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Minimum Description Length and Empirical
Bayes Methods of Identifying SNPs

Associated with Disease

Ye Yang and David R. Bickel

Abstract

The goal of determining which of hundreds of thousands of SNPs are associ-
ated with disease poses one of the most challenging multiple testing problems.
Using the empirical Bayes approach, the local false discovery rate (LFDR) esti-
mated using popular semiparametric models has enjoyed success in simultaneous
inference. However, the estimated LFDR can be biased because the semipara-
metric approach tends to overestimate the proportion of the non-associated single
nucleotide polymorphisms (SNPs). One of the negative consequences is that, like
conventional p-values, such LFDR estimates cannot quantify the amount of infor-
mation in the data that favors the null hypothesis of no disease-association.

We address this problem of the semiparametric approach by proposing two simple
parametric methods under the minimum description length (MDL) and empirical
Bayes frameworks. The performances of the estimators corresponding to the two
proposed parametric models and of the popular semiparametric model are com-
pared by simulation to select a method for analyzing genome-wide association
data.

The application of the coronary artery disease data indicates that the semipara-
metric method sometimes leads to overfitting due to nonparametric density esti-
mation. Unlike semiparametric methods, the analyses based on the two parametric
models can measure the amount of information in the data that favors one hypoth-
esis over another. In multiple simulation studies, the estimators associated with
the parametric mixture model consistently performs better than those of the other
two models.
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Abstract

The goal of determining which of hundreds of thousands of SNPs are associated

with disease poses one of the most challenging multiple testing problems. Using the

empirical Bayes approach, the local false discovery rate (LFDR) estimated using pop-

ular semiparametric models has enjoyed success in simultaneous inference. However,

the estimated LFDR can be biased because the semiparametric approach tends to

overestimate the proportion of the non-associated single nucleotide polymorphisms

(SNPs). One of the negative consequences is that, like conventional p-values, such

LFDR estimates cannot quantify the amount of information in the data that favors

the null hypothesis of no disease-association.

We address this problem of the semiparametric approach by proposing two simple

parametric methods under the minimum description length (MDL) and empirical
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Bayes frameworks. The performances of the estimators corresponding to the two

proposed parametric models and of the popular semiparametric model are compared

by simulation to select a method for analyzing genome-wide association data.

The application of the coronary artery disease data (Wellcome Trust Case Con-

trol Consortium, 2007) indicates that the semiparametric method sometimes leads to

overfitting due to nonparametric density estimation. Unlike semiparametric methods,

the analyses based on the two parametric models can measure the amount of infor-

mation in the data that favors one hypothesis over another. In multiple simulation

studies, the estimators associated with the parametric mixture model consistently

performs better than those of the other two models.

1 Introduction

Genome-wide association studies employ either case-control designs or larger cohort de-

signs. Both study designs aim to determine which SNPs are associated with the presence or

absence of disease. The most common measure of association is the odds ratio. Each allele

(or combination of alleles in the dominant and recessive models) of a SNP is associated

with the odds of disease; the odds ratio between two alleles is the odds of disease of one

allele divided by the odds of disease of the other allele. See Hirschhorn and Daly (2005)

for an informative review.

Two recent developments have made genome-wide association studies feasible. First,

genotyping has become more accurate and more affordable. Second, markers can now be

selected on the basis of linkage disequilibrium patterns observed across the human genome

(International HapMap Consortium, 2005). By identifying SNPs associated with disease,

genome-wide association studies can potentially lead to novel treatments and better disease

diagnosis and prevention (Wellcome Trust Case Control Consortium, 2007).
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In genome-wide association studies, different samples of individuals may be genotyped

for different reasons. For example, some studies are conducted in stages, beginning with

one or more screening stages of a high number of markers to select loci for a validation

stage of a much smaller number of markers over a possibly larger patient group (e.g. Göing

et al. (2001); McPherson et al. (2007)). The validation stage requires selecting markers as

having more evidence of association than was possible at the screening stage. The regions

of such loci may then be sequenced to identify genes that may causally influence the onset

of the disease or other trait. Alternatively, loci may be selected for potential clinical use

as disease risk factors in prognosis. Regardless of whether a data set is used to scan for

associations to be validated at a later stage, to validate hypothesized associations, or to

perform both functions simultaneously, its analysis will involve the selection of some SNPs

for their putative association with the disease.

