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 Introduction   

 

 New survey instruments are generated every day with documentation that reports their 

psychometric properties, such as Reliability, Effect Size and Responsiveness.  These statistics  

may be used to choose among valid instruments whose content measures what the researcher 

intends to measure.  (In the following we shall sometimes refer to these three characteristics 

jointly as “Reliability” for short, since they will all be seen to be related).  Another property, 

relevant for cluster-randomized trials, is the Intraclass Correlation (ICC) among persons within a 

cluster.  Reliable instruments can reduce the necessary sample size, but there are settings where 

the most reliable instrument is too “expensive” for the projected use.  

 The cost of using a particular instrument may be thought of in  terms of time (patient or 

interviewer time), length (space required on a survey designed to examine multiple facets of 

health, and the related opportunity cost of not measuring the other facets as well), or dollars 

(costs of  proprietary instruments,  highly trained interviewers or interpreters), and the accuracy 

of the resulting data (lower response rates or accuracy due to increased patient burden).  

 The best instrument is one that fits the study needs, but is not necessarily the most 

reliable instrument.   An instrument used to diagnose, treat or refer an individual should have 

high Reliability; Nunnally suggests that a value of .90 be used.1 However, most research 

involves the comparison of groups of persons, often on their mean score. It is well known, 2  but 

perhaps less well understood, that less reliable instruments can have high power to detect 

difference in the means of two groups, if the sample size per group is high enough.  For example, 

a Reliability of .70 has been recommended as a minimum Reliability to be used in comparing 
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two groups. 1, 13,  3   

 Behavior change interventions are often conducted as cluster-randomized trials when the 

intervention naturally occurs at the cluster level. 4 5  6 7 8 9 10 11   In this situation, the study design 

requires choosing the number of clusters per treatment and the number of persons to survey per 

cluster, as well as which instrument to use.  There has been, to our knowledge, no discussion of 

how to choose the best instrument for a cluster-randomized trial. 

 The purpose of this paper is to define a statistical model to define the psychometric 

statistics, to show how they are related to one another, to show how they are related to the power 

and necessary sample size of a study, and to discuss the data needed to estimate them accurately.  

In addition, we develop approximate equations to calculate the sample size needed to assess the 

Reliability (etc.) of new psychometric instruments. 

 Methods 

 We begin this paper with a review of several psychometric statistics, starting first with a 

statistical model for the true values, and then introducing the usual  “true value plus error” model 

for an instrument. We begin at the person level and then consider randomized trials and cluster-

randomized clinical trials.  We use a combination of exact calculations, simulation, and real data 

to describe the psychometric properties.  For the simulations we generated data described by the 

model in Table 1, with varying values of SD (1,2,5,10) and N per treatment group (10, 20, 50, 

100, 250, 500, 1000), with 151 replicates for each set of parameters.  For each combination of N 

and SD we estimated Delta,  Reliability, Effect Size, and Responsiveness  (defined below) from 

each sample.  We calculated the standard error of the 151 estimates.   We found from exploratory 

analyses that the logarithm of the sample size was linearly related to the other parameters,  and 
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so regressed the log of the sample size on the standard error  and the true value of the parameter.  

We used the resulting equation to estimate the sample size needed to estimate each psychometric 

statistic to a given level of precision.  This is explained more detail in the section under 

Reliability, below. 

 

 True State 

 Consider a construct, perhaps a person’s true health, denoted as Z, and described  in 

Table 1, where a higher value denotes better health.   For this example, Z is assumed to be 

normally distributed in the population, with µz = 50 and sz =10.  We will consider three time 

points, T0, T1, and T2, where.   T0  and T1 are “close together” (perhaps a week apart) and T2 is 

perhaps a year later.   The true values of Z (health) for those times will be denoted Z0, Z1, and Z2.     

T0 and T1 are close enough together that health has not changed (Z0=Z1).  From T1 to T2 there is 

some natural change (secular trend) over time, which is normally distributed with mean µtrend =  1 

and standard deviation strend = 1.  Half of the people will thus improve 1 or more points, and half 

will improve less; in fact, 16% will be sicker at T2 than they were at T1.   Finally,  half of the 

hypothetical people are assigned to an experimental treatment which raises each person’s Z value 

exactly 3 points at T2.  The true change from T1 to T2 is the secular trend (mean 1, standard 

deviation 1) plus the treatment effect (3).   Z2 thus has mean 54 in the treatment group and 51 in 

the control group, and in both groups the variance is 101 (because it includes the variance of  the 

secular change). 

 [Table 1 about here] 

 Although different parameter values could have been chosen for the true situation, our 
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interest is only in how well a particular instrument measures truth.   The bottom half of Table 1 

deals with an instrument that estimates Z, with some error.  We refer to the value from the 

instrument as Y.  Y (given Z) is equal to the true value of Z plus error, where the error has mean 

M and standard deviation SD, and M is independent of Z.  If M is zero, then Y is an unbiased 

estimate of Z.  We will let M equal zero, without loss of generalizability, since the psychometric 

measures we will discuss all remove the mean. In the following we will consider the 

characteristics of Z as fixed, but will examine the effect of changing SD.  (We use Greek 

symbols to denote the values that will be held constant).   For future reference, the distributions 

of the Z’s, the Y’s and of the change score Y2 - Y1 are summarized in Table 2.  These 

distributions can be derived from the information in Table 1.  In the following we consider all 

parameters in Table 1 to be fixed except SD, and will examine the effect of varying SD. 

