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Abstract

In this paper we propose a Bayesian modeling approach for inference about dependence of

high throughput gene expression. Our goals are to use prior knowledge about pathways

to anchor inference about dependence among genes; to account for this dependence while

making inferences about differences in mean expression across phenotypes; and to explore

differences in the dependence itself across phenotypes. Useful features of the proposed ap-

proach are a model-based parsimonious representation of expression as an ordinal outcome, a

novel and flexible representation of prior information on the nature of dependencies, and the

use of a coherent probability model over both the structure and strength of the dependencies

of interest. We evaluate our approach through simulations and in the analysis of data on

expression of genes in the Complement and Coagulation Cascade pathway in ovarian cancer.

Keywords: Conditional Independence, Microarray Data, Probability Of Expression, Probit

Models, Reciprocal Graphs, Reversible Jumps MCMC.
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1 INTRODUCTION

Inferring patterns of dependence from high throughput geneomic data poses significant chal-

lenges. Statistically, the problem is one of learning about dependence structures in high

dimension, with relatively low signal. A promising direction for strenghtening this inference

is the explicit consideration of information from known ’pathways’ — biochemical processes

described in terms of a series of relationships among genes and their products.

In this paper we take this perspective, and propose a Bayesian approach to achieve three

related goals in the context of gene expression analysis: to use prior knowledge about path-

ways to anchor inference about dependence among genes; to account for this dependence

while making inferences about differences in mean expression across phenotypes; and to ex-

plore differences in the dependence itself across phenotypes. The proposed model builds on

the POE model (Parmigiani et al. 2002) and integrates inference about probability of differ-

ential expression with inference about dependence between genes through the formulation of

a coherent probability model. Our proposed inferences are local in the sense that the model

is centered around a specific pathway. Formally, variable selection is used to remove and

add structure relative to the centering pathway. This is in contrast to approaches aimed at

learning dependence structures de novo from expression data, without guidance by a prior

pathway structure.

Some of the existing approaches for probabilistic modeling of dependence structures at-

tempt to explore the space of all possible graphical models, often restricted to Directed

Acyclic Graphs (DAGs) or Bayesian networks (BN) (Lauritzen 1996) and decomposable

models (Dawid and Lauritzen 1993). A comprehensive review of statistical methodology for

network data is provided in Kolaczyk (2009). Recent literature includes the application of

BN and dynamic BN to microarray data (Murphy and Mian 1999, Friedman et al. 2000),
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with applications and extensions of this methodology reported in Ong et al. (2002) and Beal

et al. (2005) among others. Although appealing, these techniques have computational and

methodological limitations related to modeling conditional independence under the “large

p, small n” paradigm and the difficult specification of consistent prior models across dimen-

sions (Dobra et al. 2004). Other authors (Scott and Carvalho 2008, Jones et al. 2005) have

reported difficulties with the performance of standard trans-dimensional MCMC methods

(Giudici and Green 1999) in the exploration of the model space, and suggested alternative

stochastic search schemes. For a decision theoretic perspective on graphical model selection

see Sebastiani (2005).

To overcome these problems, we focus on variations of a baseline model that represents

known dependence structures. The centering anchors the model space to a prior path dia-

gram elicited from sets of bimolecular interactions derived by previous experiments.

Our idea is similar to the modeling approaches described in Wei and Li (2007) and Wei

and Li (2008), who introduced conditional independence between genes, via a Markov ran-

dom field (mrf) defined over binary hidden states of differential expression. These authors

propose to consider a fixed mrf mirroring exactly the topology of a prior pathway and ignor-

ing the directionality of the edges. We contrast this approach in three fundamental ways.

First, we provide an alternative interpretation of the connections encoded into a prior path-

way. We develop a prior model for the dependence structure that is based on the reciprocal

graphs (Koster 1996). This class of graphical models takes full account of the directionality

of the edges included in the pathway and allows for the Markovian characterization of cycles,

which often arise in biological depictions of genetic interactions. Also, recognizing that a

known pathway is often summarizing results obtained under different experimental condi-

tions, we allow for significant deviations from the prior dependence structure. This requires

explicit consideration of a model determination strategy, but enables inference on the model
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parameters as well as inference on the dependence structure between genes. Finally, our

focus is on identifying significant interactions between genes in a prior pathway, as opposed

to identifying differentially expressed genes in a given pathway.