Most commonly, p-values reported to quantify evidence for disease association are ad-

justed to control a family-wise error rate (e.g. Montana (2006); He et al. (2006)). This

practice, however, tends to be too conservative to identify many SNPs associated with

disease that have small odds ratios. Approaches with more statistical power include those

estimating a global false discovery rate (GFDR) (e.g. Sabatti et al. (2003)) and Bayesian

methods (e.g. Wacholder et al. (2004); Wellcome Trust Case Control Consortium (2007)).

Empirical Bayes approaches, including local false discovery rate (LFDR) estimation, have

the advantage of the full Bayesian approach that they can specify a posterior probabil-

ity that a particular SNP is associated with disease but without depending on a prior

distribution specified before observing the data.

LFDR estimation does not suffer from the main two criticisms of standard p-value

approaches with regard to how the issue of multiple comparisons is handled: high false-

negative rates and difficulties of interpretation. First, standard p-value adjustments for

multiple comparisons incur an unacceptable loss of power due to an attempt to control the
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proportion of false positives among all tests. Such traditional correction of p-values for

multiple comparisons is not appropriate for the large number of tests needed for genome-

wide association (GWA) data sets since they have hundreds of thousands of SNPs. As

a test-wise version of the GFDR, the expected number of false positives among all sta-

tistically significant results, the estimated LFDR of each SNP’s association with disease

can rigorously account for multiple comparisons without that loss of power. The second

criticism of p-value approaches also applies to the control of the GFDR as an alternative

method for addressing the multiple-comparisons problem. That alternative requires the

selection of an arbitrary threshold, not allowing assignments of different levels of confidence

for significance to different tests (Ziegler et al., 2008). The standard response to this crit-

icism is to compute the q-value, the minimum false discovery rate threshold at which each

null hypothesis would be rejected (Storey, 2002). However, the q-value can be difficult to

interpret since it does not approximate the probability that the hypothesis is true (Bukszár

et al., 2009). Unlike the p-value and q-value, the LFDR estimate is easily interpreted as an

approximate posterior probability that the null hypothesis is true (Greenwood et al., 2007;

Bukszár et al., 2009), provided that the estimate is not essentially 0% or 100% (Bickel,

2010a). At the same time, estimation of the LFDR is built on standard principles of fre-

quentist inference, not relying on the choice of subjective or default prior distributions, as

in the purer Bayesian approaches that Wakefield (2007) and Wei et al. (2010) applied to

GWA data.

The estimation of LFDR and GFDR is normally performed using a discrete mixture

model, whether parametric (e.g., Allison et al. (2002); Pounds and Morris (2003); Pan

et al. (2003); Liao et al. (2004); Muralidharan (2010)) or semiparametric (e.g., Efron et al.

(2001); Efron (2004, 2007a)). The main application of semiparametric LFDR estimation

has been to microarray gene expression data (e.g., Efron et al. (2001); Efron (2004, 2007a);

Aubert et al. (2004)). In contrast with the large number of applications to microarray data
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analyses, only a few papers have applied LFDR estimation to GWA data (e.g., Greenwood

et al. (2007)). The estimated LFDR using the semiparametric approach is designed to be

conservative, leading to the bias that Pawitan et al. (2005) addressed by fitting a parametric

model to gene expression data. The parametric model has the additional advantage that

it can quantify the strength of the statistical evidence under the likelihood paradigm, as

explained below.

