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Abstract

Technological advances that allow routine identification of high-dimensional risk
factors have led to high demand for statistical techniques that enable full uti-
lization of these rich sources of information for genome-wide association stud-
ies (GWAS). Variable selection for censored outcome data as well as control of
false discoveries (i.e. inclusion of irrelevant variables) in the presence of high-
dimensional predictors present serious challenges. In the context of survival anal-
ysis with high-dimensional covariates, this paper develops a computationally fea-
sible method for building general risk prediction models, while controlling false
discoveries. We have proposed a high-dimensional variable selection method by
incorporating stability selection to control false discovery. Comparisons between
the proposed method and the commonly used univariate and Lasso approaches
for variable selection reveal that the proposed method yields fewer false discover-
ies. The proposed method is applied to study the associations of 2,339 common
single-nucleotide polymorphisms (SNPs) with overall survival among cutaneous
melanoma (CM) patients. The results have confirmed that BRCA2 pathway SNPs
are likely to be associated with overall survival, as reported by previous literature.
Moreover, we have identified several new Fanconi anemia (FA) pathway SNPs
that are likely to modulate survival of CM patients.
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Variable selection with false discovery control

Kevin He,Yanming Li, Ji Zhu, Hongliang Liu, Jeffrey E. Lee, Christopher I. Amos, Terry

Hyslop, Jiashun Jin, Qinyi Wei and Yi Li

Abstract

Technological advances that allow routine identification of high-dimensional risk factors have

led to high demand for statistical techniques that enable full utilization of these rich sources

of information for genome-wide association studies (GWAS). Variable selection for censored

outcome data as well as control of false discoveries (i.e. inclusion of irrelevant variables)

in the presence of high-dimensional predictors present serious challenges. In the context of

survival analysis with high-dimensional covariates, this paper develops a computationally

feasible method for building general risk prediction models, while controlling false discov-

eries. We have proposed a high-dimensional variable selection method by incorporating

stability selection to control false discovery. Comparisons between the proposed method and

the commonly used univariate and Lasso approaches for variable selection reveal that the

proposed method yields fewer false discoveries. The proposed method is applied to study the

associations of 2,339 common single-nucleotide polymorphisms (SNPs) with overall survival

among cutaneous melanoma (CM) patients. The results have confirmed that BRCA2 path-

way SNPs are likely to be associated with overall survival, as reported by previous literature.

Moreover, we have identified several new Fanconi anemia (FA) pathway SNPs that are likely

to modulate survival of CM patients.

1 Introduction

Rapid advances in technology that have generated vast amounts of data from genetic or

genome studies have led to a high demand for developing powerful statistical learning meth-
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ods for extracting information effectively. For instance, understanding clinical and patho-

physiologic heterogeneities among subjects at risk and designing effective treatment for ap-

propriate subgroups is one of the most active areas in genetic studies. Wide heterogeneities

present in patients’ response to treatments or therapies. Understanding such heterogeneities

is crucial in personalized medicine, and discovery of genetic variants offers a feasible ap-

proach. However, serious statistical challenges arise when identifying real predictors among

hundreds of thousands of candidates, and an urgent need has emerged for the development

of effective algorithms for model building and variable selection.

The last three decades have given rise to many new statistical learning methods, includ-

ing CART (Breiman et al., 1984), random forest (Breiman, 2001), neural networks (Bishop,

1995), SVMs (Boser et al., 1992) and high dimensional regression (Tibshirani, 1996; Tibshi-

rani, 1997; Fan and Li, 2001; Fan and Li, 2002; Gui and Li 2005). Boosting has emerged

as a powerful framework for statistical learning. It was originally introduced in the field of

machine learning for classifying binary outcomes (Freund and Schapire, 1996), and later its

connection with statistical estimation was established by Friedman et al. (2000). Friedman

(2001) proposed a gradient boosting framework for regression settings. Bühlmann and Yu

(2003) proposed a componentwise boosting procedure based on cubic smoothing splines for

L2 loss functions. Bühlmann (2006) demonstrated that the boosting procedure works well

in high-dimensional settings. For censored outcome data, Ridgeway (1999) applied boosting

to fit proportional hazards models, and Li and Luan (2005) developed a boosting procedure

for modeling potentially non-linear functional forms in proportional hazards models.

