{min(C̃i, τ) < Ti} < 1, assume C =∫ τ
0
λ0(x)dx <∞.

Condition 5 There is some constant H > 0 such that n−1|Uj(β̂j)− Uj(β0j)| ≥ H|β̂j − β0j|

for all j = 1, . . . , pn.

Regularity conditions 1 and 2 are standard in survival analysis. Condition 3 controls

the total effect size of the covariates, which intuitively should be bounded and independent

of sample size. Condition 4 usually holds with hazard functions commonly encountered in

practice. Finally, condition 5 is reasonable because by the mean value theorem, we know

that n−1|Uj(β̂j)−Uj(β0j)| = |n−1Ij(β
∗)||β̂j − β0j| for some β∗ between β̂j and β0j. It can be

shown that Ij(β
∗) converges to the absolute value of the limiting information −∂uj(β)/∂β

evaluated at the true β0j (Fleming and Harrington, 2005), and it is reasonable to assume

that this limiting information is bounded from below away from zero. Thus for n sufficiently

large, we can take H = infβ,j |∂uj(β)/∂β| such that H 6= 0.

A.1 Assumptions

Our PSIS method will have good theoretical properties if the covariates Zi satistify the

following reasonable assumptions, in addition to the technical conditions above. Versions of

these assumptions have been previously proposed (Fan and Lv, 2008; Fan and Song, 2010),

but modifications are required when working with censored data.

Assumption 1 The Zij are independent of time and bounded by a constant K > 0.

Assumption 2 If FT (x; Zi) is the cumulative distribution function of Ti given Zi, then for

constants c1 > 0 and κ < 1/2, minj∈M |cov[Zij,E{FT (Ci; Zi) | Zi}]| ≥ c1n
−κ.

Assumption 3 The Zij, j ∈Mc are independent of the Zij, j ∈M and of Ci.

The validity of our proposed screening procedure hinges on whether the misspecified

marginal Cox regressions can reflect the importance of the corresponding covariates in the
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joint model. In general it is difficult to directly link the true α0j to the marginal β0j because

of the phenomenon of unfaithfulness (Wasserman and Roeder, 2009), where the marginal

correlation of Zij with the outcome can be zero even if α0j is large, due to correlated covari-

ates. Assumption 2 protects against unfaithfulness. Though the outcome is unobservable

under censoring, FT (Ci; Zi) is the probability of observing a failure given Zi and is a sensible

surrogate. Assumption 3 similar to the partial orthogonality condition introduced in Fan

and Song (2010).

A.2 Proof of Theorem 1

We first relate β0j to cov[Zj,E{FT (C;Z) | Z}]. Assumptions 3 and 2 will then relate the

covariance to α0j.

Since β0j is the solution to the estimating equation uj(β) (3), we can write

∫ τ

0

E{Zjλ0(x) exp(αT
0 Z)STSC}dx

=

∫ τ

0

E{Zj exp(β0jZj)STSC}
E{exp(β0jZj)STSC}

E{λ0(x) exp(αT
0 Z)STSC}dx.

Integrating by parts, we can express the left-hand side as cov[Zj,E{FT (C; Z) | Z}].

Now suppose α0j = 0. By Assumption 3, Zj is independent of E{FT (C; Z) | Z} and

cov[Zj,E{FT (C; Z) | Z}] = 0. Furthermore if β0j = 0, then E{Zj exp(β0jZj)STSC} =

E(Zj)E(STSC) = 0 because Zj and C are independent for j ∈ Mc, making the right-hand

side zero. Using the Cauchy-Schwarz inequality, we can show that the right-hand side is a

monotone function of β0j, so that β0j = 0 is a unique root. Similarly, suppose that α0j 6= 0

so that j ∈ M. Then by Assumption 2, |cov[Zj,E{FT (C; Z) | Z}]| > c1n
−κ, making the

right-hand side nonzero. Therefore β0j 6= 0 by monotonicity, and we can conclude that

α0j = 0 if and only if β0j = 0.
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A.3 Proof of Theorem 2

We first bound |Uj(β̂j) − Uj(β0j)| by the supremum of an empirical process, where Uj(β)

was defined in (2). We then use the concentration theorem of Massart (2000) to derive a

maximal inequality. We will conclude by using regularity condition 5 to extend this inequality

to |β̂j − β0j|.