 [Table 2 about here] 

  

Correlations among measures. 

 Some correlations among the various measures are summarized here.  Consider first the 

correlation between Y0 and  Z 0, which we will refer to as ryz. Although these correlations can be 

calculated algebraically, a more mnemonic  way is to recall  that R2
yz is the proportion of 

variation in Y that is explained by Z.  From Table 1 and Table 2, it is clear that this proportion is 

s2
z /(s2

z+ SD2) =100 / (100 + SD2).    If SD is 2.29, then R2
yz = .95, and its square root is  ryz = 

.975.  The correlation between Y0 and Y1 (ryy) can be thought about in two parts.  Y0 explains 

R2
yz of the variability in Z0 which also, because  Z0 =Z1, explains R2

yz of the variability in Y1.  

The percent of variability in Y1 explained by Y0 is then the product of these two percentages, or 
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(R2
yz)2, and ryy = R2

yz.   These correlations are shown in Table 3, for several values of SD.  

Correlations all decrease as SD increases. 

 [Table 3 about here] 

 

 Psychometric Characteristics of the Instrument Y 

 Three commonly cited properties of an instrument are its test-retest Reliability, Effect 

Size, and Responsiveness. 2, 19 12  13  14 15 16   These will be discussed in turn.   Another property, 

Intraclass Correlation within clusters, is discussed in the section on cluster-randomized trials. 

 Reliability.  Reliability is a measure of whether the same person, under the same 

conditions, would give the same response.  It is usually estimated from test-retest data (ideally 

two measures taken close enough in time that the true value has not changed, but far enough 

apart that the previous response doesn’t affect the current answer), which are used to estimate the 

intraclass correlation within a person.  We will refer to this intraclass correlation only as 

“Reliability”, to avoid confusion with the Intraclass Correlation within a cluster, discussed under 

cluster-randomized trials.  Reliability is the proportion of the variance among people’s scores  

that is accounted for by their true values.  In our situation Reliability is clearly Var(Z0) /Var(Y0)  

= ryy =s2
z / (s2

z + SD2) = 100 / (100 + SD2), but ordinarily Reliability must be estimated.  

Although usually defined in terms of analysis of variance, estimates of test-retest reliability can 

be obtained more simply from a paired t-test of the test-retest data, as demonstrated elsewhere. 17  

In our setting, Reliability would be estimated from Y0 and Y1, as follows: 
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Values of the Reliability of Y for selected values of SD are shown in Table 4.  Perfect Reliability 

(1.0) is achieved if SD = 0, and it becomes lower for larger values of SD. 

 [Table 4 about here] 

  We also simulated person-level data (Y’s)  according to the model in Table 1 and 

estimated the psychometric statistics from each sample.   We varied SD and N, the number of 

persons per treatment group, and examined the distributions of the resulting estimates to examine 

the properties of estimated Reliability.  For example, with samples of size 20, where the true 

Reliability was .80, the estimated Reliability ranged from .45 to .95 with a mean of .80 and a 

standard deviation of .09.  The histogram of estimates from this simulation is shown as Figure 1.  

Clearly, Reliability estimates based on a sample of only 20 subjects are likely to be inaccurate. 

 [ Figure 1 about here] 

  To explore this variability we generated 151 such estimates of Reliability for each 

combination of  N (from 20 to 2000), and Reliability (from .5 to .99).   For each set of 

parameters we calculated the standard deviation of the 151 estimates of Reliability (s Reliability), 

which  decreased as either N or the true Reliability increased.  We regressed  ln(N) on true 

Reliability, ln (Reliability), and ln(sReliability).  The fit was excellent (R2= .92)..  From this 

regression, the N needed to achieve a specified accuracy for the estimated Reliability can be 

calculated as:  

 N  = exp[69.4  -1.75*ln(sReliability )  -75.1*Reliability  + 45.6*ln(Reliability) +.6192/2],  

where   .619 is the standard error of the regression, and is included to adjust for the re-

http://biostats.bepress.com/uwbiostat/paper284



 

 
10 

transformation bias in the lognormal distribution. 18   For example, suppose the instrument is 

expected to have Reliability about .8, and the investigators wish the estimate of Reliability to fall 

between .7 and .9 with 95% probability; that is, the confidence interval will have length 0.20.  

Assuming normality of the estimates, about 95% of the estimated Reliability values will fall in 

the range Reliability + 2* sReliability, meaning that the value of sReliability must be 0.05.   From the 

equation, the required N is 100; that is, about 100 people would be needed for a test-retest study 

to estimate the Reliability to this level of accuracy.  This number would be lower if the true 

Reliability was higher, or if a wider range of confidence was permitted.  For example, if the 

range of 0.6 to 1.0 was permissible, the desired sReliability would be .10, and the required N would 

be 30.  For sReliability  = 0.025, a sample of 336 would be needed.  If there is no information on the 

probable Reliability of a new instrument, it is conservative to assume a smaller value of 

Reliability for this calculation. 