According to the likelihood framework, the likelihood ratio measures the degree to

which the data supports one hypothesized distribution over another (Blume, 2002; Hacking,

1965; Edwards, 1969; Royall, 1997). As a ratio of probability densities, the likelihood ratio

requires a single density associated with the alternative hypothesis and a single density

associated with the null hypothesis. Since, however, the alternative hypothesis typically

corresponds to an infinite number of probability density functions, a single density function

must be selected for the numerator of the likelihood ratio. While the principle of inference

to the best explanation suggests maximizing the alternative density over the parameter

space (Bickel, 2010d), that approach leads to overfitting from a predictive standpoint

since the density function selected depends on the same data as the likelihood. The full

Bayesian solution is to assign priors in order to integrate the likelihoods associated with

each hypothesis (Wei et al., 2010). Without requiring any prior distribution, the minimum

description length (MDL) principle also prevents overfitting by requiring that the density

function not depend on the data (Grünwald, 2007).

In Section 2, we will apply two parametric mixture models that approximate MDL

densities (Bickel, 2010b) to the problem of assessing the strength of evidence for association

with disease. We will also apply the same models and a semiparametric model of Efron

(2004) to LFDR estimation. Section 3 describes our application of those models to coronary

artery disease data (Wellcome Trust Case Control Consortium, 2007). In Section 4, we

report the relative performance of each of the estimators associated with the three models.
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Finally, we conclude the paper in Section 5 with recommendations for the analysis of GWA

data.

2 Methods

2.1 Model assumed as true

To investigate the association between the disease state and the ith SNP, logistic regression

estimates the ith SNP effect βi, the logarithm of the odds ratio for the ith SNP, where

i = 1, . . . , N, and N is the total number of the measured SNPs. For the ith SNP, we

perform the Wald test with βi = 0 as the null hypothesis and with βi 6= 0 as the alternative

hypothesis. The Wald test statistic is Ti = β̂2
i /
(

V̂ar
(
β̂i

))
, where β̂i is the maximum

likelihood estimator of βi and V̂ar
(
β̂i

)
is the standard estimate of the variance of β̂i

(Hosmer and Lemeshow, 2000).

Let gδ denote the probability density function admitted by the noncentral χ2 distribu-

tion of one degree of freedom and of a noncentrality parameter value δ. For all i = 1, . . . , N ,

according to Shieh (2005), the Wald test statistic Ti is approximately distributed according

to the probability density function gδi with noncentrality parameter

δi = β2
i /Var

(
β̂i

)
, (1)

where Var
(
β̂i

)
is the variance of β̂i. The equation indicates that the value of δi is deter-

mined by the parameter of interest βi such that δi = 0 if βi = 0 and δi > 0 if βi 6= 0.

Therefore, the Wald test statistics for all measured SNPs are regarded as reduced data that

are highly informative about the parameter of interest. We defined the true association
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Table 1: Model types of Section 2.2 and the specific models defined in Section 2.3.

Parametric Semiparametric
Mixture PMM SMM
Nonmixture PNM N/A

indicator

ai =

 0 if δi = 0

1 if δi > 0
(2)

to indicate whether or not the ith SNP is associated with a certain disease. Then the

proportion of the non-associated SNPs is p0 = # (ai = 0) /N , where # (ai = 0) is the

number of truly non-associated SNPs.

2.2 Types of models for estimation

In order to evaluate the strength of evidence and to estimate ai and p0, the assumed true

model of Section 2.1 must be simplified. The main simplifying assumption is that any

observed Wald test statistic t for the disease-associated SNPs was sampled from the same

distribution. These simplified models, to be specified in Section 2.3, differ in whether

they are parametric models and in whether they are mixture models. Table 1 shows the

categorization of each model.