First, let Ūj(β) = n−1Uj(β). Since we still have Ūj(β̂j) = 0, we can write |Ūj(β̂j) −

Ūj(β0j)| = |Ūj(β0j)|. Because Ūj(β0j) is not a sum of independent terms, we cannot di-

rectly apply empirical process techniques. However, we know from Lin and Wei (1989) that

Ūj(β0j) = n−1
∑n

i=1w
(j)
i (β0j) + op(1), where

w
(j)
i (β0j) =

∫ τ

0

{
Zij −

E{Zij exp(β0jZij)STSC}
E{exp(β0jZij)STSC}

}
dNi(x)−∫ τ

0

Yi(x) exp(β0jZij)

E{exp(β0jZij)STSC}

{
Zij −

E{Zij exp(β0jZij)STSC}
E{exp(β0jZi)STSC}

}
E{dNi(x)}.

and the w
(j)
i (β0j) are independent. Furthermore, it is easy to show that E{w(j)

i (β0j)} = 0. If

we let En denote the empirical measure, then we can write |Ūj(β̂j)− Ūj(β0j)| ≤ supβ |(En −

E)w
(j)
i (β)| + op(1). Thus |Ūj(β̂j) − Ūj(β0j)| is bounded by the sum of the supremum of an

empirical process and a term that converges to zero in probability.

To derive a maximal inequality for this process, we first find a bound on w
(j)
i (β) uniform

over β and j = 1, . . . , pn. Recall that we assumed in Section 3.2 that the covariates are

bounded by a constant K > 0, and in regularity condition 3 that the α0j are bounded by A >

0 and ‖α0‖1 = O(1). Then E{dNi(x)} = E{λ0(x) exp(αT
0 Z)STSC} and exp(K

∑pn
j=1 |α0j|) =

exp(KL) for some L > 0. Thus we can |w(j)
i (β)| ≤ 2K[1 + C exp{2K(A + L)}] for j =

1, . . . , pn, where C is defined in regularity condition 4.

Next, we must find a bound on the expected value of our supremum. Let εi, i = 1, . . . , n

be an independent, identically distributed sequence of random variables taking values ±1

with probability 1/2. In particular, they are independent of Z. Then E{supβ |(En −

E)w
(j)
i (β)|} ≤ 2E[supβ |En{εiw(j)

i (β)}|], by Lemma 2.3.1 of van der Vaart and Wellner
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(1996). But by the Cauchy-Schwarz inequality, independence of εi and Zi, and the bound on

|w(j)
i (β)| derived above, we can show that the right side is bounded by 4K[1+C exp{2K(A+

L)}]{var(n−1
∑n

i=1 εi)}1/2. Then from the concentration theorem of Massart (2000), we know

that

P

[
sup
β
|(En − E)w

(j)
i (β)| ≥ n−1/24K[1 + C exp{2K(A+ L)}](1 + t)

]
≤ exp(−t2/2). (5)

Finally, we can relate this inequality back to |β̂j−β0j| with regularity condition 5, though

we must also deal with the op(1) term. Using a previously proven inequality, |β̂j − β0j| ≤

H−1 supβ |(En − E)w
(j)
i (β)|+ op(1), so we can write

P
[√

n|β̂j − β0j| ≥ 4K[1 + C exp{2K(A+ L)}](1 + t)/H
]

≤ P

[
sup
β
|(En − E)w

(j)
i (β)|+ op(1) ≥ n−1/24K[1 + C exp{2K(A+ L)}](1 + t)

]
. (6)

But for any ε > 0, P(A + B ≥ c) ≤ P(A ≥ c − ε) + P(B ≥ ε), where A and B are random

variables and c is a constant. We conclude by combining this with (5) and (6) and taking ε

arbitrarily close to 0.