  Delta (∆). The next two psychometric measures (Effect Size and Responsiveness) require 

∆specification of the change in Y in a specific situation, which we shall refer to as ∆.  The 

quantity   ∆ is defined in several different ways.   It may be defined as the minimum clinically 

important difference or change, which is not usually well specified.  19  If  ∆ is defined as the 

change associated with a treatment of known efficacy, it is obvious that ∆ = 3 for our situation, 

since the treatment makes a change of 3 points for each person in the treatment group.  However, 

if we had a different treatment in mind, which changed the treatment group by 10 points, then ∆ 

for that situation would be 10.  Thus, an instrument could have many values of ∆,depending on 

the intervention effect that was assumed.  For practical reasons, ∆ is often estimated from 

available data.    It has been estimated as the mean change over time in a group of patients in the 
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treatment group of an RCT, or in patients who seemed improved by some other standard.17  

Under our model, such an estimate would include the secular trend, and the estimated ∆ would 

be 4 rather than 3.  Others have subtracted the change in the “control” group from the change in 

the “treatment” group, which would provide an estimate of ∆= 3.  20 It is important to specify the 

source of the ∆ used in calculations. 

 Effect Size (ES).  Although Effect Size has many definitions, 21 the most common 

estimate of ES is ∆ divided by the standard deviation of the “before” value for a particular 

instrument, with a particular value of SD.  Under our model this would be: 

222
1 100

3
SDSD

ES
ZY +

=
+

∆
=

∆
=

σσ
 

For SD=0, ES = 0.3,  and ES approaches zero as SD becomes larger.  Values of ES are shown in 

Table 4 for different values of SD.  

 We used the simulated data to explore the variability of the estimated Effect Size as 

explained in the Reliability section.  (We estimated ∆ as the difference in change between the 

treatment and control groups). Variability was lower for larger N, and for instruments with larger 

Effect Size.  We regressed  ln(N) on Effect Size, ln(s Effect Size), and ln (Effect Size).  The fit was 

excellent (R2= .996)..   The  N needed to achieve a specified accuracy for the estimated Effect 

Size is:  

 N  = exp[116.2  -1.90*ln(s Effect Size )  -205.5*Effect Size  + 46.1*ln(Effect Size) 

+.1432/2].  

For example, the necessary N if the expected Effect Size = .25 and the desired sd Effect Size is .05 is 
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thus 689 (343 per group); if sd Effect Size = .10, only 92 persons per group are needed.   It is 

conservative to assume a smaller Effect Size. 

 Responsiveness.   Responsiveness is the ability of an instrument to detect minimal 

clinically important differences, which is defined as the expected change in Y under a treatment 

of known efficacy divided by the standard deviation of change in stable subjects. 19   Under our 

model, the stable subjects are the controls, and  

 

 

Values of Responsiveness for different values of SD are in Table 4.  The highest possible 

Responsiveness, when SD = 0, is ∆ = 3.0.  

 In the simulated data, the estimates of Responsiveness were less variable for larger N, but 

surprisingly became more variable as Responsiveness increased.  We regressed  ln(N) on 

Responsiveness, ln(s Responsiveness), and ln (Responsiveness).   The fit was excellent (R2= .994)..   

We used the regression equation to calculate for the N needed to achieve a specified accuracy for 

the estimated Responsiveness, with results as follows:  

N  = exp[-0.354  -1.870*ln(s Respons ) +1.479*Respons  - 0.354*ln(Respons) +0.1612/2].  

The necessary N if the expected Responsiveness= 1.0 and the desired sd Respons= .05 would be 

846 (423 per group); for sd Respons = .10, only 116 persons per group would be needed. Unlike 

the other statistics, it is more conservative to assume that Responsiveness is larger. 

 One attractive feature of the Responsiveness statistic  is that it can be used directly to 

Re
* *

sponsiveness
SD SDtrend

=
+

=
+

∆
σ 2 2 22

3
1 2  
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estimate the necessary sample size per group for detecting a difference of ∆ in the treatment and 

control change scores.    For 80% power, for example, N per group = 2* (1.96+.84)2/Respons2.    

The necessary sample sizes per group to achieve 80% power in our hypothetical clinical trial are 

shown in Table 4 for various values of SD.   (The tabled sample size for SD=0, (3.5), is not 

accurate because we used the normal approximation rather than the t-test). 

 Cluster Randomized Trials (CRTs)  

To this point we have compared the means of two groups of persons.  Cluster randomized 

trials (CRTs) are conducted when the intervention is performed at the cluster level, but the 

effects are measured on individuals. 7,8,9, 25, 22   Investigators  must choose both the number of 

clusters (C) to be randomized to treatment or control, and the number of persons per cluster (N) 

to be evaluated, in addition to choosing the instrument to be used in the assessment.  For 

simplicity, we assume that the N persons in each cluster will be evaluated at times T1 and T2, the 

change in the two scores calculated, and the mean change calculated for each cluster.  The 2*C 

cluster means (C for treatment and C for control), will then be analyzed using a t-test.  

(Randomization tests 23  and multi-leveling model are alternative approaches). 

 In the hypothetical CRT, then, the same person-level model applies, but the people were 

assigned to treatment/control by cluster, with N persons per cluster.  We further assume that the 

true mean change  is different in each cluster (independent of any intervention), with the 

differences distributed as Normal (0, σ2
C).  That is, the true  mean change is different in each 

community, but the clusters in the treatment group will have an average change 3 points higher 

than the controls.  Intraclass correlation is the correlation among persons within the same cluster.  