Despite the popularity of aforementioned methods, issues such as false discovery (e.g.

seletion of irrelevant SNPs) and difficulty in identifying weak signals present further barri-

ers. Simultaneous inference procedure, including the Bonferroni correction, has been widely

used in large-scale testing literature. However, in many high-dimensional settings, such as
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in genetic studies, variable selection is serving as a screening tool to identify a set of genetic

variants for further investigation. Hence, a small number of false discoveries would be toler-

able and simultaneous inference would be too conservative. In contrast, the false discovery

rate (FDR), defined as the expected proportion of false positives among significant tests

(Benjamini and Hochberg, 1995), is a more relevant metric for false discovery control un-

der the framework of variable selection. However, few existing variable selection algorithms

control false discoveries. This has brought an urgent need of developing computationally

feasible methods that tackle both variable selection and false discovery control.

We propose a novel high-dimensional variable selection method for GWAS by improv-

ing the existing variable selection methods in several aspects. First, we have developed a

computationally feasible variable selection approach for high-dimensional survival analysis.

Second, we have designed a random sampling scheme to improve the control of the false

discovery rate. Finally, the proposed framework is flexible to accommodate complex data

structures.

The rest of the article is organized as follows. In section 2 we introduce notation and

briefly review the L1 penalized estimation and gradient boosting method that are of direct

relevance to our proposal. In section 3 we develop the proposed approach, and in section 4

we evaluate the practical utility of the proposal via intensive simulation studies. In section 5

we apply the proposal to analyze a genome-wide association study of cutaneous melanoma.

We conclude the paper with a brief discussion in section 6.

2 Model

2.1 Notation

Let Di denote the time from onset of cutaneous melanoma to death and Ci be the potential

censoring time for patient i, i = 1, . . . , n. The observed survival time is Ti = min{Di, Ci},

4
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and the death indicator is given by δi = I(Di ≤ Ci). Let Xi = (Xi1, · · · , Xip)
T be a p-

dimensional covariate vector (contains all the SNP information) for the ith patient. We

assume that, conditional on Xi, Di is independently censored by Ci. To model the death

hazard, consider

λi(t|Xi) = lim
dt→0

1

dt
Pr(t ≤ Di < t+ dt|Di ≥ t,Xi) = λ0(t) exp(X

T
i β),

where λ0(t) is the baseline hazard function and β = (β1, · · · , βp) is a vector of parameters.

The corresponding log-partial likelihood is given by

ln(β) =
n∑

i=1

δi

[
XT

i β − log

{∑
ℓ∈Ri

exp
(
XT

ℓ β
)}]

,

where Ri = {ℓ : Tℓ ≥ Ti} is the at-risk set. The goal of variable selection is to identify

S0 = {j : βj ̸= 0}, which contains all the variables that are associated with the risk of death.

2.2 L1 Penalized Estimation

Tibshirani (1997) proposed a Lasso procedure in the Cox model, e.g., estimate β via the

penalized partial likelihood optimization

β̂ = argmax
β

{ln(β)− λ∥β∥1}, (1)

where ∥ · ∥1 is the L1 norm. To solve (1), Tibshirani (1997) considered a penalized reweighted

least squares approach. Let X = (X1, . . . ,Xn) be the p × n covariate matrix and define

η = XTβ. Let l′n(η) and l′′n(η) be the gradient and Hessian of the log-partial likelihood

with respect to η respectively. Given the current estimator η̂ = XTβ̂, a two-term Taylor

expansion of the log-partial likelihood leads to

ln(β) ≈
1

2
(z(η̂)−XTβ)Tl′′n(η̂)(z(η̂)−XTβ),

where z(η̂) = η̂ − l′′n(η̂)
−1l′n(η̂). Similar to the problem of conditional likelihood (Hastie

and Tibshirani 1990), the matrix l′′n(η̂) is non-diagonal, and solving (1) may require O(n3)

5
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computations. To avoid this difficulty, Tibshirani (1997) used some heuristic arguments to

approximate the Hessian matrix with a diagonal one, e.g., treated off-diagonal elements as

zero. An iteratively procedure is then conducted based on the penalized reweighed least

squares

1

n

n∑
i=1

w(η̂)i(z(η̂)i −XT
i β)

2 + λ∥β∥1, (2)

where the weight w(η̂)i for subject i is the ith diagonal entry of l′′n(η̂). However, it is

unclear whether the diagonal approximation always converges to the right solution and

further evaluation may be needed.