A.4 Proof of Theorem 3

From Theorem 1, we know that β0j 6= 0 if j ∈ M. Then by Theorem 2.1 of Struthers and

Kalbfleisch (1986) and the mean value theorem, we know that |uj(0)| = |uj(β0j)− uj(0)| =

|u′j(β∗)||β0j| for some β∗ between β0j and 0, where u′j(β) = duj(β)/dβ. We will first bound

u′j(β) and then use Assumption 2 to conclude.

Integrating by parts, we can show that |u′j(β)| ≤ 2K2|E{ST (C; Z) | Z}|. But E{ST (C; Z) |

Z} is bounded by 1, so

|β0j| ≥ 0.5K−2

∣∣∣∣cov[Zj,E{FT (C; Z) | Z}]−
∫ τ

0

E(ZjSTSC)

E(STSC)
E{λ0(x) exp(αT

0 Z)STSC}dx
∣∣∣∣ .
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Because STSC is the probability of being at risk at time x, we can intuitively see, and also

prove, that E(ZjSTSC) = cov(Zj, STSC) and cov[Zj,E{FT (C; Z) | Z}] have opposite signs.

This implied that j ∈M, |β0j| ≥ 0.5K−2|cov[Zj,E{FT (C; Z) | Z}]|, and Assumption 2 gives

minj∈M |β0j| ≥ c2n
−κ for c2 = 0.5K−2c1.

A.5 Proof of Theorem 4

We first derive a probability bound for the standardized marginal regression parameters. We

can then use this bound to find P(M⊆ M̂).

Let 1 + t = c2Hn
1/2−κ/(8K[1 + C exp{2K(A + L)}]), with c2 and κ as defined in Theo-

rem 3. Then by Theorem 2 there exists a constant c3 such that P(|β̂j − β0j| ≥ c2n
−κ/2) ≤

exp(−c3n
1−2κ).

If we now set our cutoff γn = Φ−1(1− qn/2), then we can write the probability of retain-

ing the important covariates as 1 − P{minj∈M Ij(β̂j)
1/2|β̂j| < γn} ≥ 1 − P{minj∈M |β̂j| ≤

γn(Hn)−1/2}. Using Theorem 3 we can show that c2n
−κ − |β̂j| ≤ |β0j − β̂j|, j ∈ M,

so P{minj∈M |β̂j| ≤ γn(Hn)−1/2} ≤ P{maxj∈M |β̂j − β0j| ≥ c2n
−κ − γn(Hn)−1/2}. If

we have γn ≤ c2H
1/2n1/2−κ/2, then the probability bound above gives P(M ⊆ M̂) ≥

1− exp(−c3n
1−2κ).

Finally, since qn = f/pn, the requirement on γn can be rewritten as pn ≤ (f/2){1 −

Φ(c2H
1/2n1/2−κ/2)}−1. Using the fact that 1 − Φ(x) ≤ x−1 exp(−x2/2), this inequality can

be satisfied if pn ≤ f/2 exp(c2
2Hn

1−2κ/8). Thus the sure screening property holds as long as

log(pn) = O(n1−2κ).

Proof of Theorem 5

We first show that for j ∈ Mc, Uj(β) evaluated at the true β0j can be approximated by a

sum of continuous-time martingales, just as it can in a correctly specified Cox regression.

