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Summary

Quantitative procedures for evaluating added values from new markers over a conventional

risk scoring system for predicting event rates at specific time points have been extensively stud-

ied. However, a single summary statistic, for example, the area under the receiver operating

characteristic curve or its derivatives, may not provide a clear picture about the relationship be-

tween the conventional and the new risk scoring systems. When there are no censored event time

observations in the data, two simple scatterplots with individual conventional and new scores for

“cases” and “controls” provide valuable information regarding the overall and the subject-specific

level incremental values from the new markers. Unfortunately, in the presence of censoring, it

is not clear how to construct such plots. In this paper, we propose a nonparametric estima-

tion procedure for the distributions of the differences between two risk scores conditional on the

conventional score. The resulting quantile curves of these differences over the subject-specific

conventional score provide extra information about the overall added value from the new marker.

They also help us to identify a subgroup of future subjects who need the new predictors, espe-

cially when there is no unified utility function available for cost-risk-benefit decision making.

The procedure is illustrated with two data sets. The first is from a well-known Mayo Clinic PBC

liver study. The second is from a recent breast cancer study on evaluating the added value from

a gene score, which is relatively expensive to measure compared with the routinely used clinical

biomarkers for predicting the patient’s survival after surgery.

Keywords: Discriminant analysis; Nonparametric function estimation; Prediction; Receiver

operating characteristic curve.
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1. INTRODUCTION

For a binary phenotypic outcome, numerical and graphical methods for evaluating an overall

incremental value from a new set of markers over a conventional risk scoring system have been

extensively studied (Bamber, 1975; Zhou et al., 2002; Pepe, 2003; Pepe et al., 2004; Greenland

& O’Malley, 2005; Ware, 2006; Pencina et al., 2008). Novel generalizations of these procedures

to handle censored event time data have also been proposed (Hanley & McNeil, 1982; Harrell

et al., 1996; D’Agostino et al., 1997; Pencina & D’Agostino, 2004; Heagerty and Zheng, 2005;

Cook et al., 2006; Cai and Cheng, 2008; Uno et al, 2009). Evaluating the added value from

the new markers with an overall summary measure is an important first step for establishing

a prediction rule. On the other hand, even when the new markers have either an impressive

or no meaningful overall incremental value, the next critical step is to identify patients who

would or would not need the additional markers for better prediction via their conventional risk

scores. Unfortunately, relatively little effort has been made for establishing a systematic, analytic

procedure for such “subgroup analysis” in the statistical or medical literature (D’Agostino, 2006).

Recently, Tian et al. (2009) proposed a procedure for this type of subject-specific level analysis

by controlling a pre-specified simultaneous inference error rate. However, their proposal does

not incorporate censoring and depends heavily on the choice of the utility function, a weighted

average between the false positive and negative rates.

For binary outcomes, simple scatterplots of individual conventional risk scores vs. new ones

provide valuable information about an overall and also personalized-level incremental values of

the new markers (Gu & Pepe, 2009). For example, in selecting patients with advanced or end-

stage primary biliary cirrhosis, PBC, for orthotopic liver transplantation, five patients’ baseline

covariates, namely age, albumin, bilirubin, edema and prothrombin time, were identified to be

important predictors for the patient’s survival based the data from a Mayo Clinic study (Dickson

et al., 1989; Fleming and Harrington, 1991, pp. 160). Suppose that we would like to know the

added value from the bilirubin measure over the other four variables with respect to prediction
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of 5-year survival based on observations from 416 patients with complete information on those

predictors. To this end, we first obtain a risk score based on these four variables without bilirubin,

0.29 � (age/10)� 3.49 � log (albumin)� 1.33 � edema� 3.07 � log (prothrombin time), p1.1q

by fitting the data with a simple additive Cox model using partial likelihood estimation procedure

(Cox, 1972). Based on (1.1) and the standard Breslow estimator for the baseline cumulative

hazard, we obtain individual patients’ 5-year cumulative mortality risk, denoted by p1i, i �

1, � � � , 416. Next, we fit the data using another additive Cox model with all five covariates

including bilirubin. The resulting risk score is

0.40 � (age/10)� 2.51 � log (albumin)� 0.86 � log (bilirubin)�

0.90 � edema� 2.4 � log (prothrombin time). p1.2q

Let p2i denote the ith individual five-year mortality rate based on (1.2).