To obtain a more accurate estimation, Gui and Li (2005) used a Cholesky decomposition

to obtain A = (l′′n(η̂))
1/2 such that ATA = l′′n(η̂). The iterative procedure in (2) is then

revised as

1

n

N∑
i=1

(z∗(η̂)i −X∗
i
Tβ)2 + λ∥β∥1,

where z∗(η̂) = Az(η̂) and X∗ = AX. Alternatively, Geoman (2010) combined gradient

descent with Newton’s method and implemented his algorithm in an R package penalized.

Both of these algorithms perform well in settings with a moderately large number of predic-

tors. However, for GWAS studies that often present a very large number of predictors, these

algorithms are not feasible.

2.3 Gradient Boosting

Gradient boosting has emerged as a powerful tool for building predictive models; its appli-

cation in the Cox proportional hazards models can be found in Ridgeway (1999) and Li and

Luan (2005). The idea is to pursue iterative steepest ascent of the log likelihood function.

At each step, given the current estimate of β, say β̂, let η̂ = XT β̂. The algorithm computes

6
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the gradient of the log-partial likelihood with respect to ηi, the ith component of η,

Ui =
∂

∂ηi
ln(η)

∣∣∣
η=η̂

= δi −
n∑

ℓ=1

δℓI(Ti ≥ Tℓ) exp(η̂i)∑n
k=1 I(Tk ≥ Tℓ) exp(η̂k)

,

for i = 1, · · · , n, and then fits this gradient (also called working response or pseudo response)

to X by a so-called base procedure (e.g. least squares estimation). Specifically, to facilitate

variable selection, a componentwise algorithm can be implemented by restricting the search

direction to be componentwise (Bühlmann and Yu, 2003; Li and Luan 2005). For instance,

fit componentwise model

β̃j = argmax
βj

1

n

n∑
i=1

(Ui −Xijβj)
2,

for j = 1, . . . , p. Compute

j⋆ = argmax
1≤j≤p

1

n

n∑
i=1

(Ui −Xijβ̃j)
2.

and update β̂j⋆ = β̂j⋆ + v β̃j⋆ , where v is a positive small constant (say 0.01) controlling the

learning rate (Friedman, 2001).

This approach is to detect a componentwise direction along which the partial likelihood

would ascend most rapidly. At each boosting iteration only one component of β is selected

and updated. The variable selection can be achieved if boosting stops at an optimal number

of iterations. This optimal number works as the regularization parameter and it can be

determined by cross-validation (Simon et al., 2011). However, as we will show in simula-

tion, the cross-validated choice still includes certain amount of false positive selections. A

computationally feasible method is needed to control false discoveries.

2.4 Control of the False Discovery Rate (FDR)

Benjamini and Hochberg’s FDR-controlling procedure (Benjamini and Hochberg, 1995), or

BH’s procedure for short, is a recent innovation for controlling the FDR. Consider a setting
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where we test a large number of tests simultaneously. Let R be the number of total discoveries

(selection of SNPs) and let V be the number of false discoveries (selection of irrelevant SNPs).

If we denote the False Discovery Proportion by

FDP = V/R,

then FDR is simply the expectation of FDP. In the simplest setting (i.e., p-values associated

all component tests are independent), BH’s procedure is able to control the FDR at any

preselect level 0 < q < 1 (called the FDR-control parameter).