We can then appeal to an Edgeworth expansion by Gu (1992) to conclude.
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By Theorem 1 we know that β0j = 0 for j ∈Mc. Thus we can rewrite (2) as

Uj(β0j) =
n∑
i=1

∫ τ

0

{
Zij −

n−1
∑

l ZljYl(x)

n−1
∑

l Yl(x)

}
dNi(x)

=
n∑
i=1

∫ τ

0

{
Zij −

n−1
∑

l ZljYl(x)eα
T
o Zl

n−1
∑

l Yl(x)eαT
o Zl

}
dNi(x)+

n∑
i=1

∫ τ

0

{
n−1

∑
l ZljYl(x)eα

T
o Zl

n−1
∑

l Yl(x)eαT
o Zl

− n−1
∑

l ZljYl(x)

n−1
∑

l Yl(x)

}
dNi(x)

=
n∑
i=1

∫ τ

0

{
Zij −

n−1
∑

l ZljYl(x)eα
T
o Zl

n−1
∑

l Yl(x)eαT
o Zl

}
dMi(x)+

n−1

n∑
l=1

∫ τ

0

{
ZljYl(x)eα

T
o Zl

n−1
∑

l Yl(x)eαT
o Zl
− ZljYl(x)

n−1
∑

l Yl(x)

}
n∑
i

dNi(x),

where Mi(x) = Ni(x)−
∫ x

Yi(t)λ0(t)eα
T
0 Zidt is a continuous martingale in x.

Now let Sm =
∑m

l=1 ξl, where

ξl =

{
ZljYl(x)eα

T
o Zl

n−1
∑

l Yl(x)eαT
o Zl
− ZljYl(x)

n−1
∑

l Yl(x)

}
n∑
i

dNi(x).

Note that E(ξm | Sm−1) = E{E(ξm | Sm−1,Zm) | Sm−1}, and

E(ξm | Sm−1,Zm) = ZmjE

[{
Ym(x)eα

T
o Zm

n−1
∑

l Yl(x)eαT
o Zl
− Ym(x)

n−1
∑

l Yl(x)

}
n∑
i

dNi(x)

∣∣∣∣∣Sm−1,Zm

]
.

Given Sm−1, the conditional expectation on the right-hand side above is a random variable

in Zmk, k ∈ M only, and by Assumption 3 is independent of Zmj, j ∈ Mc. Since E(Zmj |

Sm−1) = E(Zlj) = 0 by Assumption 1, we find that E(ξm | Sm−1) = 0, implying that Sm is a

discrete martingale in m. Then when m = n, by the inequality of Dharmadhikari, Fabian,

and Jogdeo (1968) we have that E(|n−1Sn|p) = Cn−p/2 for p ≥ 2, where we can show that C

does not depend on j.
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We have shown that for j ∈Mc,

Uj(β0j) =
n∑
i=1

∫ τ

0

{
Zij −

n−1
∑

l ZljYl(x)eα
T
o Zl

n−1
∑

l Yl(x)eαT
o Zl

}
dMi(x) + n−1Sn,

where n−1Sn satisfies the same conditions as R1,n in (4.3) of Gu (1992). We can therefore

extend the proof of Theorem 2.1 in Gu (1992) to show that

sup
x

∣∣∣P{Ij(β̂j)1/2|β̂j| ≥ x} − Φ(x)
∣∣∣ ≤ c4n

−1/2,

where c4 does not depend on j. Then (4) implies

E


∣∣∣M̂ ∩Mc

∣∣∣
|Mc|

 ≤ 1

pn − sn

∑
j∈Mc

[
2{1− Φ(γn)}+ c4n

−1/2
]
.

