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A Comparative Analysis of the Chronic Effects of Fine

Particulate Matter

Sorina E. Eftim, Holly Janes, Aidan McDermott, Jonathan M. Samet, Francesca Dominici

Abstract

The American Cancer Society study (ACS) and the Harvard Six Cities study (SCS)

are the two landmark cohort studies for estimating the chronic effects of fine particulate

matter (PM2.5) on mortality. To date, no comparative analysis of these studies has been

carried out using a different study design, study period, data, and modeling approach. In

this paper, we estimate the chronic effects of PM2.5 on mortality for the period 2000-2002

by using mortality data from Medicare and PM2.5 levels from the National Air Pollution

Monitoring Network for the same counties included in the SCS and the ACS. We use a

log-linear regression model which controls for individual-level risk factors (age and gender)

and area-level covariates (education, income level, poverty and employment). We found

that a 10 µg/m3 increase in the yearly average PM2.5 is associated with 10.9% (95% CI:

9.0, 12.8) and with 20.8% (95% CI: 12.3, 30.0) increase in all-cause mortality by using

Medicare data for the ACS and SCS counties. The results are similar to those reported

by the original SCS and ACS indicating that fine particulate matter is still significantly

associated with mortality when more recent air pollution and mortality data are used.

Our findings suggest that national government based data, like the Medicare, are useful

for advancing our understanding of the chronic effects of ambient air pollution on health.
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Introduction

Several epidemiologic studies have provided evidence that longer term exposure to ambient

fine particulate matter (PM2.5) is associated with chronic health effects, including cardiovas-

cular and respiratory diseases, and with death (Dockery et al., 1993; Pope et al., 1995, 2002;

Krzyzanowski et al., 2002; Laden et al., 2006; Pope and Dockery, 2006). Chronic effects of

air pollution potentially encompass cumulative effects of long-term exposures, and persistent

effects of acute exposures (Kunzli et al., 2001; Rabl, 2003). Chronic effects of air pollution

on human health have been estimated mainly using data from cohort studies.

Cohort studies compare across geographic locations longer term exposure to air pollution

and time-to-death adjusted for individual-level risk factors such as age, gender, smoking and

body mass index. The two landmark cohort studies, the Harvard Six Cities Study (SCS)

(Dockery et al., 1993) and the American Cancer Society (ACS) Study (Pope et al., 1995) and

their recent follow up (SCS II) (Laden et al., 2006) (SCS II) and (ACS II) (Pope et al., 2002,

2004) found a significant association between longer term exposure to PM2.5 and mortality

after adjusting for individual-level risk factors and ecological covariates.

Cohort studies are generally expensive and time consuming because of the need to collect

extensive information on individual-level risk factors and to analyze the results after a long

follow up. Financial constraints and limited availability of monitoring stations constrain these

studies further by including only a limited number of geographical areas.

To date no comparative analysis of the ACS and SCS has been carried using a different

approach. Recently we have linked billing claims from Medicare with daily concentrations of

PM2.5, by county of residence of the Medicare enrollees, for the period 2000-2002 (Dominici

et al., 2006). From this large data set, we have constructed two data sets that include
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average exposure to PM2.5 , mortality, and county-level Census data for the same geographical

locations included in the ACS and SCS. These two new data sets differ from the original

ACS and SCS with respect to study design, study period, availability of individual and area-

level confounders, and modeling approach (see Table 1). Therefore these Medicare data sets

provide the opportunity to investigate whether the evidence on the longer term effects of

PM2.5 on mortality persists, regardless the above differences.

Materials and Methods

From the Medicare enrollment files we have constructed a cohort of roughly 40 million people

with individual level information on age, gender and race, and county of residence for the

period 2000-2002. First, we link the Medicare data to PM2.5 air pollution monitoring data

from the U.S EPA National Monitoring Network by county. Second, from this large data

set, we have calculated the number of deaths and number of people at risk for the same

geographical locations included in the ACS and SCS. We denote these new data sets by

Med-ACS and Med-SCS, respectively.