In the PBC dataset, there are 196 censored survival observations by Year 5 and 114 patients

died during this time period. Figure 1(a) shows the scatterplot of p1i vs. the difference pp2i�p1iq

for those 114 observable “cases.” The majority of those black dots in the figure are above the

horizontal line, indicating that globally the bilirubin provides extra information about the 5-

year mortality rate for those “cases.” Moreover, for a subject with p1 between 0.2 and 0.6, the

corresponding p2 tends to be substantially higher. Figure 1(b) shows the scatterplot for the

observable “controls,” who survived and were still under follow-up by Year 5. Here, most of p2

tend to be smaller than their p1, indicating that bilirubin has an overall incremental value. At

the personalized level, it appears that for the survived patients whose conventional risk scores

are between 0.15 and 0.35, bilirubin provides nontrivial improvement for predicting survival

beyond 5 years. If there were no censored observations in the data, the scatterplots in Figure

1, coupled with the standard lowess curves for the scatter diagram (dark curves), would provide

a valuable tool for quantifying global and subject-specific level performance using Model (1.2)
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with bilirubin. Unfortunately, for the present example, the number of censored observations is

substantial and it is not clear how to construct valid plots like Figure 1.

In this paper, with censored survival data we propose a nonparametric procedure to consis-

tently estimate quantiles of the distributions of the difference pp2 � p1q given p1 for cases and

controls. The resulting quantile curves are then presented using a similar configuration to Figure

1. The new method is derived under a more general setting. Here, a case is defined as the

survival time being in a time interval I1, while a control is defined as the survival time in an

interval I0, where I1 is entirely on the left hand side of I0. By repeating the analysis with various

pairs of I0 and I1, one may find, for example, that the new predictors are not useful when these

two intervals are widely separated (for instance, short- vs. long-term survival), but may have

substantial incremental values when these two intervals are relatively close. This type of finding

can be quite informative for cost-benefit decision making. The new procedure is illustrated with

the above Mayo Clinic data and also with the data set from a breast cancer study to evaluate

the additional prediction ability based on a new gene risk score on top of conventional clinical

markers. The second example is particularly interesting due to the fact that it is relatively ex-

pensive to measure the gene score compared with clinical markers, which are routinely obtained

after patients’ surgery for breast cancer.

2. ESTIMATING THE DISTRIBUTION OF THE NEW RISK SCORE

CONDITIONAL ON THE OLD RISK SCORE

Let T be the time to an event of interest and Z be its corresponding vector of baseline

covariates. For the two specific time intervals I1 P rt1, t2q and I0 P rt3, t4q discussed in Section 1,

suppose that for a given Z we are interested in estimating the risk of a case:

prpT P I1 | Zq{tprpT P I0 | Zq � prpT P I1 | Zqu. p2.1q

Let U and V be two vectors, which are functions of Z. Here, U is a function of conventional

markers only, but V is a function of both conventional and new predictors. One of the questions
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is how to identify patients with U, who may need V for better prediction of (2.1). This is a

particularly important question when it is costly or invasive to measure the new markers. Often,

the event time T may be censored by a censoring variable C. Assume that C is independent of

T and Z. Let Gp�q be the survival function of C. Moreover, let the binary variable E � 0, if

T P I0; � 1, if T P I1. Note that one can assign an arbitrary value (other than 0 or 1) for E

when T is outside of these two time intervals. Now, let tpTi, Ci, Ei, Zi, Ui, Viq , i � 1, . . . , nu be

n independent copies of pT,C,E, Z, U, V q . For Ti, we observe tXi,∆iu, where Xi � min pTi, Ciq,

and ∆i � 1, if Xi � Ti, and 0, otherwise, i � 1, � � � , n. Due to potential censoring, the binary

variable E may not be observable.

To construct a risk score system with U, let us consider the standard Cox proportional hazards

model with the risk score β1U, where β is an unknown vector of regression parameters. With the

above observed data, let β̂ be the maximum partial likelihood estimator for β. In practice, this

semi-parametric model is simply an approximation of the “true” model. Under a mild condition,

β̂ converges to a constant, as nÑ 8 (Hjort,1992), regardless of the adequacy of the Cox model.

This property is critical for developing our new procedure. Similarly, for V, we fit the data with

another additive Cox’s model with the risk score γ1V. Let γ̂ be the corresponding estimator for

γ.