The result follows if we choose γn = Φ−1(1− qn/2).
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Figure 1: False negative rates for Cox models with α0j = 0.35 (dashes) and α0j = 0.7 (solid).
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Figure 2: False negative rates for log-normal models α0j = 0.35 (dashes) and α0j = 0.7
(solid).
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Table 1: Simulation results for Cox models with α0j = 0.35
PSIS PSIS-L PSIS-A PSIS-S

ρ sn qn |M̂| FN FP FN FP FN FP FN FP
0.5 5 1e-6 0.98 0.80 0.00 0.80 0.00 0.81 0.00 0.81 0.00
0.5 5 1e-5 1.79 0.65 3e-5 0.65 0.00 0.66 0.00 0.63 0.00
0.5 5 1e-4 2.94 0.44 1e-4 0.44 0.00 0.48 0.00 0.49 0.00
0.5 5 1e-3 4.94 0.23 1e-3 0.24 0.00 0.33 0.00 0.40 0.00
0.5 5 0.01 14.79 0.09 0.01 0.18 0.01 0.35 0.01 0.38 0.01
0.5 5 0.10 107.72 0.01 0.10 0.23 0.03 0.42 0.02 0.24 0.05
0.5 5 0.20 207.74 0.01 0.20 0.26 0.02 0.39 0.02 0.28 0.05
0.5 5 0.30 306.95 0.00 0.30 0.27 0.02 0.39 0.01 0.29 0.05
0.5 5 0.40 406.71 0.00 0.40 0.27 0.02 0.39 0.01 0.30 0.06
0.5 5 0.50 506.11 0.00 0.50 0.28 0.02 0.40 0.01 0.30 0.06
0.5 5 0.60 605.37 0.00 0.60 0.26 0.02 0.39 0.01 0.31 0.06
0.5 5 0.70 704.75 0.00 0.70 0.27 0.02 0.39 0.01 0.31 0.06
0.5 5 0.80 803.49 0.00 0.80 0.28 0.02 0.39 0.01 0.32 0.06
0.5 5 0.90 901.71 0.00 0.90 0.27 0.02 0.40 0.01 0.32 0.06
0.5 5 1.00 1000.00 0.00 1.00 0.27 0.02 0.40 0.01 0.32 0.06

0.5 15 1e-6 0.82 0.95 0.00 0.95 0.00 0.95 0.00 0.95 0.00
0.5 15 1e-5 1.81 0.88 5e-6 0.88 0.00 0.89 0.00 0.87 0.00
0.5 15 1e-4 4.08 0.73 7e-5 0.74 0.00 0.76 0.00 0.77 0.00
0.5 15 1e-3 8.34 0.51 1e-3 0.53 0.00 0.59 0.00 0.63 0.00
0.5 15 0.01 21.59 0.26 0.01 0.32 0.01 0.47 0.01 0.50 0.01
0.5 15 0.20 213.49 0.04 0.20 0.34 0.03 0.49 0.02 0.37 0.04
0.5 15 0.30 312.68 0.02 0.30 0.35 0.02 0.49 0.02 0.38 0.04
0.5 15 0.40 410.25 0.01 0.40 0.35 0.02 0.49 0.02 0.38 0.04
0.5 15 0.50 508.06 0.01 0.50 0.36 0.02 0.49 0.02 0.38 0.04
0.5 15 0.60 606.76 0.01 0.60 0.35 0.02 0.48 0.02 0.39 0.05
0.5 15 0.70 705.09 0.00 0.70 0.35 0.02 0.49 0.02 0.39 0.05
0.5 15 0.80 803.67 0.00 0.80 0.36 0.02 0.49 0.01 0.39 0.05
0.5 15 0.90 901.97 0.00 0.90 0.36 0.02 0.49 0.02 0.39 0.05
0.5 15 1.00 1000.00 0.00 1.00 0.36 0.02 0.48 0.02 0.39 0.05