The ICC is also the fraction of the total variation in the data that is attributable to the unit of 
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assignment (the cluster—in Murray, page 7, where our clusters are his groups and our treatment 

groups are study conditions). 24   The Intraclass Correlation (within a treatment group) is the 

variance among clusters divided by that variance plus the variation among people within 

clusters:   

222

2

22

2

*2 SD
ICC

trendC

C

changeC

C
CRT ++

=
+

=
σσ

σ
σσ

σ
 

ICC CRT  (henceforth referred to simply as ICC) is near to 1 if there is high variability among 

clusters in the mean amount of change, and is smaller if there is a good deal of variability in the 

trend over time.  Table 4 shows some values of ICC assuming that σ2
C = 1.0.  As the instrument 

becomes less reliable (SD increases), the ICC decreases  because there is relatively more 

variation within the clusters than among them.  

 Feng and Grizzle provide sample-size formulas for the situation in which the number of 

clusters per group is 10 or greater, parameterized in terms of the ICC. 25 Since we wish to 

consider smaller numbers of clusters, we present different calculations here.  In the following we 

selected values of σ2
C to yield nice values of the ICC and also varied  SD, C, and N to determine 

the sample size per cluster needed to obtain 80% power.    This design can be thought of as an 

analysis of variance for a nested design, with clusters nested in treatment and persons nested in 

clusters. The variance of the mean for a treatment group is the variance among persons 

(σ2
trend+2SD2) divided by the number of persons (NC) plus the variance among clusters (σ2

C ) 

divided by the number of clusters (C).  26     

Var D
C

SD
NC

C trend( ) = +
+σ σ2 2 22  
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Since the number of clusters per group is usually small, the number of clusters needed to achieve 

a power of β must be specified in terms of the percentiles of the t-distribution instead of the 

normal distribution.   Following the usual derivation of sample size in the normal case, and 

assuming the variance of D is the same in both treatment groups, we need to find a value of C 

such that under the alternative hypothesis the probability of rejecting the null hypothesis is 1-β, 

when the difference is actually ∆, or 

βα −=>
−

−− 1)
/2

Pr( 2/1,22
21

Ct
Cs
DD  

The quantity in parentheses on the left does not have a central t-distribution under the alternative 

hypothesis, but subtracting   
Cs /2

∆  from both sides of the inequality yields 

βα −=
∆

−>
∆−−

−− 1)
/2/2

Pr( 2/1,.22
21

Cs
t

Cs
DD

C  

where the left side does have a central t distribution.  The equality holds only if  

βα ,222/1,.22 /2 −−− =
∆

− CC t
Cs

t ,   

or the number of clusters per group is 

2

22
1,222/1,22 2)(

∆
+

= −−−− stt
C CC βα  

Letting T2C-2 be the term in parentheses, and setting s2 to a single community’s variance, i.e.,  C 

times the variance of  D ,  the necessary number of clusters (C) for a fixed value of N is: 

2

2222
22 )/)2((2

∆
++

= − NSDTC trendCC σσ  

As T2C-2 is different for different values of C, this equation must be solved iteratively.  We 
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solved instead for the number of persons needed per cluster (N), for a fixed number of clusters 

per treatment group (C).   

22
22

2

222
22

2
)2(2

CC

trendC

TC
SDTN

σ
σ

−

−

−∆
+

=  

Although this does not reduce to a convenient function of the ICC, the sample sizes needed per 

cluster for different values of C and ICC can be calculated, as shown in Table 5.  For example, if 

ICC=.01, Reliability of the instrument= .25, and C = 20 clusters per treatment group, then a 

study with 124 persons per cluster will yield 80% power with alpha=.05, and only 23 persons per 

cluster are needed if the Reliability is .50.   Table 5 shows that higher Reliability, more clusters, 

and lower ICC are all associated with smaller required sample sizes.  There are many different 

configurations of Reliability, C, and N that will allow a trial with 80% power, and these 

configurations are different depending on the ICC of the instrument.    For example, if there are 

only two clusters per treatment group but the ICC is .01 and Reliability is .95, the CRT will have 

80% power with 59 persons per cluster.   Blank cells means that it is not possible to achieve 80% 

power with this configuration.  When the number of clusters is small, a more reliable instrument 

may be needed. 

 [Table 5 about here] 

 Feng and Grizzle found that an asymptotic equation for the variance of estimated ICC 

was accurate for situations with 10 or more clusters and 30 or more persons per cluster. 24  

Because we wanted to study the behavior of estimates of the ICC for smaller numbers of 

clusters,  we created 200 random datasets following the CRT model, and estimated the ICCCRT 

from each dataset.  Murray (p. 81) suggests that an ICC value of .02 is typical. 27   (Campbell et 
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al report ICC’s for cost data as large as 0.47). 28  For the simulation we considered ICC = .02 and 

.05; SD = 2.29, 5, and 10; and N = 50 and 100.   As there are many possibilities, we present only 

some typical cases.  Suppose the goal is to estimate the ICC to within plus or minus .01 with 

80% probability; (that is, 80% of all estimates will be within + 0.01 of the true ICC).  This can be 

achieved for ICC = .02 and N = 100 with C = 25; for ICC = .02 and N = 50 with C = 40; and for 

ICC = .05 and N = 50 more than 80 clusters are required.  Since the number of available clusters 

(C) is usually much smaller that these calculated values, most published ICC estimates are 

probably inaccurate.  The asymptotic formulas for the variance of the ICC of Feng 24 and Donner 

22 were accurate for 10 or more clusters, but underestimated the variance for 2 and 5 clusters. 