The rest of this article is organized as follows. In Section 2 we introduce the proposed

model. Section 3 discusses estimation and inferential details associated with the proposed

model. We validate our approach with a simulation study in Section 4. Section 5 employs

the model for the analysis of epithelial ovarian cancer expression data, to derive inference

about active genetic interactions. In the example, a well known molecular pathway provides

prior information on the dependence structure. A final section concludes with a critical

discussion of limitations and possible extensions.

2 DEPENDENT PROBABILITY OF EXPRESSION

In Section 2.1, we discuss graphical models and notation, and in Section 2.2, we review the

POE (Probability of Expression) model Parmigiani et al. (2002), which defines biological

events via latent three-way indicators of relevant biological states. The original POE model

assumes independence across genes, conditional on hyperparameters. We extend the original

model by formalizing more complex relationships among variables via a cascade of conditional

dependences, guided by a predefined interaction map.

2.1 Modeling Dependence: Background on Graphical Models

Networks of relationships among expression levels can be represented as graphs that describe

how genes influence each other (for an example in Ovarian Cancer see Wang et al. (2005)).

More formally, a graph is often characterized as an algebraic structure G = {V, E}, composed

of a set of nodes V , in our case genes, and a set of edges E ∈ {V }×{V }. A graph G defines

the Markov properties of a statistical model in a graphical fashion, via the specification of a
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set of conditional dependencies.

Biochemical networks often include the presence of cycles and feed-back relationships.

This requires some care when trying to characterize a coherent probabilistic model that

accurately portrays prior biochemical knowledge. For this purpose, we focus on a class of

graphical models known as reciprocal graphs (Koster 1996). Reciprocal graph are defined as

a natural generalization of other well known classes, including directed acyclic graphs (DAG)

and Markov random Fields (mrf), among others. Reciprocal graphs are defined through the

coherent probabilistic interpretation of directed a(→ b), indirected (a − b) and reciprocal

edges (a ⇄ b). Here, for simplicity, we consider a subset of the reciprocal graph family

excluding undirected edges.

The proposed model and inference is based on the directed graph G. But sometimes it

is of interest to describe the implied conditional independence structure, i.e. the Markov

properties. When desired, the Markov properties of our model are defined in terms of an

undirected graph Gm = {V, Em} elicited via moralization (Koster 1996, Lauritzen 1996)

of a graph G. In substance, the moralization procedure consists in adding an undirected

edge between parents of a common child and replacing the remaining directed edges with

undirected ones. In Gm, standard Markov field properties hold, in the sense that two genes

i and j are disconnected when they are conditionally independent, given the rest of the

genes (Besag 1974). For example, consider the reciprocal graph G represented in Figure 1.

The class of Markov equivalent models spanned by G, may be represented with the moral

(undirected) graph Gm, for which the following Markov property holds: 1 ⊥ 2 | 3, 4, that is

P (1, 3 | 2, 4) = P (1 | 2, 4)P (3 | 2, 4). The correspondence between G and Gm is not 1–to–1

as Gm could arise from the moralization of an entire class of Markov equivalent reciprocal

graphs. Further details about moralization in reciprocal graphs and covariance equivalence

are discussed in Koster (1996) and Spirtes et al. (1998). Here, our inference will be based
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on G only, and the directionality will be based on prior knowledge. The undirected graph

Gm provides a convenient summary of the conditional independence structure if desired.

2.2 Dependent Gene Expression and Hidden Systems of Simultaneous

Equations

Following Parmigiani et al. (2002), we consider data in the form of an (p × n) expression

matrix Y, with the generic element yij denoting the observed gene expression for gene i in

sample j, i = 1, . . . , p and j = 1, . . . n. We introduce latent variables eij ∈ {−1, 0, 1} indexing

three possible expression categories for each entry in Y. For example, if Y represents ratios

of expression level relative to a normal reference, they can be interpreted as high, normal

and low. Given eij, for each gene i and each sample j we assume a mixture parameterized

with θ = (αj, µi, κ
−
i , κ+

i ) as follows:

p(yij − (αj + µi)|eij) = fij(yij) with



















f−1i = U(−κ−
i , 0 )

f0i = N( 0, σ2
i )

f1i = U( 0, κ+
i ).