Now, consider an independent future subject from the same study population whose

pT,E, Z, U, V q � pT 0, E0, Z0, U0, V 0q. To estimate (2.1) with U0, let p̂1pU
0q be the estimator for

(2.1) constructed from the Breslow estimator for the underlying cumulative hazard function of

the above Cox’s model and β̂1U0. Explicitly, letting Λ̂1p�q denote the Breslow estimator, then

p̂1pU
0q is

expt�Λ̂1pt1qe
pβ1U0

u � expt�Λ̂1pt2qe
pβ1U0

u

expt�Λ̂1pt1qe
pβ1U0u � expt�Λ̂1pt2qe

pβ1U0qu � expt�Λ̂1pt3qe
pβ1U0u � expt�Λ̂1pt4qe

pβ1U0qu
.

Similarly, let p̂2pV
0q be the corresponding estimator via the covariate vector V 0. To compare

these two predictors, let D̂pZ0q � p̂2pV
0q � p̂1pU

0q. Note that to make overall comparisons

between models with U and V , one may estimate the distribution of D̂pZ0q given E0 � e, where
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e is either 0 or 1. If V has an overall added value over U, one would expect that for e � 1, that

is, for those future subjects with T 0 P I1, D̂pZ
0q has more positive mass, and if e � 0, D̂pZ0q

has more negative mass. Recently various analytic methods based on the distributions of D̂pZ0q

for cases and controls were proposed, for example, by Pencina et al. (2008), Gu & Pepe (2009)

and Uno et al. (2009) to summarize the overall incremental value of the new markers.

In this paper, we are also interested in the subject-specific level evaluation for the incremental

values, that is, estimating the distribution of D̂pZ0q conditional on E0 � e and p̂1pU
0q � p,

where e is either 0 or 1, and p belongs to J � rl, rs is a strictly inner subset of the support of

p̂1pU
0q. Let qτeppq be the τth conditional quantile of the above distribution, for 0   τ   1. To

estimate qτeppq, we utilize a nonparametric quantile regression estimation technique by letting

the quantile of p̂2pV
0q be locally linear in p̂1pU

0q (Yu & Jones, 1998). Specifically, without

censored observations, for any given p, we minimize the following objective function with respect

to a and b,
ņ

i�1

IpEi � eqKh tψpp̂1pUiqq � ψppqu ρτ pψpp̂2pViqq � a� brψtp̂1pUiqu � ψppqsq, p2.2q

where Khpxq � Kpx{hq{h, Kp�q is a symmetric probability density function, h is a bandwidth

such that h � Opn�νq with ν P p1{2, 1{5s and ρτ pxq is the check function, which is τx if x ¥ 0,

and is pτ � 1qx if x   0. Here, we choose a proper transformation ψtp̂1pUqu of p̂1pUq to improve

smoothing, where ψp�q : p0, 1q Ñ p�8,8q is a known, non-decreasing function (Wand et al.,

1991; Park et al., 1997). For example, one may let ψppq � log t� log p1 � pqu . Let the minimizer

of (2.2) be â and b̂. Then let

q̂τeppq � ψ�1 pâq � p p2.3q

be an estimator for qτeppq.

Since E may not be observable in (2.2), we replace IpE � eq by IpE: � eq, with an inverse

probability weighting technique, where E: is 1 if X P I1; 0 if X P I0. Specifically, let Ĝp�q denote

the Kaplan Meier estimator of Gp�q and let η be a pre-specified time point such that Gpηq ¡ 0.

The choice of the weight depends of the choice of I1 and I0. For the case where I0 is an interval
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such that t4   η, the weight pwi � ∆i{ĜpXiq for both IpE:
i � 1q and IpE:

i � 0q. This may be

justified heuristically using the argument that Et pwiIpE:
i � eq | Zi, Tiu � EtIpE � eq | Zu. For

the case when t3   η, and t4 � 8 for the interval I0, the weights pwi � ∆i{ĜpXiq and pwi � 1{Ĝpt3q

are used for IpE:
i � 1q and IpE:

i � 0q, respectively. Heuristically this can be justified with the

argument that Et pwiIpE:
i � 0q | Zi, Tiu � EtIpE � 0q | Zu. This inverse probability weighting

adjustment, coupled with (2.2), results in the following minimand:

ņ

i�1

pwiIpE:
i � eqKh tψtp̂1pUiqu � ψppqu ρτ pψtp̂2pViqu � a� brψtp̂1pUiqu � ψppqsq. p2.4q

Then, the corresponding estimator q̂τeppq for qτeppq is given by (2.3), but with â being a minimizer

of (2.4) with respect to a and b. In the Appendix, we show that for each fixed τ, suppPJ |q̂τeppq�

qτeppq| Ñ 0, in probability as nÑ 8.