2.2.1 Parmetric versus semiparametric

For the two parametric models, we assume that the Wald test statistics for the disease-

associated SNPs are generated from a noncentral χ2 distribution of 1 degree of freedom and

of a single noncentrality parameter δi = δalt for all i corresponding to disease-associated

SNPs. Bukszár et al. (2009) also assigned a single noncentrality parameter value to all SNPs

not associated with disease. Similarly, for microarray data, a three-component mixture
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model performs as well as more complex models according to Muralidharan (2010) with

the three components corresponding to null, negative and positive groups. Since the Wald

test statistics of Section 2.1 can never be negative, the three components in that microarray

model are analogous to the two components of this paper. The two parametric models can

also work well with test statistics from other distributions, e.g., the Student t family of

distributions used in microarray studies.

For the semiparametric model, the density function of the transformed Wald test statis-

tics for the disease-associated SNPs is estimated nonparametrically. Without modifying

the method of estimation, we will use a χ2 distribution because our test statistics are

χ2-distributed under the null hypothesis.

2.2.2 Mixture versus nonmixture

In the two mixture models, for the ith SNP, we use the symbol Ai to represent a random

association indicator, and we denote the prior probability that the ith SNP is not associated

with disease by π0 = P (Ai = 0). In the nonmixture model, as in the model assumed to be

true (Section 2.1), we use ai to represent the fixed association indicator, with ai = 1 if the

ith SNP is associated with a certain disease and with ai = 0 if it is not.

2.3 Models for estimation

The following three models will be used to estimate each ai of the true model specified in

Section 2.1. For economy of notation, the same symbol âi will denote the estimator of ai

for each of the estimating models.

2.3.1 Semiparametric mixture model (SMM)

For any observed Wald test statistic ti, zi = Φ−1 (G0 (ti)) is called the z-transformed

statistic, where Φ is the standard normal cumulative distribution function (cdf) and G0
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is the cdf of the central χ2 distribution of 1 degree of freedom. The observed Wald test

statistics t1, . . . , tN are transformed into z1, . . . , zN , and for the ith SNP, the density is a

mixture of the form

f (zi) = π0f0 (zi) + (1− π0) f1 (zi) , (3)

where f0 is the density function of z for the non-associated SNPs, and f1 is that for the

disease-associated SNPs.

For the ith SNP, LFDR is the posterior probability

LFDRSMM (zi) = P (Ai = 0|zi) =
π0f0 (zi)

f (zi)
, (4)

which may be interpreted as a level of certainty in the hypothesis that the ith SNP is not

associated with disease (Ai = 0) and is associated with disease (Ai = 1). The density

function f0 is assumed to be standard normal, N (0, 1), called the theoretical null. An-

other approach is to estimate the null density (Efron, 2004, 2007a), but such estimation

unnecessarily increases the variance of the estimates of interest for the application of this

paper, as explained in Section 3. Following Efron (2004), we use a nonparametric method

to estimate f by f̂ and an empirical Bayes method to estimate π0 by π̂0, and then compute

L̂FDRSMM (zi) by substituting π̂0 and f̂ into π0 and f in equation (4). The natural estimate

of f1 is then f̂1 =
(
f̂ − π̂0f0

)
/ (1− π̂0). We choose the estimator âi = 1− L̂FDRSMM (zi)

to estimate ai of equation (2).

2.3.2 Parametric mixture model (PMM)

For the ith SNP, the density g (ti) is defined by replacing f (zi), f0 (zi) and f1 (zi) in

equation (3) with g (ti), g0 (ti) and gδalt (ti). The log-likelihood of PMM with unknown

parameters π0 and δalt is thus

9

Hosted by The Berkeley Electronic Press



logL (π0, δalt) =
N∑
i=1

log [π0g0 (ti) + (1− π0) gδalt (ti)] ,

which is maximized numerically by the maximum likelihood estimates π̂0 and δ̂alt. The

gδ̂alt is an estimate of gδalt , and ĝ is the corresponding estimate of g. For the ith SNP,

âi = 1−L̂FDRPMM (ti) estimates ai, where L̂FDRPMM (ti) = π̂0g0 (ti) /ĝ (ti) is the estimator

of the LFDR.