(1)

In words, we assume that the observed expressions arise from a mixture of a Gaussian

distribution and two uniform distributions designed to capture a broad range of departures

relative to the Gaussian. The interpretation of the Gaussian component varies depending

on the experimental design and sampling scheme, and can be trained in a supervised way if

data are available (Garrett and Parmigiani 2004). When the technology used for measuring

expression has an internal reference, as in Section 5, the high (low) class can be interpreted

as over– (under) expression compared to the reference. By approximately specifying proba-

bilities, one can collapse this model to one with binary indicators. In that case our strategy

results in a boolean network defined on the latent eij ’s.

In (1), αj is a sample–specific effect, included to adjust for systematic variation across
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samples; µi is a gene–specific effect, modeling the overall abundance of each gene, and κ−
i and

κ+
i parameterize the limits of variation in the tails. Finally σ2

i is the variance of the normal

component of the distribution of gene i. We follow Parmigiani et al. (2002) in defining

a conditionally conjugate prior for µi, σ2
i and κ−

i and κ+
i . Let Ga(a, b) denote a Gamma

distribution with expectation a/b:

p(µi |mµ, τµ) = N(mµ, τµ), p(1/σ2
i | γσ, λσ) = Ga(γσ, λσ),

p(1/κ−
i | γ−

κ , λ−
κ ) = Ga(γ−

κ , λ−
κ ), p(1/κ+

i | γ+
κ , λ+

κ ) = Ga(γ+
κ , λ+

κ );

where min(κ+
i , κ−

i ) > κ0σi and κ0 = 5. The restriction on κ−
i and κ+

i ensures that the

gene-specific mixture distribution has heavier tails than its normal component, preserving

interpretability of the three-way latent classes. For the sample–specific effect αj, we impose

an identifiability constraint αj ∼ N(0, τ 2
α) with

∑n
j=0 αt = 0.

Specifying a prior model for eij we deviate from Parmigiani et al. (2002), defining the

model in terms of latent normal variables (Albert and Chib 1993). For each gene and

sample we introduce a latent Gaussian variable zij , and define:

eij =



















1 if zij > 1 high epression

0 if − 1 < zij ≤ 1 normal expression

−1 if zij ≤ −1 low expression

(2)

where the distribution of zij is defined by the following system of simultaneous equation

model (SEM):

zij = mij +
∑

k 6=i

βik(zkj − mkj) + ǫij , i = 1, ..., p, j = 1, ..., n; (3)

with ǫij ∼ N(0, s2
i ). Let Zj = z1j , ..., zpj, denote the p–dimensional vector of latent probit

scores, associated with sample j. Also, let B be the (p× p) matrix whose diagonal elements

are unity and whose off-diagonal (i, k) components is −βik. Provided B is non–singular,

the process above defines a proper joint probability density function (Besag 1974). More
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precisely, defining the marginal precision matrix Hz = diag(1/s1, ..., 1/sp) and Ω = B′HzB,

we have

P (Zj | mj ,Ω) =
|Ω|1/2

(2π)1/2
exp{−

1

2
(Zj − mj)

′Ω(Zj − mj)} (4)

where mj = (m1j , ..., mpj)
′.

If ej = (e1j , ..., epj)
′, the implied probabilities for the indicators eij are:

P (ej | mj ,Ω) =

∫

Apj

· · ·

∫

A1j

P (Zj | mj ,Ω) dZj , (5)

where Aij is the interval (−∞,−1] if eij = −1, (−1, 1] if eij = 0 and (1,∞) if eij = 1. We

use notations π+
ij = p(zij > 1 | y), π−

ij = p(zij < −1 | y) and p⋆
ij = π+

ij − π−
ij .

In this context, we propose to use a reciprocal graph, G = {V, E}, to describe a dependence

structure among the three-way indicators eij that reflects a priori knowledge about a pathway.

Relationships between genes are captured via a set of conditional independences over the

joint distribution of the classes ej = (eij , i = 1, ..., p). This is implemented by structuring the

matrix B so that the off–diagonal element (i, k) is null (βik = 0), if and only if the edge k → i

is not in {E}, (Spirtes et al. 1998). The resulting concentration matrix Ω = B′HzB, will

have zero off diagonal elements (ωik = 0), structured compatibly with the Markov properties

encoded in the moral graph Gm = {V, Em}, (Koster 1996).