 

 Cost of Using a Particular Instrument 

  The cost of including Quality of Life measures in clinical trials has been considered, 29 

but the cost associated with a particular instrument was not discussed.   Proprietary instruments 

have license fees.   An instrument that requires highly trained professionals to administer and 

interpret it is more expensive, and a more detailed instrument may require more of their time.  If 

the total length of the survey is constrained, use of a particular instrument has opportunity costs, 

in that using a long instrument to measure one patient characteristic could preclude measuring  

different characteristics well or at all.  Other non-monetary costs of a longer instrument include 

subject burden, and the likelihood that subject fatigue will lead to lower quality data. 

 In a randomized clinical trial (RCT) a more reliable instrument would usually be 

preferred because it permits smaller sample sizes, as shown in Table 4.  However, if there were 

large differences between the costs of the most reliable instrument and an alternative, it could be 
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more cost-effective to use the less reliable instrument and achieved the desired power through an 

increase in sample size.   There are many situations in which the sample size is determined based 

on some other criterion.  Many studies are powered to detect mortality differences, which usually 

provides more subjects than needed to detect differences in quality of life.30  Large, simple trials 

are designed especially to study very large numbers of persons, and their success depends on 

using extremely simple data collection instruments. 31  The study’s sponsor may require 

including all  people in a certain class, such as all primary care patients in a clinic.  In those 

cases, the most reliable instrument might not be needed.  For example, if the sample size was 

fixed at 350 per group for some reason, Table 4 shows that an instrument with Reliability of only 

.50 would have sufficient power to detect the difference of interest in our example.  Such a 

choice might reduce respondent burden and other costs.  This also holds true for cluster-

randomized trials. 

 Example: Data from the LIDO Study 

 The Longitudinal Investigation of Depressive Outcomes (LIDO) study was an 

observational study of depression in 6 international cities. 32   Primary care patients who met 

eligibility criteria were assessed for depression using the Composite International Diagnostic 

Interview  (CIDI). 33   There were 981 persons who had clinical depression at baseline and a 

valid CIDI assessment nine months later, which was the “gold-standard” for whether their 

depression had remitted.   Here we use these data at the person level and also use the mean 

change for each of the 6 cities, to illustrate the points made earlier.  We compare the MHI5 

mental health subscale of the SF-36  to the single item (from that scale)  “Have you 

accomplished less than you would like as a result of any emotional problems (such as feeling 
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depressed or anxious)?”   Table 6 shows  information about the two mental health instruments, 

including the sample mean, standard deviation, the estimated Reliability (calculated from the 

baseline and 6 week measures), Effect Size, and Responsiveness.  The 5-item scale had better 

psychometric characteristics than the single item, but the difference was not large.    

 We assumed the marginal cost of using the two instruments was proportional to their 

length, assuming a stem question plus 5 or 1 additional questions, for costs of 6 or 2, 

respectively.  In planning a new study, the necessary sample size per group to achieve 80% 

power is 2*(1.96+.84)2 / Responsiveness2 .  The shorter instrument would require a larger sample 

size, but the total cost (unit cost * sample size)  would be only about half as high for the shorter 

instrument (58 versus 108).  This is an example in which the less reliable instrument might be 

preferred, if it included  the content that was necessary for the investigation at hand.  The 

decision would need to balance these marginal costs with the fixed costs of obtaining an 

additional person. 

 We also estimate s2
C from the 6 cities (clusters), and calculated the ICC at baseline, at 9 

months, and for the average change.  The cross-sectional ICC estimates were higher for the 

single item at baseline and 9 months, but the ICC for change was slightly smaller for the single 

item.  Three of the estimates were near .02, and three were substantially higher. Based on the 

simulation results  described above, it is unlikely that the estimated ICC’s are close to the true 

value.    

 

Discussion 
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 We used the usual true score plus error model to describe  a valid instrument that 

measures true health with a certain amount of error.  Under this model, all of the psychometric 

statistics were a function of SD, the measurement error, and so behaved in similar ways.  We 

also noted some inconsistencies in how parameters were defined (particularly ), the true 

treatment effect), which would often restrict the usefulness of the Effect Size and 

Responsiveness estimates in the literature.  An instrument has one Reliability, but may have a 

variety of Responsiveness and Effect Size values, since they depend on ).  Estimates in the 

literature are also sensitive to the values of s2
C , s2

Z , or s2
Trend in the study. 

 Instruments should be chosen to meet the purposes of the investigation.  This does not 

always involve choosing the “best” instrument, which may be too expensive and have features 

that are not needed.  In a clinical trial setting, where the object is to achieve a specified power to 

detect a specified treatment effect, any of the instruments under consideration could be suitable if 

only the sample size were high enough; that is, you can make it up in volume.  If only a few 

subjects are available, a highly reliable instrument can increase the power.   An example using 

data from the LIDO study suggested that a single item might sometimes be chosen in preference 

to a 5-item question on the basis of cost-effectiveness if the costs of finding additional subjects 

are not high.   