In the past 20 years, BH’s procedure has inspired a great deal of research: many variants

of the procedure have been proposed, and many insights and connections have been discov-

ered. For instance, Efron (2008, 2011) and Storey (2003) have pointed out an interesting

connection between the BH’s procedure and the popular Empirical Bayes method. In par-

ticular, they proposed a Bayesian version of the FDR which they call the Local FDR (Lfdr)

and showed that two versions of FDR are intimately connected to each other. Another useful

variant of BH’s procedure is the Significance Analysis of Microarrays (SAM; Tusher et al.

2001), a method that was originally designed to identify genes in microarray experiments.

While the success of the BH’s procedure hinges on an accurate approximation of the p-values

associated with individual tests, SAM is comparably more flexible for it is able to handle

more general experimental layouts and summary statistics, where the p-values may be hard

to obtain or to approximate. See Efron (2011) for a nice review on FDR-controlling methods,

Lfdr, and SAM.
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3 Proposed Methods

3.1 Componentwise Gradient Boosting Procedure

To introduce the proposed method, we first consider a variant of componentwise gradient

boosting method that is computationally efficient in high-dimensional settings.

Algorithm 1 (Componentwise Gradient Boosting)

Initialize β̂
(0)

= 0. For m = 1, · · · ,Mstop, iterate the following steps:

(a) For j = 1, . . . , p, compute the componentwise gradient

Gj =
∂

∂βj

ln(β)

∣∣∣∣
β=β̂

(m−1)
.

(b) Compute j⋆ = argmax1≤j≤p |Gj|.

(c) Update β̂
(m)
j⋆ = β̂

(m−1)
j⋆ +v β̃j⋆ , where β̃j⋆ can be estimated by one-step Newton’s update

β̃j⋆ =

{
∂2

∂β2
j⋆
ln(β)

∣∣∣∣
β=β̂

(m−1)

}−1
∂

∂βj⋆
ln(β)

∣∣∣∣
β=β̂

(m−1)
.

(d) Iterate until m = Mstop for some stopping iteration Mstop.

Under the chain rule of differentiation, Algorithm 1 is equivalent to the traditional boost-

ing procedure we described in Section 2.3, which first computes the working response, Ui,

and then fits the working response to each covariate by least squares. In contrast, Algorithm

1 is based on gradient with respect to β and it avoids the calculation of working response.

Such a componentwise update is connected with a minimization-maximization (MM) algo-

rithm (Hunter and Lange, 2004; Lange 2012). For instance, in a minorization step, given

the mth step estimate β̂
(m−1)

, an application of Jensen’s inequality leads to the following

9
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minority surrogate function

ln(β) ≥
p∑

j=1

n∑
i=1

αjδi

[
Xij

αj

(βj − β̂
(m−1)
j ) +XT

i β̂
(m−1)

− log

{∑
ℓ∈Ri

exp

(
Xℓj

αj

(βj − β̂
(m−1)
j ) +XT

ℓ β̂
(m−1)

)}]

= g(β|β̂
(m−1)

) =

p∑
j=1

g(βj|β̂
(m−1)

),

where g(βj|β̂
(m−1)

) is defined implicitly, all αj ≥ 0,
∑

j αj = 1 and αj > 0 whenever Xij ̸= 0.

In the maximization step, we maximize (or monotonically increase) the selected component

of the surrogate function to produce the next iteration estimators, e.g., consider g(βj⋆ |β̂
(m−1)

)

and update βj⋆ . Then the boosting algorithm monotonically increase the original log-partial

likelihood by increasing the surrogate functions. Note that as long as the ascent property

is achieved, the choice of αj is not crucial, e.g., it can be considered as part of a control

for step size. Moreover, as one only needs to increase the surrogate function instead of

maximizing it, one-step Newton iterations (with step-size control) shall provide sufficient

and rapid updates at each boosting step. Instead of using β̃j⋆ , an alternative approach is to

use the normalized updates with norm normalized to be 1, e.g., β̂
(m)
j⋆ = β̂

(m−1)
j⋆ +v×sign(Gj).

Its main disadvantage is that its performance is sensitive to the choice of learning rate.