0.9 5 1e-6 6.96 0.02 2e-3 0.26 0.00 0.52 0.00 0.64 0.00
0.9 5 1e-5 8.01 0.00 3e-3 0.26 0.00 0.52 0.00 0.64 0.00
0.9 5 1e-4 9.51 0.00 5e-3 0.26 0.00 0.52 0.00 0.64 0.00
0.9 5 1e-3 12.14 0.00 7e-3 0.28 0.00 0.52 0.00 0.62 0.00
0.9 5 0.01 24.47 0.00 0.02 0.30 0.01 0.52 0.00 0.61 0.00
0.9 5 0.10 119.95 0.00 0.12 0.34 0.02 0.56 0.01 0.59 0.01
0.9 5 0.10 119.95 0.00 0.12 0.34 0.02 0.56 0.01 0.59 0.01
0.9 5 0.20 220.82 0.00 0.22 0.36 0.02 0.56 0.01 0.52 0.03
0.9 5 0.30 318.11 0.00 0.31 0.35 0.02 0.55 0.01 0.50 0.03
0.9 5 0.40 415.01 0.00 0.41 0.36 0.02 0.54 0.01 0.50 0.04
0.9 5 0.50 512.13 0.00 0.51 0.35 0.02 0.56 0.01 0.50 0.04
0.9 5 0.60 609.18 0.00 0.61 0.36 0.02 0.54 0.01 0.47 0.04
0.9 5 0.70 707.00 0.00 0.71 0.36 0.02 0.55 0.01 0.49 0.04
0.9 5 0.80 804.61 0.00 0.80 0.36 0.02 0.54 0.01 0.48 0.04
0.9 5 0.90 901.93 0.00 0.90 0.35 0.01 0.54 0.01 0.49 0.04
0.9 5 1.00 1000.00 0.00 1.00 0.35 0.02 0.56 0.01 0.48 0.04

0.9 15 1e-6 16.12 0.02 1e-3 0.30 0.00 0.54 0.00 0.63 0.00
0.9 15 1e-5 17.12 0.01 2e-3 0.29 0.00 0.53 0.00 0.63 0.00
0.9 15 1e-4 18.49 0.00 4e-3 0.29 0.00 0.54 0.00 0.63 0.00
0.9 15 1e-3 20.95 0.00 6e-3 0.30 0.00 0.55 0.00 0.63 0.00
0.9 15 0.01 32.11 0.00 0.02 0.31 0.00 0.55 0.00 0.62 0.00
0.9 15 0.10 124.98 0.00 0.11 0.34 0.01 0.57 0.01 0.59 0.01
0.9 15 0.20 223.62 0.00 0.21 0.35 0.02 0.57 0.01 0.51 0.02
0.9 15 0.30 321.65 0.00 0.31 0.36 0.02 0.57 0.01 0.47 0.03
0.9 15 0.40 420.10 0.00 0.41 0.36 0.02 0.58 0.01 0.46 0.03
0.9 15 0.50 517.53 0.00 0.51 0.36 0.02 0.56 0.01 0.45 0.04
0.9 15 0.60 613.51 0.00 0.61 0.36 0.02 0.57 0.01 0.45 0.04
0.9 15 0.70 710.24 0.00 0.71 0.37 0.02 0.56 0.01 0.45 0.04
0.9 15 0.80 806.47 0.00 0.80 0.37 0.02 0.56 0.01 0.45 0.04
0.9 15 0.90 903.38 0.00 0.90 0.36 0.02 0.56 0.01 0.45 0.04
0.9 15 1.00 1000.00 0.00 1.00 0.37 0.02 0.56 0.01 0.45 0.04
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Table 2: Simulation results for log-normal models with α0j = 0.35
PSIS PSIS-L PSIS-A PSIS-S