Under the two parametric models, the log-likelihood ratio for the ith SNP,

∆i (ti) = log2 (gδalt (ti) /g0 (ti)) (5)

is regarded as the ideal information for discrimination favoring the hypothesis of associ-

ation (δi = δalt) over that of non-association (δi = 0) (Kullback, 1968). The information

is called ideal because the δalt is unknown. Here we chose the binary logarithm (log2) to

facilitate interpretation. Following the evidence levels of that Bickel (2010c) considered,

the discrimination information indicates strong evidence (∆i (ti) > 3), very strong evi-

dence (∆i (ti) > 5) and overwhelming evidence (∆i (ti) > 7); see Royall (1997) for slightly

different names of the first two grades. Negative discrimination information, ∆i (ti) < 0,

indicates evidence in favor of non-association, which cannot be integrated by p-values since

they can only quantify the evidence against non-association (Wei et al., 2010).

For the ith SNP, the approximate information for discrimination is obtained by substi-

tuting gδ̂alt (ti) into gδalt (ti) in equation (5). That approximation also closely approximates

an MDL-based information for discrimination (Bickel, 2010b).
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2.3.3 Parametric nonmixture model (PNM)

Under the assumption that for the ith SNP, the observed Wald test statistic ti is sampled

from g0 (ti) if ai = 0 or from gδalt (ti) if ai = 1, the density of ti is

g (ti, δalt, ai) = aig0 (ti) + (1− ai) gδalt (ti) , (6)

and the log likelihood with the unknown parameters δalt and a1, . . . , aN is

logL (δalt, a1,..., aN) =
N∑
i=1

log (g (ti, δalt, ai)) . (7)

The maximum likelihood estimates of the parameters a1, . . . , aN are computed by substi-

tuting

ânaive
i =

 0 gδ̃alt (ti) 6 g0 (ti)

1 gδ̃alt (ti) > g0 (ti)
, (8)

into ai in (7), where δ̃alt is the value of δalt that maximizes the likelihood defined by equation

(7). The estimated density functions g̃ and gδ̃alt are obtained by substituting ânaive
i and δ̃alt

for ai and δalt in equation (6).

For the ith SNP, the maximum likelihood estimator ânaive
i in equation (8) is a naive

estimator for ai in that the decisions based on ânaive
i do not perform well due to its binary na-

ture. We use another estimator of ai, âi = 1−p̂0g0 (ti) /g̃i (ti), where p̂0 = #
(
ânaive
i = 0

)
/N

is an estimator of p0 (Bickel, 2010b).

For the ith SNP, the approximate information for discrimination is computed by sub-

stituting gδ̃alt (ti) into gδalt (ti) in equation (5) (Bickel, 2010b).
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3 Application

The Coronary artery disease (CAD) data from Wellcome Trust Case Control Consortium

(2007) included 490,032 SNPs genotyped for 1988 cases and 3004 combined controls on

22 autochromosomes. We excluded SNPs with 10% missing genotypes, with minor allele

frequencies <5% and with p-values smaller than 0.05 from a Hardy-Weinberg equilibrium

exact test (Purcell et al., 2007). We also excluded the samples genotyped for less than 95%

of the SNPs. A total of N = 335,169 SNPs and 4934 samples (1947 cases, 2987 controls)

passed those quality control filters and were used in the following statistical analysis.

We computed the Wald test statistics for all N SNPs. In order to implement SMM,

we transformed the observed Wald test statistics into z-values. Since the central region

of the histogram of the z-values matches N(0, 1) very well, f0 is considered to be the

theoretical null. For PMM and PNM, the observed statistics were used to estimate the

model parameters. These estimates are shown in Table 2. The estimates of p0 under SMM

and PMM were denoted by π̂0 in Section 2.3, and SMM does not estimate δalt since instead

estimates f1 using the nonparametric method mentioned in Section 2.