Although sign(Gj) provides an ascent direction, a sufficiently small step length may be

needed. Empirically we found that the procedure with fitted β̃j⋆ provides better performance.

It is known that finding the proper regularization parameter is very difficult for the Lasso

procedure, especially for survival settings for which piece-wise linear solution path (LARS;

Efron et al., 2004) is not available and a grid search (Simon et al. 2011) is required. In

contrast, in boosting procedure, the number of iteration works as tuning parameter and the

optimal choice is less critical as boosting is more robust to overfitting (Hastie et al., 2009).
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3.2 Boosting with Stability Selection for False Discovery Control

Stability Selection was recently introduced by Meinshausen and Bühlmann (2010) as a gen-

eral technique designed to improve the performance of a variable selection algorithm. The

idea is to identify variables that are included in the model with high probabilities when

a variable selection procedure is performed on randomly sampled of the observations. For

completeness of exposure, we summarize the procedure of stability selection as follows. Let I

be a random subsample of {1, · · · , n} of size ⌊n/2⌋, draw without replacement. Here ⌊n/2⌋ is

defined as the largest integer not greater than n/2. For variable j ∈ {1, · · · , p}, the random

sampling probability that the jth variable is selected by the stability selection is

Π̂j = Pr∗[j ∈ Ŝ(I)],

where Ŝ(I) = {j : β̂(I)
j ̸= 0} denotes the variable selected by the variable selection procedure

based on the subsample I, and the empirical probability Pr∗ is with respect to the random

sampling. For a threshold Πthres ∈ (0, 1), the set of variables selected by stability selection

is then defined as

Ŝstable = {j : Π̂j ≥ Πthres}.

A particularly attractive feature of stability selection is that its relatively insensitive to

the tuning parameter (e.g., Mstop for boosting) and hence cross-validation can be avoided.

However, a new regularization parameter needs to be determined is the threshold Πthres. To

address this question, an error control was provided by an upper bound on the expected

number of falsely selected variables (Meinshausen and Bühlmann, 2010; Theorem 1). More

formally, let E|Ŝ(I)| be the expected number of selected variables and define V to be the

number of falsely selected variables. Assume an exchangeable condition, then the expected

11
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number V of falsely selected variables is bounded for Πthres ∈ (0.5, 1) by

E[V ] ≤ 1

2Πthres − 1

(E|Ŝ(I)|)2

p
.

Based on such a bound, the tuning parameter Πthres can be chosen such that E[V ] is con-

trolled at the desired level, e.g., for E[V ] < 1, if E[V ] < p
1
2 ,

Πthres =

(
1 +

(E[V ])2

p

)
/2. (3)

The property of the above procedure relies on restricted assumptions such as exchange-

ability condition (e.g., the joint distribution of outcomes and covariates is invariant under

permutations of noninformative variables), which, as noted by Meinshausen and van de Geer

(2011), are not likely to hold for real data. In GWAS with extensive correlation structure

among SNP markers, the exchangeability condition fails and using threshold in (3) has been

shown to suffer a loss of power (Alexander and Lange, 2011). Moreover, in computing the

threshold in (3), we face a tradeoff. Commonly used variable selection procedures will select

certain amount of false positives. On one hand, we want E[V ] to be large to select the

true informative predictors, but on the other hand, a large E[V ] also can render Πthres large

(which leads to too conservative threshold). If E[V ] > p
1
2 , we cannot control the error E[V ]

with the formula in (3).

To improve the performance of stability selection and determine a data-driven threshold

for the selection frequency, we adopt the idea of SAM (Tusher et al. 2001) and propose a

random permutation based stability selection boosting procedure.

Algorithm 2 (Boosting with Stability Selection and Permutation)

(a) For s = 1, · · · , 100, we draw random subsample of the data of size ⌊n/2⌋. On the sth

subsample, implement the proposed boosting approach (e.g., Algorithm 1). Record the

set of selected predictors at the sth subsampling, Ŝ(s) = {j : β̂
(s)
j ̸= 0}, and compute
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Π̂j =
1
S

∑S
s=1 I(j ∈ Ŝ(s)), where I(A) is an indicator function taking the value 1 when

condition A holds and 0 otherwise.