In practice, it is important to know how to choose the smooth parameter h in the above

nonparametric estimation. To this end, we consider a commonly used K-fold cross-validation

procedure. Specifically, we randomly partition the data into K disjoint parts, I1, � � � , IK . For

each k, we use the data not in Ik to obtain the regression parameter estimators in the above two

Cox’s models, denoted by β̂p�kq and γ̂p�kq. Moreover, let tp̂1p�kqp�q, p̂2p�kqp�q, q̂τep�kqp�qu denote the

respective estimators corresponding to tp̂1p�q, p̂2p�q, q̂τep�qu based on data not in Ik. We propose

to choose h by minimizing

Ķ

k�1

¸
iPIk

pwiIpE:
i � eqItp̂1p�kqpUiq P J uρτ

�
ψ
 
p̂2p�kqpViq

(
� ψ

�
q̂τep�kqtp̂1p�kqpUiqu�p̂1p�kqpUiq

��
.

p2.5q

In practice, the lower and upper bounds of J may be chosen as, for example, the 3rd and 97th

percentiles of the empirical distribution of p̂1pU
0q.

3. EXAMPLES

First, let us revisit the PBC example discussed in the Introduction Section. Figure 2 gives

the Kaplan-Meier estimate with the survival times from 416 patients. Assume that we are

7
Hosted by The Berkeley Electronic Press



interested in two time intervals, I0 � p5,8q(years) and I1 � r0, 5s (years). On average the 5-year

cumulative mortality rate is about 0.3. Here, p̂1pUiq is obtained without using bilirubin and

p̂2pViq is with bilirubin, i � 1, � � � , n, via the risk scores (1.1) and (1.2) and two working Cox’s

models. To estimate qτep�q, we let ψ in (2.4) be the logp� logq function and the kernel function

be the standard normal density function. To choose the smooth parameter h, we used 10-fold

cross validation scheme with (2.5). For instance, to estimate the median q0.5ep�q for patients

who would die by Year 5, the resulting “optimal” h with respect to ψ-scale is 1.6. The interval

J over which we construct the median curves is p0.10, 0.995q. Figure 3(a) gives the estimated

median curve of D̂ over the risk score p̂1 (solid curve). The lower and upper boundaries of the

shaded area are the corresponding 25th and 75th percentile curves. Figure 3(b) gives the plots

which are the counterparts for subjects who would survive more than 5 years. In Figure 3(c),

we provide the density function estimate of p̂1 score. The majority of patients whose risk scores

without using bilirubin are between 0.1 and 0.6. Based on Figure 3, the distributions of D̂ for

“cases” over the interval p0.1, 0.995q have more positive mass, especially for p̂1 between 0.2 and

0.6. The bilirubin helps greatly for the “controls” when p̂1 is between 0.2 and 0.6, that is, the

false positive rate can be drastically reduced with bilirubin. We have also examined extensively

the added values of bilirubin for various sets of time intervals I0 and I1. In Figure 4, we present

the plots of estimated median curves for cases and controls with respect to four different sets of

time intervals I0 and I1. If bilirubin were not routinely measured for evaluating liver function

clinically, one would recommend its usage for future subjects whose “conventional” scores were

between 0.2 and 0.6. Note that we cannot estimate the medians well for controls beyond 0.6

with this set of data.

Next, we use a more interesting example to illustrate a scenario in which a non-trivial cost is

associated with measuring a new marker. The data set used for our illustration is from a breast

cancer study to evaluate a new genetic marker, “wound-response gene expression signature,” for

predicting patients’ survival (Chang et al., 2005). For each study patient, this gene score was
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derived from the microarray gene expression data. Here, the data set consists of 295 breast cancer

patient files. Each file is composed of a patient’s clinical outcomes (metastasis/death or censoring

time), the gene score, and conventional baseline variables collected at time of surgery, including

age, tumor diameter, number of positive lymph-nodes, tumor grade, vascular invasion, estrogen

receptor status, chemo/hormonal therapy or not, and mastectomy or breast conserving surgery.