We now introduce some additional notation to compare the three models with respect

to the CAD data under the assumed true model of Section 2.1, in which the Wald test

statistic for each disease-associated SNP is sampled from a noncentral χ2 distribution of

1 degree of freedom and of a potentially different noncentrality parameter value. The

average probability density function of the Wald test statistics for all disease-associated

SNPs, represented by f 1, is defined as the mean of the probability density function of each

of its statistics. The estimated f 1 under SMM is equal to f̂1. For the two parametric

models, f 1 was estimated by gδ̂alt under PMM and by gδ̃alt under PNM. In Figure 1, the

solid line is the estimated f1 under SMM, where the z-values are the transformed Wald

test statistics from the CAD data. For PMM and PNM, we simulated 500,000 Wald test
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Table 2: The estimation of parameters p0 and δalt in SMM, PMM and PNM in the CAD
data.

Models Estimated p0 Estimated δalt

SMM 0.98 N/A
PMM 0.90 1.01
PNM 0.77 3.11

Table 3: The number of SNPs with evidence in favor of non-association (the negative
approximate information for discrimination) and with very strong evidence (approximate
information for discrimination larger than 5) and overwhelming evidence (approximate
information for discrimination larger than 7) in favor of association in the CAD data.

Negative Very strong Overwhelming
PMM 234,411 35 19
PNM 259,343 779 82

statistics t from gδ̂alt and gδ̃alt respectively, where the values of δ̂alt and δ̃alt are from Table 2.

Then we transformed the t values into z values and to numerically approximate each density

function of z values. All three estimated density functions in Figure 1 were normalized

into the interval between 0 and 1.

The dark grey horizontal line illustrates the full width at half maximum (FWHM) for

the estimated f 1 under three models. Since there is more than one noncentrality parameter

value under the true model, f 1 is wider than the probability density function of each of its

SNPs. However, as seen in Figure 1, the FWHM for the SMM-estimated density is much

smaller than those of the other two estimated densities, each of which is in turn narrower

than f 1.

Figure 2 displays the approximate discrimination information (Section 2.3) for all

measured SNPs, where the estimated odds ratio for the ith SNP is eβ̂i . Table 3 reports the

numbers of SNPs with very strong or overwhelming evidence in favor of association and of

those with evidence in favor of non-association.
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Figure 1: The estimated density functions of the z-transformed Wald test statistics for the
disease-associated SNPs in the CAD data under three models.

Figure 2: The binary logarithm (log2) of the likelihood ratio versus the estimated odds
ratio for all measured SNPs in the CAD data under PMM (black) and PNM (grey).
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4 Simulation studies

The aim of the following simulation studies is to compare the performances of the estimators

under the three models of Section 2. First, we used the Kullback-Leibler divergence to

compare the deviations between the true distribution and the estimated distribution for

the disease-associated SNPs in the two parametric models (PMM and PNM). Second, we

compared the abilities of all three models to estimate p0 and ai.

All simulations were performed under the assumed true model of Section 2.1. According

to equation (1), each δi depends on the logarithm of the odds ratio, and SNPs with different

values of the odds ratio do not necessarily have the same value of δi. The simulation studies

are divided into two sets, one with multiple values of δalt and the other with a single value

of δalt for each study. In the former set, we assume that the observed Wald test statistics for

the disease-associated SNPs between disease-associated genes are generated from different

distributions with different values of δalt (Section 4.1). In the latter set, the observed Wald

test statistics for all disease-associated SNPs are sampled from the same distribution with

a single value of δalt (Section 4.2). In both sets, we assume that the observed Wald test

statistics for non-associated SNPs are from the same distribution with δi = 0. Bukszár

et al. (2009) similarly simulated test statistics but used different estimators and different

measures of performances than those employed herein.