ρ sn qn |M̂| FN FP FN FP FN FP FN FP
0.5 5 1e-6 1.61 0.68 0.00 0.68 0.00 0.69 0.00 0.67 0.00
0.5 5 1e-5 2.50 0.51 2e-5 0.51 0.00 0.54 0.00 0.53 0.00
0.5 5 1e-4 3.63 0.30 1e-4 0.31 0.00 0.37 0.00 0.40 0.00
0.5 5 1e-3 5.42 0.13 1e-3 0.15 0.00 0.25 0.00 0.30 0.00
0.5 5 0.01 15.45 0.04 0.01 0.09 0.01 0.25 0.01 0.27 0.01
0.5 5 0.10 107.30 0.01 0.10 0.14 0.03 0.31 0.02 0.14 0.05
0.5 5 0.20 209.06 0.00 0.21 0.15 0.03 0.28 0.02 0.17 0.05
0.5 5 0.30 309.48 0.00 0.31 0.16 0.02 0.27 0.02 0.17 0.05
0.5 5 0.40 410.22 0.00 0.41 0.16 0.02 0.27 0.01 0.19 0.05
0.5 5 0.50 509.29 0.00 0.51 0.17 0.02 0.27 0.01 0.20 0.05
0.5 5 0.60 607.66 0.00 0.61 0.17 0.02 0.28 0.01 0.20 0.05
0.5 5 0.70 706.88 0.00 0.71 0.17 0.02 0.27 0.01 0.19 0.05
0.5 5 0.80 803.38 0.00 0.80 0.17 0.02 0.28 0.01 0.20 0.05
0.5 5 0.90 901.01 0.00 0.90 0.17 0.02 0.27 0.01 0.20 0.05
0.5 5 1.00 1000.00 0.00 1.00 0.17 0.02 0.27 0.01 0.20 0.05

0.5 15 1e-6 0.94 0.94 0.00 0.94 0.00 0.94 0.00 0.95 0.00
0.5 15 1e-5 2.35 0.84 5e-6 0.84 0.00 0.85 0.00 0.83 0.00
0.5 15 1e-4 5.03 0.67 1e-4 0.68 0.00 0.70 0.00 0.71 0.00
0.5 15 1e-3 9.29 0.45 1e-3 0.47 0.00 0.54 0.00 0.58 0.00
0.5 15 0.01 22.11 0.21 0.01 0.27 0.01 0.40 0.00 0.44 0.00
0.5 15 0.10 113.98 0.06 0.10 0.22 0.03 0.38 0.02 0.25 0.03
0.5 15 0.20 213.75 0.03 0.20 0.24 0.03 0.37 0.02 0.29 0.03
0.5 15 0.30 312.87 0.02 0.30 0.25 0.03 0.38 0.02 0.30 0.04
0.5 15 0.40 411.37 0.01 0.40 0.26 0.03 0.38 0.02 0.30 0.04
0.5 15 0.50 509.57 0.01 0.50 0.26 0.03 0.38 0.02 0.30 0.04
0.5 15 0.60 608.60 0.01 0.60 0.26 0.03 0.39 0.02 0.30 0.04
0.5 15 0.70 706.09 0.01 0.70 0.26 0.03 0.38 0.02 0.31 0.04
0.5 15 0.80 804.67 0.00 0.80 0.26 0.03 0.39 0.02 0.31 0.04
0.5 15 0.90 902.90 0.00 0.90 0.27 0.02 0.39 0.02 0.31 0.04
0.5 15 1.00 1000.00 0.00 1.00 0.27 0.03 0.39 0.02 0.31 0.04

0.9 5 1e-6 7.59 0.00 3e-3 0.24 0.00 0.49 0.00 0.59 0.00
0.9 5 1e-5 8.49 0.00 4e-3 0.25 0.00 0.50 0.00 0.59 0.00
0.9 5 1e-4 9.79 0.00 7e-3 0.25 0.00 0.50 0.00 0.59 0.00
0.9 5 1e-3 12.39 0.00 0.01 0.26 0.00 0.50 0.00 0.58 0.00
0.9 5 0.01 23.93 0.00 0.02 0.27 0.01 0.50 0.00 0.56 0.00
0.9 5 0.10 119.55 0.00 0.12 0.29 0.02 0.52 0.01 0.52 0.01
0.9 5 0.20 220.84 0.00 0.22 0.28 0.02 0.49 0.01 0.44 0.03
0.9 5 0.30 320.67 0.00 0.32 0.29 0.02 0.50 0.01 0.39 0.04
0.9 5 0.40 419.29 0.00 0.42 0.28 0.02 0.49 0.01 0.39 0.04
0.9 5 0.50 517.38 0.00 0.51 0.29 0.02 0.49 0.01 0.40 0.04
0.9 5 0.60 615.42 0.00 0.61 0.29 0.02 0.49 0.01 0.41 0.04
0.9 5 0.70 711.63 0.00 0.71 0.29 0.02 0.49 0.01 0.40 0.04
0.9 5 0.80 807.91 0.00 0.81 0.29 0.02 0.49 0.01 0.39 0.04
0.9 5 0.90 904.24 0.00 0.90 0.29 0.02 0.49 0.01 0.40 0.04
0.9 5 1.00 1000.00 0.00 1.00 0.29 0.02 0.49 0.01 0.41 0.04