The data are available at http://microarray-pubs.stanford.edu/wound_NKI/explore.html, which

were collected at the Netherlands Cancer Institute by van’t Veer et al. (2002) and van de Vijver

et al. (2002). The median follow-up time for those 295 patients is 6.7 years and the range is

0.05 to 18.3 years. The gene score (the so-called Dutch 70) created by the aforementioned Dutch

scientists is different from that proposed by Chang et al. (2005). Here, we are interested in

quantifying the added value from the gene score by Chang et al. over the above conventional

clinical predictors. To this end, we fit the data with two working Cox models, one with gene score

and the other without. The regression coefficient estimates are given in Table 1. Note that the

gene score is statistically significant. The Kaplan-Meier curve of the survival times from these

295 patients is given in Figure 5. First, assume that we are interested in I0 � p10,8q (years) and

I1 � p0, 10s (years). For our analysis, we used the standard normal kernel and the logp� logq as

the ψ function in the nonparametric estimation of the quantiles. Moreover, we used 10-fold cross

validation procedure to choose h. For example, for estimating the medians, the optimal h for

“cases” is 3.25 with respect to the ψ-scale and J is p0.15, 0.85q. Figure 6(a) gives the median curve

(solid curve) and the bands whose boundaries are the 0.25 and 0.75 quantile curves for “cases.”

The x-axis is the score without using gene expression data. Figure 6(b) gives the counterparts for

“controls,” those subjects who would survive beyond 10 years. The density function estimate of

p̂1 is given in Figure 6(c). The “conventional scores” of the majority of patients in this population

are between 0.2 and 0.75. Note that the median curve is in the positive (negative) side for cases

(controls). The improvement from the gene score, however, is quite modest uniformly over the

conventional score. Since it is relatively expensive to measure the gene score compared with
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the routinely obtained clinical marker values, it is not clear from cost-benefit view if we should

measure the gene score for any future patient. In Figure 7, we present plots of estimated median

curves for cases and controls with respect to various sets of time intervals I0 and I1. Again, there

seems no obvious gain from measuring gene score for predicting survival.

4. REMARKS

If a study is designed for evaluating the incremental value from new predictors with respect

to a specific set of time intervals I0 and I1, a global Cox model may not be appropriate for

establishing the risk scores due to the fact that the resulting regression coefficient estimates

reflect an average covariate effect over the entire study time. For this case, we may use, for

example, the logistic regression for modeling the probability of a binary variable with two events

tT P I1u and tT P I0u with predictors and use the technique developed by Uno et al. (2007)

to obtain the risk scores. Then with the same argument in the present paper, nonparametric

function estimates for conditional quantiles can be obtained accordingly. When there is no pre-

specified set of time intervals of interest, one may use the Cox models to obtain unified scores

β̂1U and γ̂1V first. However, it is important to note that these two scoring systems may not be

comparable since we fit the data with two different models. Therefore, in this paper we convert

the Cox scores to their risk counterparts with respect to a given paired I0 and I1 to evaluate the

incremental values. By considering various sets of I0 and I1 in our analysis, one may identify

when the new markers have practically meaningful added values for prediction. On the other

hand, it is not clear how to utilize the Cox scores directly to perform such subject-level analysis

without discretizing the continuous study follow-up time.

If the conventional scoring system is well-established, one may not need to fit the current

data with the conventional markers. However, for this situation we recommend examining closely

whether the present study population is similar to that from which the conventional score was

constructed.

The graphical method presented here can also be utilized as a quantitative way to assess
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relative merits of two proposed models for fitting survival data. Unlike the lack of fit tests for

model checking or a single summary statistic such as the likelihood ratio, the plots in Figures

4 and 7 with different sets of I0 and I1 provide much more information to help us to choose an

appropriate model with respect to cost-benefit decision making.

It is important to note that the parametric or semi-parametric models used for constructing

the risk scores are simply approximations for the true models. If the “old” model does not fit the

data well, it is difficult if not impossible to determine whether the improvement from the “new”

model is the incremental value from the new predictors or a better model fitting.