For each gene and sample, the mean mij may be modeled as a linear function (mij = x′
jbi)

of, say, a design vector xj . This allows for comparisons across groups. For example, if xj = 1

and −1 for samples under two different biologic conditions, then the posterior distribution

for bi formalizes difference on the differential expression of gene i under the two conditions,

adjusting for the dependence among the genes.

Finally, the autoregressive scheme in (3), implicitly assumes that genetic interactions are

invariant across all the cross-sample biological variation represented in the study. Relaxing
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this assumption is important and can be achieved by including an interaction term relating

the covariate or phenotype information in xt with the neighboring probit scores zkj in (3).

In summary, we assume a mixture model for the observed gene expressions yij. The noisy

data yij is reduced to latent trinary indicators which are used to define the dependence

structure. Because of the nonlinear shrinkage induced by the mixture model, the yij do not

come from a multivariate normal, and the patterns of dependence could be more complex.

2.3 Priors over graphical structures and dependence parameters

We define a prior probability model for the dependence structure G. In words, the prior

is based on a pathway diagram, that summarizes substantive prior information about the

pathway of interest. We interpret the pathway as a reciprocal graph G0 = {V, E0}, (See

example in Section 2.1). The prior on G is defined on the set of all graphs that can be

obtained by deleting edges from G0. More formally, we define the model space generated by

G0 as M(G0) = {G = (V, E) : E ⊂ E0}. If E0 comprises a total number of K edges, then

M(G0) includes D = 2K possible models.

The definition of the the prior p(G) can be seen as stating joint probabilities for the

multiple hypothesis testing problem implicitely defined by inclusion versus exclusion of all

possible edges. Following the standard Bayesian variable selection scheme (George and Mc-

Culloch 1993, Brown and Vannucci 1998, Dobra et al. 2004), we can consider edge inclusions

as exchangeable Bernoulli trials with common inclusion probability ϕ. If |E0| is the to-

tal number of possible edges and kG is the number of edges included in G, it follows that

P (G | ϕ) = ϕkG(1−ϕ)|E0|−kG . When the inclusion probability ϕ comes from the Beta family

(ϕ ∼ B(aϕ, bϕ)), Scott and Berger (2006) and Carvalho and Scott (2009) show that this class

of prior model probabilities yield a strong control over the number of “false” edges included

in G.
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A key feature of the proposed prior is the restriction to subsets of G0. Inference under the

proposed model populates existing pathways with probabilistic information associated with

a biological system at a temporal cross section of its dynamic. The restriction to M(G0)

is important to keep MCMC posterior simulation across the model space practicable. For

global searches, without restriction to a focused set of models, trans–dimensional MCMC

becomes impracticable. Local focus does not preclude some extensions beyond M(G0) to

facilitate discovery of previously unknown interactions. For example, consider an arbitrary

graph G, without restriction to M(G0), and let mG denote the number of deleted and added

edges relative to G0. One could replace kG in the prior by mG and allow for graphs beyond

G0. Little would change in the proposed inference. But centering on models close to G0 is

important. See also related comments in Section 6.

Our model is completed defining priors over the non-zero parameters βij ∼ N(0, σ2
β)

(i, j = 1, ..., p). This defines a conjugate prior for the normal model (3). This formulation is

derived as a natural characterization of the SEM in (3).

3 ESTIMATION AND INFERENCE

3.1 Model Determination via RJ–MCMC

We implement posterior inference for (θ,B,G) by setting up posterior MCMC simulation.

We define the current state x = (θ,B,G) as the complete set of unknowns and write π(dx)

short for the target posterior distribution p(θ,B,G | Y).

The MCMC is defined by the following transition probabilities: (a) Update the parameter

vector (θ,B); and (b) Update G ensuring that the proposed graph G′ is in the set M{G0}.

This move usually involves changes to B as well.

The updates in (a) follow the usual M-H scheme. More care is needed for the updates in
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(b) as they involve adding or deleting an edge in G, therefore changing the dimension of the

parameter space. We implement a reversible jump MCMC (RJ), Green (1995).

i) Draw an edge (k → i) at random from E0. If in the current state G, (k → i) /∈ E propose

the birth of the new edge k → i. If (k → i) ∈ E propose the death of k → i.

ii) If we propose the birth k → i, the structural matrix B gets populated with a new element

β ′
ik = u, where u ∼ q(u). If we propose a the death of the edge k → i, we simply set

β ′
ik = 0.