4.1 Multiple values of δalt per study

The data were simulated as follows. There are 2000 effect-size groups affecting a certain

disease, and the number of SNPs in each effect-size group is evenly allocated. We per-

formed 12 simulation studies, each with a different value of p0 and with the number of

the SNPs per effect-size group equal to one of the two integers closest to (1− p0)N/2000,

where in each simulation study, N is equal to 335,169, the total number of the mea-
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sured SNPs in Section 3. For each of the 2000 disease-associated effect-size groups,

a noncentrality parameter δj > 0 was assigned. For the first two effect-size groups,

δ1 = δ̂alt = 1.01 and δ2 = δ̃alt = 3.11, numbers that also appear in Table 2, whereas

for each j = 3, . . . , 2000, δj was generated from the uniform distribution between 0.5 and

5.

In each simulation study, we randomly generated 50 data sets, each corresponding to

an artificial case-control study. For each data set, we used the true model of Section 2 to

simulate the Wald test statistics, where the Wald test statistics for the SNPs within the jth

effect-size group associated with disease were sampled from the noncentral χ2 distribution

of 1 degree of freedom and of a noncentrality parameter δj, and the Wald test statistics

for the other non-associated SNPs were sampled from the noncentral χ2 distribution of 1

degree of freedom and of the noncentrality parameter equal to 0.

The Kullback-Leibler (KL) divergence is the expected difference between the ideal in-

formation for discrimination and the approximate information for discrimination defined

in Section 2.3.2, e.g., for the ith SNP,

KLi = E
[
log2

(
gδalt (ti) /gδ̂alt (ti)

)]
= E

[
∆i (ti)− ∆̂i (ti)

]
,

where ∆̂i (ti) = log2

(
gδ̂alt (ti) /g0 (ti)

)
is the approximate information for discrimination

under PMM. Here, gδ̂alt is fixed, and the expectation value is over Ti, which is distributed

according to gδalt . This KL divergence measures the performance of approximating the

ideal information for discrimination. The left panel of Figure 3 displays the numerically

approximated KL divergence for each simulation study averaged over all 50 data sets and

over all the disease-associated SNPs.

The bias for each estimator of p0 is E[p̂0 − p0]. The left panel of Figure 4 shows the bias

estimated by averaging p̂0 − p0 over all 50 data sets. The estimated standard deviation of
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p̂0 in each simulation study is <0.001% for all three models.

For the ith SNP, the frequentist risk for âi is R (ai, âi)= E[l (ai, âi)], the expected loss,

where âi is the estimate of ai defined for each model in Section 2.3 and l (ai, âi) is the loss

of âi. In this paper, we consider the most widely used loss functions used to evaluate the

performance of probability assessments (Bernardo and Smith, 1994), namely the quadratic

loss l (ai, âi) = (âi − ai)2, and the logarithmic loss

l (ai, âi) =

 − log2 (1− âi) ai = 0

− log2 âi ai = 1
.

The expected quadratic loss and the expected logarithmic loss are called the mean square

error (MSE) and the logarithmic risk, respectively. In Figure 5, the infinite logarithmic

risk under SMM is due to the infinite logarithmic risk for the disease-associated SNPs since

we have infinite loss for the disease-associated SNPs whenever L̂FDRSMM (zi) is equal to

100%. In the Bayesian interpretation, this would mean absolute certainty that a particular

SNP is not associated with disease even though it is associated with disease (cf. Bickel,

2010a).

In the simulation studies above, we assumed for simplicity that there are 2000 effect-size

groups associated with disease and the SNPs within a effect-size group are independent. In

order to investigate whether the results are sensitive to the number of the disease-associated

effect-size groups and to the correlation between SNPs within a effect-size group, we also

performed additional simulation studies as before except that the number of the disease-

associated effect-size group varied between 10 and 4000. For each of the disease-associated

groups, we considered the extreme case that the SNPs within a effect-size group have the

same Wald test statistics regarding the disease-associated group as a haplotype. The results

are not shown here since they do not affect the performance of the estimators relative to

each other.
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Figure 3: Left panel: the mean Kullback–Leibler divergence between gδalt and its estimator
versus p0 for two true values of δalt equal to 1.01 (grey) and 3.11 (black) under PMM
(circles) and under PNM (triangles) when each simulation study has multiple values of δalt