5. Appendix

Throughout, unless noted otherwise, we use the notation � to denote equivalence up to opp1q

uniformly in p, À to denote being bounded above up to a universal constant, and 9Fpxq to denote

dFpxq{dx for any function F .

We use Pn and P to denote expectation with respect to the empirical probability measure

of tpXi, δi, Ziq, i � 1, � � � , nu and the probability measure of pX, δ, Zq respectively. Similarly

Gn � n
1
2 pPn � Pq. Let pθ � ppθ11, pθ12q1, pθ1 � plog Λ̂1pt1q, log Λ̂1pt2q, log Λ̂1pt3q, log Λ̂1pt4q, pβ1q1, pθ2 �

plog Λ̂2pt1q, log Λ̂2pt2q, log Λ̂2pt3q, log Λ̂2pt4q, pγ1q1, where Λ̂1p�q and Λ̂2p�q are the estimated cumula-

tive hazard functions based on the models with U and with V respectively. Note that pp1pU
0q �

gppθ11~U0
1 ,
pθ11~U0

2 ,
pθ11~U0

3 ,
pθ11~U0

4 q and pp2pV
0q � gppθ12~V 0

1 ,
pθ12~V 0

2 ,
pθ12~V 0

3 ,
pθ12~V 0

4 q, where gpx1, x2, x3, x4q �

texpp�ex1q � expp�ex2qu{texpp�ex1q � expp�ex2q � expp�ex3q � expp�ex4qu and for any vector

x, ~x1 � p1, 0, 0, 0, x1q1, ~x2 � p0, 1, 0, 0, x1q1, ~x3 � p0, 0, 1, 0, x1q1, and ~x4 � p0, 0, 0, 1, x1q1.

To establish the consistency of the proposed estimator, we assume that h � Opn�νq with

1{2 ¡ ν ¡ 1{5 and pθ converges in probability to a deterministic vector θ0 � pθ110, θ
1
20q

1. Let

p̄1pU
0q � gpθ110

~U0
1 , θ

1
10
~U0

2 , θ
1
10
~U0

3 , θ
1
10
~U0

4 q, p̄2pV
0q � gpθ120

~V 0
1 , θ

1
20
~V 0

2 , θ
1
20
~V 0

3 , θ
1
20
~V 0

4 q, p̄oi � p̄1pUiq,

p̄ni � p̄2pViq, P0ppq � P pEi � 0 | p̄oi � pq, P1ppq � P pEi � 1 | p̄oi � pq and ζeppxq denote

the conditional density of ψpp̄niq given p̄oi � p and Ei � e which is assumed to be continuously

differentiable. We assume that ξpxq, the density function of ψpp̄oiq, is continuously differentiable
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with bounded derivatives and bounded away from zero for x P J . We also assume that U and

V are bounded, θ0 is an interior point of a compact set Ω. Furthermore, pθ is a regular estimator

of θ0 with

n1{2ppθ � θ0q � n1{2

� pθ1 � θ10pθ2 � θ20

�
� n�1{2

ņ

i�1

�
W1i

W2i

�
� opp1q. (5�1)

whereW1i �W1pXi, δi, Uiq andW2i �W2pXi, δi, Viq for some deterministic functionW1 andW2.

See Uno et al (2007) and Cai et al (2009) for details on establishing the above asymptotic prop-

erties. Furthermore, we note that supt¤t0 |n
1{2t pGptq � Gptqu| � Opp1q (Kalbfleish and Prentice,

2002). It follows that

}pθ � θ0} � sup
t¤t0

| pGptq �Gptq| � Oppn
�1{2q. (5�2)

It follows that supd,pPrl,rs |P tD̂pZ
0q ¤ d | E0 � e, pp1pU

0q � pu�P tD̄pZ0q ¤ d | E0 � e, p̄1pU
0q �

pu| � Oppn
�1q and thus |qτeppq � q̄τeppq| � Oppn

�1q, where q̄τeppq is the τth quantile of D̄pZ0q

given E0 � e and p̄1pU
0q � p. Thus to establish the consistency of q̂τeppq for p P rl, rs, it suffices

to show that q̂τeppq is uniformly consistent for q̄τeppq.