Steps i) and ii) generate a candidate x′ = (B′,G′). Let m = index the move proposed in

step i), and let m′ index the reverse move. The acceptance probability is (Green, 1995)

R(x, x′) = min

{

1,
π(dx′)

π(dx)

q(m′ | x′)

q(m | x) q(u)

}

, (6)

where q(m | x) is the probability of proposing move m when the chain is in state x, q(u) is

the density function of u. In general R(x, x′) might incluce an additional factor involving the

Jacobian of a possible (deterministic) transformation of (x, u) to define x′. The described

RJ involves no such transformation. The move m is generated in step i) by a uniform draw

from E0, implying q(m | x) = q(m′ | x′). Finally, q(u) is the proposal p.d.f. The acceptance

probability of a birth Rb is then defined as:

Rb = min

{

1;
p(x′ | Y)

p(x | Y)
q(u)−1

}

.

If the proposed element β ′
ik of B′ defines a a singular matrix, Ω is not positive definite and we

reject move m′ setting Rb to zero. Given this sampling scheme, the probability of a deletion

is simply defined as Rd = 1/Rb.
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3.2 Graphical Model Selection

The posterior probability p(G,B | Y) and the corresponding MCMC posterior simulation

characterize our knowledge about the pathway in the light of the data. Based on this pos-

terior probability, we may be interested in selecting a representative graph G. The posterior

only summarizes the evidence for each G. It does not yet tell us which G’s we should finally

report.

This model selection problem has been discussed by different authors. Drton and Perl-

man (2007) discuss graphical model selection from the frequentist perspective, under the

assumption that n ≥ p + 1, while Jones et al. (2005) or Meinshausen and Bühlmann (2006),

describe selection techniques for problems where the sample size n is small when compared to

the number of variables p. From a Bayesian perspective, Carvalho and Scott (2009) provide

a comprehensive discussion of Objective Bayesian model selection in Gaussian Graphical

Models.

In the context of the model described in Section 2, graphical model selection can be

defined by removing elements (k → i) ∈ E0 specified by the prior graph G0 = {V, E0}. This

is equivalent to the vanishing of the structural parameters βik in the matrix B, characterizing

the joint distribution of latent probit scores Z (Ronning and Kukuk 1996). If the edge set

E0 has size |E0| = Q, graphical model selection involves testing Q hypothesis

H0
q : β(q) = 0, vs. H1

q : β(q) 6= 0, for q = 1, ..., Q.

When testing a large number of hypotheses it is important to address possible multiplicity

problems by controlling some pre–defined error rate. A popular choice is to control the False

Discovery Rate (FDR) (Benjamini and Hochberg 1995). Several authors (Carvalho and Scott

2009, Scott and Carvalho 2008, Scott and Berger 2006) suggest considering the shrinkage

prior defined in Section 3.1 and report how including edges with inclusion probability P (βik 6=

13
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0) > 0.5 (median model), yields strong control over the number of false positives.

4 SIMULATION STUDY

We validate and illustrate the proposed method with a simulation study with p = 50 genes

form n = 30 samples. We define Y as the (p × n) matrix of simulated mRNA intensities

and consider a balanced design where 15 columns of Y are form “normal” samples and 15

columns of Y are associated with “tumor” samples. Thus xij = (1, 0)′ if yij is a normal

sample and xij = (1, 1)′ if yij is a tumor sample.

We generate simulated data Y as follows. Given a set of latent scores W ∼ MN (0,Σz, IT),

were Ωz = Σ−1
z encodes a known conditional dependence structure, and covariate effects

bi ∼ N2(mi, σ
2
b I2), we define zij = wij + xij

′ bi. We then generate the intensity matrix Y

from a three-way mixture of Gaussian distributions:

yij | zij ≤ −1 ∼ N(−4, 22),

yij | zij > 3 ∼ N(4, 22),

yij | −1 < zij ≤ 3 ∼ N(0, 1).

(7)

The precision matrix Ωz is defined as follows. First we obtain the p×p matrix B by defining

γij =d Ga(2, 1), cij = {−1, 1} with P (cij = 1) = 0.5 and δ0 a Dirac mass at 0, so that Bii = 1

(for i = 1, ..., p), and the off diagonal elements Bij = π0 δ0 + (1 − π0) cijγij. The simulation

truth is deliberately chosen different from the assumed analysis model (1).