 There is little in the literature about the sample sizes needed to estimate the psychometric 

statistics accurately.   Our simulations show that rather large samples are required to provide 

accurate estimates.  Nunnally suggested N = 300 for estimating Reliability, but our results 

suggest that smaller N’s may be sufficient for highly reliable instruments.  Precise estimates of 

Effect Size and Responsiveness will require larger N’s.  We recommend that re-sampling 
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methods such as bootstrap be used when Reliability is estimated, to provide future users with the 

degree of accuracy.  This is easily feasible but rarely done.   The problem of calculating ICCCRT 

is even more acute because it requires a large number of clusters and is probably different 

depending on the nature of the cluster, as well as on the other parameters. 

 It is interesting to compare the psychometric statistics (see Table 4).  In every case, an 

instrument with smaller SD will result in a larger value of the statistic, because SD is in the 

denominator of each statistic.  Note, however, that Reliability is also strongly related to the 

variance among people (s2
z), as is well known.  If s2

z is large relative to SD (perhaps in a 

general population), then Reliability will approach 1, and if it is small (perhaps in patients 

recovering from the same surgical procedure), Reliability will be primarily a function of SD, or 

the instrument.  Reliability is thus not the property only of the instrument, but also of the 

norming sample.   Effect Size is a function of the instrument, the population, and also ∆, which 

can vary substantially as noted above.  Responsiveness is not related to s2
z, but is related to ∆, 

SD2, and also to the variance of the secular trend over time.  An evaluation setting with 

substantial variability in how subjects changed over time would show less Responsiveness than 

one in which all people moved in the same direction by about the same amount.  Finally, ICC is 

a function of all of these factors plus variation in the type of cluster; the ICC is likely to be 

higher in interacting units such as families and workplaces than in counties and states.  Published 

values of the psychometric statistics are clearly most valuable when calculated in a similar 

context to the new planned investigation. 

 The calculations above give some guidance about the sample sizes needed to obtain good 

estimates of the psychometric statistics.  Once the data have been collected, a bootstrap approach 
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could be used to provide approximate confidence intervals for the estimate, as suggested by Feng 

and Grizzle. 25 

 

Limitations. These findings should not depend very much on the exact form of the model we 

assumed.  The model did not include a person-level error term, but it would have cancelled out in 

the analysis of change that was assumed.  We assumed that the error terms were independent of  

Z and of one another, to make the calculations more straightforward.   We could have made the 

treatment effect random instead of fixed.  None of these are likely to have affected the results 

much.  We let Y be an unbiased estimate of Z.  We could alternatively have let E(Y) = a+bZ, 

since a and b would have disappeared in the calculation of the psychometric statistics.  If Y was 

a non-linear function of Z, results would have been similar in kind but would not be exact.  We 

examined a reasonable range of model parameters.   In the simulations we estimated the value of 

Delta separately from each sample.  If we had used a fixed value for Delta, the variances of 

estimated effect size and responsiveness would have been lower.     

  

Conclusion.   In RCTs and CRTs, there are situations in which the best instrument in terms of 

psychometric qualities is not the most cost-effective instrument for the study at hand.  Efforts to 

decrease the complexity of current instruments, such as the SF-36, are likely to pay off in many 

situations. 
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 Table 1 

 The Models for Z (Truth) and Y (Instrument) 

         

   Z = TRUE STATE 

 

 

Z0         N(µz = 50,  sz  = 10 ) 

Z1         Z0          

Z2 Z1         +  N(µtrend  =1, strend  =1)  +  ∆= Treatment effect = 3 

   Secular Trend   Treatment 

 

   Y = INSTRUMENT 

  

y0         Z0         + ε  ;   ε  ~ N(M, SD) M=0; SD = 0,1,2,5,10 

y1         Z1         +  ε  ;   ε   ~ N(M,SD) 

y2 Z2         +  ε  ;   ε  ~ N(M, SD)  

    

 

 

       

http://biostats.bepress.com/uwbiostat/paper284



 

 
24 

 Table 2 
 
 Distributions of True and Measured Health Variables 
 
Variable Mean Variance 

Z0 µz =  50 s2
z =  100 

Z1 µz =  50 s2
z =  100 

Z2 µz +µtrend            = 51 (control) 
µz +µtrend + ∆ = 54 (treatment)  

s2 
z + s2

trend =  101 

Y0 µz =   50 s2
z + SD2 = 100+SD2 

Y1 µz =   50 s2
z + SD2 = 100+SD2 

Y2 µz +µtrend            = 51 (control) 
µz +µtrend +  ∆ = 54 (treatment)  

s2
z +s2 trend+ SD2 =101+SD2  

Y2 - Y1 µtrend               = 1  (control) 
µtrend + ∆   = 4  (treatment) 

s2
trend+ 2*SD2 =1+ 2*SD2  

* The distribution of the Y’s is unconditional; that is, not conditioned on Z. 
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Table 3 
 
 Correlations among True and Measured Health Variables 
 
 
SD R2

yz ryz R2
yy ryy 

2.29 .950 .975 .902 .950 

3.33 .900 .949 .810 .900 

5.00 .800 .894 .640 .800 

6.55 .700 .837 .490 .700 

10.00 .500 .707 .250 .500 

17.30 .250 .500 .063 .250 
       
          
R2

yz is the correlation between the true (Z) and measured (Y) values at a particular time. 
 