For the ease of notation, we next establish the consistency of the conditional median q̂0.5eppq

for the case with e � 1 and note that similar arguments can be used for other quantiles. For

any given p, let appq � q̄τeppq�p and bppq � 9appq for τ � 0.5 and e � 1, pEippq � ψpppoiq � ψppq,

tpappq,pbppqu be the minimizer of

pLpa, b; pq � n�1
ņ

i�1

pwiE:
iKhtpEippqu ���ψpppniq � a� bpEippq���

and pεppq � � pεappqpεbppq
�
�

� pappq � appq

htpbppq � bppqu

�
.

Our objective is to show that supp |pεppq| Ñ 0 in probability as nÑ 8. To this end, we note that

for any given p, pεppq is the minimizer of the objective function pLpε; pq � 0, where ε � pεa, εbq
1,

pLpε; pq � n�1
ņ

i�1

pwiE:
iKhtpEippqu |ψpppniq � Gtε, p;ψpppoiq, hu| ,

and Gpε, p; yq � appq � bppqty � ψppqu � εa � εbh
�1ty � ψppqu.
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It suffices to show that pLpε; pq is uniformly consistent for

Lpε; pq � ξtψppquP1ppq

» »
|u� tappq � εa � εbvu|Kpvqζ1ppuqdvdu

To this end, we note that |pLpε; pq � Lpε; pq| ¤ E1pε; pq � E2pε; pq � E3pε; pq, where

E1pε; pq � n�1
ņ

i�1

| pwi � wi|E
:
iKhtpEippqu |ψpppniq � Gtε, p;ψpppoiq, hu|

E2pε; pq �
��PnKhtEppquwE: |ψpp̄nq � Gtε, p;ψpp̄oq, hu| � Lpε; pq

��
E3pε; pq �

���PnwE:
�
KhtpEppqu |ψpppnq � Gtε, p;ψpppoqu|

�KhtEppqu |ψpp̄nq � Gtε, p;ψpp̄oqu|
����

and wi � ∆i{GpXiq, First, following directly from (5�2), supε;p E1pε; pq � opp1q. Secondly, with

the standard arguments used in Bickel & Rosenblatt (1973), supε;p |E2pε; pq| � Optpnhq
� 1

2 logpnqu �

opp1q. Lastly, for E3pε; pq, we note that from the inequality that
��a1|b1| � a2|b2|

�� ¤ a1|b1 � b2| �

|b2||a1 � a2| for a1, a2 ¡ 0,

E3pε, pq ¤ PnwE:KhtpEppqu���ψpppnq � Gtε, p;ψpppoqu � ψpp̄nq � Gtε, p;ψpp̄oqu
���

�
���Pn�KhtpEppqu �KhtEppqu

�
wE: |ψpp̄nq � Gtε, p;ψpp̄oqu|

���
À Opph

�1n�1{2q �

» » » »
Khrψtgpu1, u2, u3, u4qu � ψppqsHnpdu1, du2, du3, du4q

where Hnpu1, u2, u3, u4q � PnwE: |ψpp̄nq � Gpε, p;ψpp̄oqq| tIppθ11~U1 ¤ u1, pθ11~U2 ¤ u2, pθ11~U3 ¤ u3, pθ11~U4 ¤

u4q�Ipθ
1
10
~U1 ¤ u1, θ

1
10
~U2 ¤ u2, θ

1
10
~U3 ¤ u3, θ

1
10
~U4 ¤ u4qu. Furthermore, it follows from integration

by parts,

sup
ε;p

E3pε; pq À h�1 sup |Hnpuq|

À n�1{2h�1
���GnrwE

: |ψpp̄nq � Gpε, p;ψpp̄oqq| tIppθ11~U1 ¤ u1, pθ11~U2 ¤ u2, pθ11~U3 ¤ u3, pθ11~U4 ¤ u4q �

Ipθ110
~U1 ¤ u1, θ

1
10
~U2 ¤ u2, θ

1
10
~U3 ¤ u3, θ

1
10
~U4 ¤ u4qus

��� � opp1q. Since the class of functions

twE: |ψpp̄nq � Gtε, p;ψpp̄oqu| Ipθ
1
1
~U1 � u1 ¤ 0, θ11~U2 � u2 ¤ 0, θ11~U3 � u3 ¤ 0, θ11~U4 � u4 ¤ 0q :