We then generate Ωz by rescaling B′B to a correlation matrix. The simulation model

(7) is deliberately different from the assumed analysis model, but still includes a meaningful

notion of true dependence structure and strength.

We use a prior Graph G0 = {V, E0} spanned by the set of edges E = E∗ ∪ Ẽ, with E∗

spanning the simulation truth of non–zero elements in Bij (in our example |E∗| = 50) and
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Ẽ serving as a random mispecification set including false edges (in our example |Ẽ| = 87).

In Figure 3, we display the classification results for the expression measurements gener-

ated under the dependence schemes just described. We calculated posterior probabilities of

over– and under–expression from 50,000 posterior samples (thinned by 10), obtained after

conservatively discarding 50,000 iterations. Figure 3 (left panel) shows the simulation truths

as indicators (eij) of over–(white), normal–(grey) and under–expression(black). The right

panel reports a unidimensional summary of the probabilities of over– or under–expression

(p∗ij = π+
ij − π−

ij). The elements p∗ij are defined in the [−1, 1] scale and may be compared

directly with the three-way indicators egt. We note that the p∗ scale provides improved

resolution over genes with signal and recovers well the generating truth.

Posterior inference includes a posterior distribution on the dependence structure. In

Figure 4 (left panel) we report the number of edges included in the model by MCMC iteration,

for two chains starting at opposite sides of the model saturation spectrum. Despite the size

of the mispecification set Ẽ, the trans-dimensional Markov chains converge fairly rapidly

towards models of size comparable to |E∗| = 50. In the same figure, marginalizing over all

possible graphs M{G0} we report the posterior expected SEM coefficients E(βik | Y) and

the edge inclusion probabilities P (βik 6= 0 | Y) (right panel). In this plot, we report the false

edges as solid circles. Most solid circles lie in the area below an inclusion probability of 0.5.

This shows how the adopted probability scheme, not only penalizes for model complexity,

but effectively controls the number of false discoveries, allowing for a genuine recovery of the

generating conditional dependence structure.

5 CASE STUDY

Wang et al. (2005) report a study of epithelial ovarian cancer (EOC). The goal of the study

is to characterize the role of the tumor microenvironment in favoring the intra–peritoneal
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Hosted by The Berkeley Electronic Press



spread of EOC. To this end the investigators collected tissue samples form patients with be-

nign (b) and malignant (m) ovarian pathology. Specimens were collected, among other sites,

from peritoneum adjacent to the primary tumor. RNA was co-hybridized with reference

RNA to a custom made cDNA microarray including combination of the Research genetics

RG HsKG 031901 8k clone set and 9,000 clones selected from RG Hs seq ver 070700. A com-

plete list of genes is available at http://nciarray.nci.nih.gov/gal_files/index.shtml,

‘custom printings’. See the array labeled Hs CCDTM–17.5k–1px.

In the following discussion we focus on the comparison of 10 peritoneal samples from pa-

tients with benign ovarian pathology (bPT) versus 14 samples from patients with malignant

ovarian pathology (mPT). The raw data was processed using BRB ArrayTool

(http://linus.nci.nih.gov/BRB-ArrayTools.html). In particular, spots with minimum

intensity less than 300 in both fluorescence channels were excluded from further analysis.

See Wang et al. (2005) for a detailed description.

One subset of genes reported on the NIH custom microarray are 61 genes in the coagulation

and complement pathway from KEGG (http://www.genome.ad.jp), shown in Figure 2.

Genes on this pathway are of interest for their role in the inflammatory process. The arches in

the pathway are interpreted as prior judgement about (approximate) conditional dependence

(Section 2.1). However, recognizing that the pathway represents a protein system rather than

gene expression, we allow for significant deviation from this structure, explicitly including

model determination in our analysis.

We fit the model presented in Section 2 to this set of 61 genes. The prior set of conditional

dependences between genes is represented as a reciprocal graph in Figure 2 and includes a

set of 148 possible edges. Reported inference is based on 50,000 MCMC samples, thinned

by 10, after discarding 50,000 observation for burn–in.

Recording the number of times the sampler visits a particular edge we calculate the
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posterior probability vik = P (βik | Y), for each edge (k −→ i) in the prior graph G0.