(b) For b = 1, · · · , B, randomly permute the outcomes so that the relation between covari-

ates and outcomes is decoupled. Repeat the stability-based boosting described in step

(a) on the permuted sample and record the set of selected predictors S̃(b), and compute

Π̃b
j =

1
S

∑S
s=1 I(j ∈ S̃(b)).

(c) Order the values of Π̂j for 1, · · · , p, and let Π̂(j) be the jth largest value. Likewise let

Π̃
(b)
(j) be the jth largest value of Π̃

(b)
= (Π̃

(b)
1 , · · · , Π̃(b)

p ).

(d) Define Π̃(j) =
∑B

b=1 Π̃
(b)
(j)/B.

(e) Define the estimated empirical Bayes false discovery rate (Efron 2011) corresponding

to the jth largest Π̂(j) as

Fdr(j) = min

{
1

B

∑B
b=1

∑p
j=1 I(Π̃

(b)
j ≥ Π̂(j))∑p

j=1 I(Π̂j ≥ Π̂(j))
, 1

}
.

(f) For a pre-specified value q ∈ (0, 1), calculate a data-driven threshold

Π̂thres(q) = min{Π̂(j) : Fdr(j) ≤ q}.

Then this Π̂thres(q) can be used to determine the selected variables. If q = 0.2 and 5

variables are selected with selection frequency greater than Π̂thres(0.2), then 1 of these 5

variables would be expected to be false positive.

4 Simulations

Finite-sample properties of the proposed method were evaluated through a series of simula-

tion studies. Death times were generated from the exponential model, λ(t|Xi) = 0.5 exp(XT
i β)

13
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for i = 1, . . . , n, where Xi = (Xi1, · · · , Xi2000)
T came from multivariate normal distributions.

These 2,000 predictors were in 10 blocks with equal numbers of predictors within each block.

We considered three simulation schemes with within-block correlation coefficients varying

between 0.2, 0.5 and 0.8. For all three schemes, the between-block correlation coefficients

were 0 (i.e., independent between blocks). We chose 10 true signals; one from each block,

with true β in ±0.5,±1,±1.5,±2,±2.5. All other covariate effects are zero. Censoring times

were generated from uniform distributions, with the percentage of censored subjects then

being approximately 20-30%. Each data configuration was replicated 100 times.

We compared the proposed methods, Lasso for proportional hazard models (Simon et al.,

2011), univariate approaches with either Bonferroni correction (termed Univariate Bonferroni

in Table 1) or Benjamini and Hochberg (1995)’s procedure for FDR control (below a threshold

0.2; termed Univariate FDR in Table 1). For the boosting approach without stability control

(Algorithm 1), 10-fold cross-validation was implemented to determine the optimal stopping

iteration. For the boosting approach with stability selection (Algorithm 2), we repeatedly

drew 100 random subsamples of the data of size ⌊n/2⌋. The maximum selection frequency

on one permutation data was used as threshold for variable selection. Table 1 shows that the

boosting without stability selection (termed Boosting in Table 1) outperform the univariate

approaches in the average number of false positives (FP), average false discovery proportion

(Fdp), average number of false negative (FN) and the empirical probabilities to identify the

true signal (Power). Though the Lasso has comparable performances in terms of FN and

Power, the FPs of the boosting methods are substantially fewer than the Lasso. Finally, the

proposed boosting method with stability selection and permutation (termed S-Boosting in

Table 1) further reduce the FPs.