}θ1�θ10} ¤ δ, u1, u2, u3, u4, ε, pu, indexed by pθ1, u1, u2, u3, u4, ε, pq, is Donsker, the stochastic pro-

cess GnrwE
: |ψpp̄nq � Gpε, p;ψpp̄oqq| Ipθ

1
1
~U1�u1 ¤ 0, θ11~U2�u2 ¤ 0, θ11~U3�u3 ¤ 0, θ11~U4�u4 ¤ 0qs
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is stochastically continuous in θ1. This, coupled with the fact that θ̂1 � θ10 � opp1q, implies that

sup
���GnrwE

: |ψpp̄nq � Gpε, p;ψpp̄oqq| tIppθ11~U1 ¤ u1, pθ11~U2 ¤ u2, pθ11~U3 ¤ u3, pθ11~U4 ¤ u4q � Ipθ110
~U1 ¤

u1, θ
1
10
~U2 ¤ u2, θ

1
10
~U3 ¤ u3, θ

1
10
~U4 ¤ u4qus

��� � opp1q. Therefore, E3pε, pq � Oppn
�1{2h�1q � opp1q

uniformly in ε and u. It follows that supε;p |pLpε; pq �Lpε; pq| � opp1q. This uniform convergence,

coupled with the fact that 0 is the unique minimizer of Lpε, pq with respect to ε, suggests that

supp |pεppq| � opp1q, which implies the uniform consistency of pappq for appq. This, together with

|qτeppq � q̄τeppq| � Oppn
�1q, implies the uniform consistency of q̂τeppq for qτeppq for τ � 0.5 and

e � 1.
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Table 1. Estimates of regression parameters for Cox’s models with breast cancer data

without gene score with gene score
Est (SE) Est (SE)

Age/10 [yrs] -0.47 (0.17) -0.57 (0.18)
Diameter of tumor [cm] 0.19 (0.11) 0.18 (0.12)
Lymph nodes 0.00 (0.08) -0.01 (0.08)
Grade = 2 vs 1 1.00 (0.35) 0.74 (0.35)
Grade = 3 vs 1 1.11 (0.35) 0.66 (0.37)
Vascular invasion 1-3 vs 0 0.08 (0.37) -0.10 (0.37)
Vascular invasion ¡ 3 vs 0 0.81 (0.62) 0.64 (0.63)
Estrogen Status=Positive -0.39 (0.23) -0.16 (0.24)
Chemo or Hormonal =Yes -0.54 (0.33) -0.49 (0.33)
Mastectomy=Yes 0.13 (0.21) 0.21 (0.22)
Gene score 2.43 (0.67)
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Figure 1. Scatterplots of the risk scores with and without bilirubin for subjects whose survival
times are not censored by Year 5
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Figure 2. Estimates of cumulative mortality rates with Mayo PBC survival time data
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Figure 3. Estimated quartiles for the conditional distributions for the differences between the
risk scores with and without bilirubin at Year 5. (a) For subjects who would die by Year 5;
(b) For subjects who would survive beyond Year 5; (c) Estimated density function of the score
without using bilirubin.
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Figure 4. Estimated median curves for the conditional distributions for the differences between
the risk scores with and without bilirubin for various sets of time intervals I0 and I1. (a)
I1 � p0, 4s, I0 � p4,8q; (b) I1 � p0, 4s, I0 � p5,8q; (c) I1 � p0, 5s, I0 � p6,8q; and (d) I1 �
p0, 5s, I0 � p8,8q.
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Figure 5. Estimates of cumulative mortality rates with breast cancer survival data

0 5 10 15

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

junk$time

1 
−

 ju
nk

$s
ur

v

Years

C
um

ul
at

iv
e 

M
or

ta
lit

y 
R

at
e

23
Hosted by The Berkeley Electronic Press



Figure 6. Estimated quartiles for the conditional distributions for the differences between the
risk scores with and without gene score at Year 10. (a) For subjects who would die by Year 10;
(b) For subjects who would survive beyond Year 10; (c) Estimated density function of the score
without using gene score.
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Figure 7. Estimated median curves for the conditional distributions for the differences between
the risk scores with and without gene score for various sets of time intervals I0 and I1. (a)
I1 � p0, 3s, I0 � p3,8q; (b) I1 � p0, 3s, I0 � p8,8q; (c) I1 � p0, 3s, I0 � p4,8q; and (d) I1 �
p0, 7s, I0 � p8,8q.
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