In Figure 5, we show the set of selected genetic interactions when we consider edges with

inclusion probabilities greater than 0.5 (median model). Edge directionality is inherited from

G0 (Figure 2).

The posterior distribution on eg provides inference on differential expression, appropri-

ately adjusted for dependence. Starting from the Complement and Coagulation Cascade

pathway, we identify a set of 24 genes exhibiting patterns of dependence in their differential

expression profiles across healty and tumor tissues. In order to give an interpretation to

our findings, we searched the scientific literature using the Information Hyperlinked Over

Protein (IHOP) tool implemented by Hoffman (Hoffman and Valencia 2004), available at :

www.ihop-net.org.

For example, our study confirms the centrality of the peptide IL8 (Intelukin-8) in the

regulation of the chemokine (CXC and CC motifs) genes. The protein encoded by this

gene has been reported by several authors to play an important role in the response to

inflammatory stimuli, resistance to apoptosis and tumoral angiogenesis. See Terranova and

Rice (1997)) or Brat et al. (2005), for comprehensive discussions on IL8 and its receptors.

One other example is the finding of dependent expression profiles associated with the

Thrombine pathway (F2−→F2R and F2−→THBD). This patwhay plays a central role in

the coagulation cascade and has been reported as a potential mediator of cellular function

in the ovarian follicle (Roach et al. 2002).

6 DISCUSSION

We propose a probability model for the analysis of dependent gene expression data. De-

pendence between genes is modeled via the explicit consideration of prior information from

pathways representing known biochemical processes. We characterize a biochemical pathway
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as a reciprocal graph depicting a coherent set of conditional dependence relationships be-

tween three-way classes of gene under-, normal- and over–expression. Modeling dependence

between latent indicators of class membership, is likely to represent a more sensible approach,

for this kind of data, when compared with methods that model correlations between observ-

ables directly. Acknowledging that a known pathway represents only prior information, we

seek posterior inference for the model parameters as well as for the pathway itself via an

RJ-MCMC scheme. We showed, through simulation studies, that our model allows for the

recovery of the true dependence structure, even under a misspecified prior pathway.

Our model of mRNA abundance relies on the Probability of Expression (POE) Model of

Parmigiani et al. (2002), and assumes that the variability of expression across tissue samples

can be fully characterized by heavy tailed mixtures of Normal and Uniform random variables.

While this is a simplification of reality, it contributes to denoising data and is likely to

provide useful summaries, allowing for the investigation of the many aspects associated with

expression data analysis, from data normalization, to DE analysis, to the characterization

of molecular profiles. The general framework presented in this article is also adaptable to

other models of gene expression analysis.

In the construction of the dependent probability model, it is important to acknowledge the

limitations of the information provided in a biochemical network. In fact, a pathway may not

necessarily describe relations among transcript levels, although it carries some information

about it. On a related note, the proposed methodology is currently restricted to known

biochemical pathways. Our model could be extended to discover novel genetic interactions,

by allowing adding new edges between nodes in the prior graph G0. This, however, would

come at a substantial computational cost and would require a challenging reformulation of

the prior over graphs p(G), to penalize for model complexity and, at the same time, to favor

models closer to the structure of the prior pathway G0. Initial progress in this direction was
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reported by Braun et al. (2008) and, in the context of Bayesian Networks, by Mukherjee and

Speed (2008).

In this article we model dependence between three-way variables as dependence between

latent Gaussian quantities. This is only a convenient restriction on the possible shapes of

dependence characterizing a matrix of ordinal random variables. Extensions of our model

considering a richer class of dependence structures are, in principle, appealing. However these

would require a higher level of complexity and limitations on the clique size contributing to

the joint distribution of the three-way indicators.
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Figure 1: (Example) moralization of a reciprocal graph.
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Figure 2: Complement and coagulation cascades pathway (Wang et al. 2005).
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Figure 3: Simulation Study: (Left Panel) Simulation signal eij . (Central Panel) Simulated
mRNA abundance yij. (Right Panel) DepPOE estimate of p∗ij .
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Figure 4: Simulation Study: (Left Panel) Number of edges included in the model by MCMC
iteration, for two chains with starting points at the two extremes of the saturation spec-
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probabilities P (βik 6= 0). False edges are represented with a solid circle.
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