R2

yy is the correlation between Y0 and Y1. 
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 Table 4 
             
 True Psychometric Characteristics* of the Instrument Y 
 As a Function of Measurement Error (SD)   
 
  Reliability Effect Size Responsive- 

ness 
 

N per group 
for 80% 
power 

ICC for Change 
from T1 to T2 

 
 
 
 

σ
σ

z

z SD

2

2 2+

∆
σ z SD2 2+

∆
σ trend SD2 22+ * )

2 196 84 2

2

* ( . . )
Re

+
sponsiveness

σ
σ σ

C

C trend SD

2

2 2 22+ + *
 

0.00 1.0 .300  3.00 “3.5" .5000 

2.29 .95 .292 .89     22 .0800 

3.33 .90 .284 .62     42 .0414 

5.00 .80 .268 .42     91 .0192 

6.55 .70 .250 .32   153 .0114 

10.00 .50 .212 .21   352 .0050 

17.30 .25 .151 .12 1046 .0017 
   
*  Assumes sz =10, strend =1, ∆= 3, and  sC = 1. 

Hosted by The Berkeley Electronic Press



 

 
27 

 Table 5 
 CRT Sample sizes needed per cluster to achieve 80% power 
 by ICC, Reliability, and C (# clusters/tx group)*  **  
  
ICC Reliability  \  C 

(#Clusters/tx grp) 
C=2 C=5 C=10 C=15 C=20 

.01 .25    310 124 

 .50  1156 65 34 23 

 .70  65 20 12 9 

 .80  30 11 7 5 

 .90 297 12 5 3 2 

 .95 59 6 2 1 1 

.025 .25      

 .50    70 35 

 .70   34 15 10 

 .80  57 15 8 5 

 .90  14 6 3 2 

 .95 668 6 3 1 1 

.05 .25      

 .50     605 

 .70   154 25 14 

 .80   21 10 6 

 .90  24 6 3 2 

 .95  7 3 2 1 
   
* Note: s2

C is different for each line; s2
C = ICC/(1-ICC)*[1 + 200*(1-Reliability)/Reliability], 

assuming sz =10  and strend=1. 
 
**A blank cell indicates that it is not possible to achieve 80% power with the specified 
configuration. 
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 Table 6 
 Descriptive and Psychometric Statistics from the Lido Study 
 
  5-Item Score (MHI-5) Single Item Score 

baseline mean 43.3 1.23

baseline s.d. 18.4 .42

Corr (baseline, 6 weeks) .51 .38

Reliability .48 .37

Effect Size 1.06 .83

Responsiveness .94 .74

 

Cost (length) 6 2

Sample Size Needed (N) 18 29

Total cost ~ Cost * N 108 58

 

s2
C of change among 

communities  
13.99 .0037

ICC of change .025 .012

ICC of baseline Y .017 .066

ICC of 9 month Y .042 .061
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 Figure 1 
 Distribution of Reliability Estimates, N=20, True Reliability = .80 
 
    
 
 

Estimated Reliability

.950
.900

.850
.800

.750
.700

.650
.600

.550
.500

.450

151 Estimates of Reliability (true = .80)

Based on 20 persons per sample
20

10

0

Std. Dev = .09  
Mean = .796

N = 151.00

 
 
 
 
 
 
 
  
 
 
 

http://biostats.bepress.com/uwbiostat/paper284



 

 
30 

 References 
 
                                                 

1. Nunnally JC.  Psychometric theory. 1967.  McGraw-Hill Book Company.  New York.   

2. Streiner DL, Norman GR.  Health measurement scales: a practical guide to their 
development and use.  Second edition. 1995.   Oxford University Press, New York. 

3. Scientific Advisory Committee of the Medical Outcomes Trust.  Assessing health status 
and quality-of-life instruments: attributes and review criteria.  Quality of Life Research 
2002; 11:193-205. 

4. Wagner EH, Wickizer TM, Cheadle A, Psaty BM, Koepsell TD, Diehr P, Curry SJ, Von 
Korff M, Anderman C, Beery WL, Pearson DC, Perrin EB.  The Kaiser Family 
Foundation Community Health Promotion Grants Program: findings from an outcome 
evaluation.  Health Serv Res. 2000 Aug;35(3):561-89.  

5.  Beresford SA, Thompson B, Feng Z, Christianson A, McLerran D, Patrick DL.  Seattle 5 
a Day worksite program to increase fruit and vegetable consumption.  Prev Med 2001; 
32:230-238. 

6. Green SB, Carle DK, Gail MH, Mark SD, Pee D, Freedman LS, Graubard BI, Lynn WR.    
Interplay between design and analysis for behavioral intervention trials with the 
community as the unit of randomization.  Am J Epidemiol. 1995; 142:587-593. 

7. Koepsell T, Martin D, Diehr P, Psaty B, Wagner E, Perrin E, Cheadle A:  Data analysis  
and sample size issues in evaluations of community-based health promotion and disease 
prevention programs:  A mixed-model analysis of variance approach.  Journal of Clinical 
Epidemiology 44:701-713, 1991. 