0.9 15 1e-6 16.17 0.02 1e-3 0.29 0.00 0.52 0.00 0.60 0.00
0.9 15 1e-5 17.09 0.01 2e-3 0.28 0.00 0.52 0.00 0.60 0.00
0.9 15 1e-4 18.44 0.00 4e-3 0.28 0.00 0.52 0.00 0.60 0.00
0.9 15 1e-3 21.27 0.00 0.01 0.28 0.00 0.53 0.00 0.59 0.00
0.9 15 0.01 33.07 0.00 0.02 0.29 0.00 0.53 0.00 0.58 0.00
0.9 15 0.10 125.19 0.00 0.11 0.30 0.01 0.53 0.01 0.50 0.01
0.9 15 0.20 225.52 0.00 0.21 0.31 0.02 0.52 0.01 0.44 0.02
0.9 15 0.30 321.33 0.00 0.31 0.31 0.02 0.51 0.01 0.41 0.03
0.9 15 0.40 419.49 0.00 0.41 0.31 0.02 0.50 0.01 0.39 0.03
0.9 15 0.50 516.70 0.00 0.51 0.31 0.02 0.50 0.01 0.38 0.03
0.9 15 0.60 613.00 0.00 0.61 0.32 0.02 0.51 0.01 0.38 0.03
0.9 15 0.70 709.83 0.00 0.71 0.32 0.02 0.49 0.01 0.38 0.03
0.9 15 0.80 807.23 0.00 0.80 0.32 0.02 0.49 0.01 0.38 0.03
0.9 15 0.90 903.17 0.00 0.90 0.32 0.02 0.49 0.01 0.38 0.03
0.9 15 1.00 1000.00 0.00 1.00 0.32 0.02 0.48 0.01 0.38 0.03
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Table 3: Predictive accuracies using myeloma data)
PSIS, qn = 0.0001 Random probesets All probesets

Method C-stat (SD) Size (SD) C-stat (SD) Size (SD) C-stat (SD) Size (SD)
Lasso 0.64 (0.10) 8.27 (3.39) 0.42 (0.28) 3.51 (3.60) 0.58 (0.19) 10.64 (6.17)

Lasso-adaptive lasso 0.63 (0.10) 5.61 (1.94) 0.40 (0.29) 2.60 (2.82) 0.55 (0.18) 7.43 (3.74)
SCAD 0.62 (0.09) 7.89 (7.69) 0.43 (0.26) 7.29 (13.13) — —

Table 4: Genes found using PSIS-L-A, qn = 0.0001
Probeset Gene Description Coefficient
207677 s at NCF4 neutrophil cytosolic factor 4, 40kDa -0.38
216510 x at IGHV3-23 immunoglobulin heavy variable 3-23 -0.30
204319 s at RGS10 regulator of G-protein signaling 10 -0.24
220057 at XAGE1A/B/C/D/E X antigen family, member 1A/B/C/D/E 0.05
214414 x at HBA1/2 hemoglobin, alpha 1/2 -0.27
217889 s at CYBRD1 cytochrome b reductase 1 -0.24
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