(Section 4.1). Right panel: the mean Kullback–Leibler divergence between gδalt and its
estimator versus the true values of δalt under PMM (circles) and under PNM (triangles)
when each simulation study has a single value of δalt (Section 4.2).
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Figure 4: The same as Figure 3 except that the absolute values of the estimated bias of
each estimator of p0 replace the mean Kullback–Leibler divergence between gδalt and its
estimator for all three models. In both panels, the estimated bias of each estimator of
p0 is positive under SMM(”x”), positive under PMM (circles) and negative under PNM
(triangles).
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Figure 5: The approximate risk of âi versus p0 when each simulation study has multiple
values of δalt (Section 4.1) under three models, SMM (”x”), PMM (circles) and PNM
(triangles). Left panel: the approximate mean square error (MSE) of âi versus p0. Right
panel: the approximate logarithmic risk of âi versus p0. Under SMM, the approximate
logarithmic risk of âi is infinite and is not displayed.
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Figure 6: The same as Figure 5 except that the each simulation study has a single value
of δalt (Section 4.2).

4.2 One value of δalt per study

In this set of simulation studies, the true value of p0 is fixed at 0.90, the PMM estimate

reported in Table 2. Since the total number of markers is N = 335,169, the number of

disease-associated SNPs is equal to 33,516. We performed 8 simulation studies, each with

a different value of δalt, ranging from 0.5 to 5. Similar to Section 4.1, we simulated 50

data sets for each simulation study, and the results were plotted versus the true values of

δalt instead of the true values of p0 in the right-hand panels of Figure 3 and 4. Figure 6

displays the approximate risk of âi versus δalt for each simulation study.

We also conducted the simulation studies with the true value of p0 fixed at 0.77, the

PNM estimate (Table 2). The results are not displayed here since the relative performances

of the estimators associated with the three models are the same as that in the case of p0

fixed at 0.90.

5 Discussion

As observed in Section 3, the SMM estimate of f1 is much narrower than the true f 1, which

indicates that using the nonparametric method to estimate the density function for the

disease-associated SNPs led to overfitting the CAD data. Such problems in estimating the

mean density function propagate to the estimates of the true association indicator ai and
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of the true null proportion p0. While the parametric models may underfit the data, the

simulation studies of Section 4.1 demonstrated that they are robust against misspecification

in the form of multiple noncentrality parameters values.

Figure 4 indicates that SMM has a severe upward bias in estimating p0, as previously

observed in microarray studies using similar semiparametric models (Pawitan et al., 2005).

As Pawitan et al. (2005) explained, that bias reflects the fact that nonparametric entity

estimators inadequately separate the features with small effect size from those with no

effect. The biased estimate of p0 will lead to a biased estimate of LFDR according to

equation (4). Using the biased estimate of LFDR in turn results in failing to detect

associations with SNPs of small odds ratios.

As a consequence of this bias, in both sets of simulation studies, the approximate

logarithmic risk for the disease-associated SNPs under SMM is infinite as a result of the

infinite loss for some of the disease-associated SNPs under SMM. Here, the infinite loss is

due to the value of the estimated LFDR equalling 100% for a specific disease-associated

SNP, which indicates that the LFDR estimator based on SMM does not have the Bayesian

posterior probability interpretation that popularized the LFDR.

Also due to this bias in estimating p0, the investigator cannot interpret a high LFDR

estimate as evidence in favor of the null hypothesis. Both PMM and PNM can measure

the strength of evidence for the hypothesis of non-association (Table 3), but the LFDR

estimator based on SMM, similar to conventional p-values, cannot quantify the amount of

information in the data supporting non-association.

Among the two parametric models, PMM has substantially better performance for

estimating the true values of δalt and p0 and has slightly better performance for estimating

ai (Figures 3, 4, 5 and 6).
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