14

http://biostats.bepress.com/umichbiostat/paper114



Summary of Simulation Results

Correlation Methods FP Fdp FN Power
0 Univariate Bonferroni 0.01 0 2.28 0.77

Univariate FDR 1.94 0.18 1.49 0.85
Lasso 185.22 0.95 0 1
Boosting 15.76 0.61 0 1
S-Boosting 0.01 0 0 1

0.5 Univariate Bonferroni 85.29 0.92 2.32 0.77
Univariate FDR 172.32 0.95 0.81 0.92
Lasso 186.17 0.95 0 1
Boosting 22.31 0.69 0 1
S-Boosting 0.03 0 0 1

0.8 Univariate Bonferroni 131.42 0.94 2.17 0.78
Univariate FDR 207.52 0.96 0.68 0.93
Lasso 185.14 0.95 0 1
Boosting 29.25 0.75 0 1
S-Boosting 0.12 0.01 0 1

FP: the average

number of false positives; Fdp: false discovery proportion; FN: average number of false
negative; Power: the empirical probabilities to identify the true signal

5 Application of Cutaneous Melanoma Data

Cutaneous melanoma (CM) is one of the most aggressive skin cancers, causing the great-

est number of skin cancer related deaths worldwide. Among the CM patients, wide het-

erogeneities are present. The commonly used clinicopathological variables, such as tumor

stage and Breslow thickness (Balch et al, 2009), may have insufficient discriminative ability

(Schramm and Mann, 2011). Discovery of genetic variants would offer a feasible approach to

understanding mechanisms that may affect clinical outcomes and the sensitivity of individual

cancer to therapy (Liu et al., 2012; Li et al., 2013; Rendleman et al., 2013). We applied

our proposed procedures to a genome-wide association study reported by Yin et al. (2014)

to analyze the association of 2,339 common single-nucleotide polymorphisms (SNPs) with

overall survival in CM patients. Our goal was to identify SNPS that are relevant to overall
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survival among the patients.

The dataset contains a total of 858 CM patients, with 133 deaths observed during the

follow-up, where the median follow-up time was 81.1 months. The overall survival time was

calculated from the date of diagnosis to the date of death or the date of the last follow-

up. Genotyped or imputed common SNPs (minor allele frequency ≥ 0.05, genotyping rate

≥ 95%, Hardy-Weinberg equilibrium P-value ≥ 0.00001, and imputation r2 ≥ 0.8) within

these genes or their ±20-kb flanking regions were selected for association analysis (Yin et al.

2014). As a result, 321 genotyped SNPs and 2,018 imputed SNPs in the FA pathway were

selected for further analysis. Other covariates to adjust for included age at diagnosis, Clark

level, tumor stage, Breslow thickness, sentinel lymph node biopsy, and the mitotic rate.

The proposed boosting procedure with stability selection was implemented to select in-

formative SNPs (coded as 0, 1; without or with minor alleles). The importance of predictors

is evaluated by the proportion of times that the predictor is selected in the model among

the 100 subsamples. We also compared the proposed methods with the Lasso, the boosting

procedure without stability selection and univariate approaches. The results are summarized

in Table 2. The Lasso procedure selected 25 SNPs. Among them, 12 SNPs with absolute

coefficients larger than 0.01 are listed in Table 2. None of these predictors pass the univari-

ate approaches with Bonferroni correction or Benjamini and Hochberg (1995)’s procedure

for FDR control (with a threshold 0.2). As we found in section 4, these results argue that

the univariate approaches may have more false negatives than other methods. In contrast,

the boosting procedure selected 7 predictors, which were a subset of top 12 SNPs selected

by the Lasso. To further control the false selections, the estimated false discovery rate, Fdr,

were also calculated to determine a data-driven threshold for the selection frequency such

that Fdr ≤ 0.2. Three of the SNPs selected by both Lasso and boosting pass the thresh-

old Π̂thres(0.2) = 72%. The remaining variables find insignificant support from stability
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selection.

Figure 1 shows the stability path (selection frequencies across boosting iterations). The

variables with selection frequencies larger than the threshold (estimated empirical Bayes false

discovery rate Fdr ≤ 0.2; based 500 permuted samples) are plotted as solid lines, while the

path of the remaining variables are shown as broken lines. The top 3 variables stand out clear-

ly and the number of boosting iteration is less critical. A Manhattan plot was given in Figure

2 with the dashed horizontal line corresponding to the estimated threshold Π̂thres(0.2) = 72%.