8. Koepsell T, Wagner E, Cheadle A, Patrick D, Kristal A, Allan-Andrilla CH, Dey L, 
Martin DC, Diehr P.  Selected methodological issues in evaluating community-based 
health promotion and disease prevention programs.  Annual Review of Public Health 
1992.  13:31-57 

9. Koepsell T, Diehr P, Cheadle A, Kristal  A.  Commentary:  Symposium on Community 
Preventive trials.  Amer J of Epidemiol 142:594-599.  1995. 

10. Feng Z, Diehr P, Yasui Y, Evans B, Koepsell TD.  Explaining community-level variance 
in group randomized trials.  Statistics in Medicine.  18:539-556.  1999. 

11. Feng Z, Diehr P, Peterson A,  McLerran D.  Selected statistical issues in group 
randomized trials.    Annual Review of Public Health 2001. 22:167-187.  

 

Hosted by The Berkeley Electronic Press



 

 
31 

                                                                                                                                                             

12. Scientific Advisory Committee, Medical Outcomes Trust.  Assessing health status and 
quality of life instruments: Attributes and review criteria. Quality of Life Research 
2002;11(3):193-205 

13. Patrick DL,  Erickson P.  Health status and health policy: allocating resources to health 
care.  1993.  Oxford University Press.  New York. 

14. Fairclough DL.  Deesign and analysis of quality of life studies in clinical trials.  2002.  
Chapman and Hall.  New York. 

15. Fayers PM, Machin D.  Quality of life: assessment, analysis, and interpretation.  2000.  
John Wiley and Sons, West Sussex, England. 

16. Staquet MJ, Hays RD, Fayers PM.  Quality of life assessment in clinical trials: methods 
and practice.  1998.  Oxford University Press.  New York. 

17. Deyo R, Diehr P, Patrick D:    Reproducibility and Responsiveness of health status 
measures:  statistics and strategies for evaluation.  Controlled Clinical Trials 12:142S-
158S, 1991. 

18. Duan N.  Smearing estimate: a nonparametric retransformation.  J. Am. Stat. Assoc. 
1983.  78:605-610. 

19. Guyatt G, Walter S, Norman G.  Measuring change over time: assessing the usefulness of 
evaluative instruments.  J Chron Dis 1987; 40:171-178. 

20. Kristal AR, Beresford SA, Lazovich D.  Assessing change in diet-intervention research.  
Am J Clin Nutr 1994;59 (suppl):185S-189S. 

21. Cohen J.  Statistical power analysis for the behavioral sciences.  Second edidtion.  
Lawrence Erlbaum Associates.  1988.  Hillsdale, New Jersey. 

22. Donner A, Klar A.  Design and analysis of cluster randomization trials in health research.  
Arnold. London.  2000. 

23. Gail MH, Byar DP, Pechacek TF, Corle DK. Aspects of statistical design for the 
Community Intervention Trial for Smoking Cessation (COMMIT). Controlled Clinical 
Trials 1992; 13:6-21. 

 
24. Murray DM.  Design and analysis of group-randomized trials.  Oxford University Press 

New York.  1998. 

http://biostats.bepress.com/uwbiostat/paper284



 

 
32 

                                                                                                                                                             

25. Feng Z, Grizzle J.  Correlated binomial variates: properties of estimator of intraclass 
correlation and its effect on sample size calculations.  Statistics in Medicine 1992; 
11:1607-1614. 

 
26  Dunn OJ, Clark V.  Applied statistics:  analysis of variance and regression. 1974.  John 
Wiley and Sons, New York. 

 
27. Murray DM.  Design and analysis of group-randomized trials.  Oxford University Press 

New York.  1998. 

28. Campbell K, Mollison J, Grimshaw JM.  Cluster trials in implementation research: 
estimation of intracluster correlation coefficients and sample size.  Statistics in Medicine 
2001; 20:391-399. 

29. Moinpour CM.  Costs of quality-of-llife research in Southwest Oncology Group trials.  J 
Natl Cancer Inst Monogr.  1996;20:11-6. 

30. Diehr P, Patrick DL, Burke G, Williamson J.  Survival versus years of healthy life: which 
is more powerful as a study outcome?  Controlled Clinical Trials.  1999. 20:267-279.  

31. Yusuf S, Collins R, Peto R.  Why do we need some large, simple trials?  Statistics in 
Medicine 1984; 3:409-422. 

32. Herrman H, Patrick DL, Diehr P, Martin M, Fleck M, Simon G, Buesching D, the LIDO 
group.  Longitudinal investigation of depression outcomes in primary care in six 
countries: the LIDO study.  Functional status, health service use and treatment of people 
with depressive symptoms.  Psychological Medicine, 2002.  32:889-902. 

33. Kessler RC, Andrews G, Mroczek D, Ustun B, Wittchen HU. The World Health 
Organization Composite International Diagnostic Interview Short-Form (CIDI-SF). Int J 
Methods Psychiatr Res 1998;7:171-85.  

Hosted by The Berkeley Electronic Press


	3-24-2006
	Reliability, Effect Size, and Responsiveness and Intraclass Correlation of Health Status Measures Used in Randomized and Cluster-Randomized Trials
	Paula Diehr
	Lu Chen
	Donald L. Patrick
	Ziding Feng
	Yutaka Yasui
	Suggested Citation


	Microsoft Word - Psycho_techreport_09%2Edoc[1].doc