Three variables have selection frequencies larger than this dashed horizontal line. The ver-

tical blue lines highlight the selection frequencies of the four previously-detected SNPs that

are associated with overall survival of CM patients by Yin et al. 2014. The red vertical lines

highlight the SNPs whose selection frequencies pass the estimated threshold. The lower

panel of Figure 2 illustrates pairwise correlations across the 2, 339 SNPs with the strength

of the correlation, from positive to negative, indicated by the color spectrum from red to

dark blue. One of the top SNPs in our finding, rs74189161 (with selection frequency = 72%

and Fdr = 0.16) is strongly correlated with rs3752447 identified by Yin et al. (2014), with

correlation coefficients r2 = 1 (calculated with plink v1.07; Purcell et al., 2007). Besides

confirming the previously reported SNP, we also found some novel signals. For example, we

identified a cluster of signals around SNP rs356665 in gene FANCC and a SNP rs3087374 in

gene FANC1. Both two genes have previously been reported having regulation effects with

the FA pathway (Kao et al., 2011; Ella et al., 2012; Jenkins et al., 2012). Mutations in the

FA pathway are identified in diverse cancer types (Hucl and Gallmeier 2011) and therefore

are likely to modulate the survival of CM patients.
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Summary of selected SNPs by Lasso (sorted by the magnitude of coefficients;
only predictors with absolute coefficients larger than 0.01 are included), their
estimated coefficients by boosting without stability selection, P-values based on

univariate approach, selection frequencies based on stability selection.

SNPs Chromosome Gene β̂Lasso β̂Boosting P-value Frequency (%)
rs74189161 13 BRCA2 -0.11 -0.10 0.002 72*
rs356665 9 FANCC -0.09 -0.04 0.03 88*
rs11649642 16 FANCA -0.08 -0.05 0.01 27
rs9567670 13 BRCA2 -0.07 -0.03 0.01 51
rs8081200 17 BRIP1 -0.06 -0.02 0.05 38
rs3087374 15 FANC1 -0.06 -0.01 0.02 73*
rs35322368 9 FANCC 0.06 0 0.03 65
rs57119673 16 FANCA -0.04 -0.01 0.03 54
rs8061528 16 BTBD12 -0.03 0 0.12 36
rs2247233 15 FANC1 0.02 0 0.15 39
rs848286 2 FANCL 0.02 0 0.02 23
rs62032982 16 PALB2 0.01 0 0.04 34

β̂Lasso: coefficients from Lasso; β̂Boosting: coefficients from boosting; P-value: calculated
from univariate approach; Frequency (%): selection frequencies across 100 subsampling;
Fdr: estimated empirical Bayes false discovery rate (based 500 permuted samples); the
false discovery control of the predictors under stability selection are coded by (*) to

indicate that the selection frequencies pass the Fdr threshold.
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Figure 1: Selection Path: selection frequencies across 500 boosting iterations; Threshold:
estimated empirical Bayes false discovery rate Fdr ≤ 0.2 (based 500 permuted samples)
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6 Discussion

Reducing the number of false discoveries is often very desirable in biological application-

s since follow-up experiments can be costly and laborious. We have proposed a boosting

method with stability selection to analyze high-dimensional GWAS data. We demonstrated

and compared performances of the proposed method and the commonly used univariate ap-

proaches or Lasso for variable selection. The proposed method outperformed other methods

in terms of substantially reduced false positives and low false negatives.

Finally, it is worth mentioning that gradient descent (ascent) works in flexible parameter

spaces, even including infinite-dimensional functional spaces. In the latter case, as the search

space is typically a functional space, one needs to calculate the Gâteaux derivative of the

functional in order to determine the optimal descent direction. We will report the work

elsewhere.
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Figure 2: Manhattarn Plot for Selection Frequency (%); dashed horizontal line: estimated

threshold Π̂thres(0.2) = 72%; vertical blue lines: selection frequencies of the four previously-
detected SNPs that are associated with overall survival of CM patients by Yin et al. 2014;
red vertical lines: the SNPs whose selection frequencies pass the estimated threshold; the
lower panel: pairwise correlations across the 2, 339 SNPs with the strength of the correlation,
from positive to negative, indicated by the color spectrum from red to dark blue
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