Table 1 compares characteristics of the Medicare study on the chronic effects of PM2.5 on

mortality versus the ACS and SCS with respect to study design, geographical area, popula-

tion age, exposure estimation, time scale of exposure and individual and area-level covariates.

First, the ACS and SCS are closed to new enrollment, whereas in the Medicare new enroll-

ments are included every month of the study period. Second, unlike the ACS and SCS, the

Medicare study population includes only the elderly. Third, the Medicare study relies on

measured and concurrent ambient concentrations of PM2.5, whereas the ACS and SCS rely

on past exposures to PM2.5 which are generally estimated from PM10 ambient concentrations.
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Finally, the ACS and SCS have more extensive information on individual-level risk factors

than the Medicare study.

Table 2 summarizes the number of geographical locations, number of deaths and people at

risks, average levels of PM2.5, and exposure periods of the Med-ACS, ACS II, Med-SCS, and

SCS II. For the Med-ACS, we identify the 110 counties corresponding to the the 50 metropol-

itan areas in the ACS (Pope et al., 1995). These are identified from the list of counties that

includes the cities and towns that are within the metropolitan areas’ boundaries (Krewski

et al., 2000a). For the Med-SCS, we identify the counties that include the cities in the SCS

(Dockery et al., 1993). The Med-ACS includes approximately 7.3 million people, while the

Med-SCS included 340,000 adults respectively. For comparison, the baseline population sizes

in the ACS II and SCS II were 400,000 and 8,000 respectively.

Figure 1 shows the location of the 6 and 110 counties included in the Med-SCS and

Med-ACS, respectively. We estimate yearly county-specific averages of PM2.5 using only

time series data with measurements available for at least ten months per year and four days

per month, for the years 2000-2002. Specifically, we compute the 10% trimmed mean of the

monitor-specific PM2.5 concentrations for each county (source based monitors were excluded)

and then we average these concentrations across time.

For the ACS counties, PM2.5 concentrations are not available for Chattanooga TN and

Omaha NE. We assign to these counties the PM2.5 data measured in the neighboring counties:

McMinn Co. TN, and Polk Co. IO. For the SCS counties, PM2.5 concentrations are not

available Roane TN and Columbia WI, which include Harriman and Portage, respectively.

We assign to these two counties the PM2.5 data measured in the neighboring counties of Knox

Co. TN and Dane Co. WI.

As indicators of area-level socioeconomic status (SES), we use: 1) the proportion of women
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and men with a college degree or higher; 2) the proportion of women and men with high school

degree or higher; 3) proportion of women and men who are unemployed; 4) proportion of

individuals below the poverty level in each age-group; and 5) median income in the county,

from the 2000 US Census. We select these covariates to maximize comparability with the

ACS and SCS.

For each year, county of residence and age-gender stratum, we calculate the number of all-

cause deaths and the number of people at risk (Table 2). We stratified the study population

in 6 strata by gender and three age groups (65-75 years; 75-85; ≥85 years).

Let Y sc and µsc be the observed and expected number of all cause deaths, and let N scbe

the number of people at risk in county c and age-gender stratum s. Let x̄c be the the average

PM2.5, for the 2000-2002 period. We fit the following log-linear regression model allowing for

age-gender stratum specific intercept and including the SES factors zsc:

log(µsc) = θs
0 + θx̄c + γzsc + log(N sc) (1)

The parameter 10 × θ denotes the log relative risk of mortality associated with a 10 µg/m3

increase in longer term average PM2.5 adjusted for socioeconomic factors. We fit model

(1) to the Med-ACS and Med-SCS data, separately for each year and for all three years

combined. Model (1) is fit by assuming a negative binomial variance structure parameterized

as V ar(Y sc) = µsc +(µsc)2/ν. We also compute the robust standard errors (Liang and Zeger,

1986), which account for residual autocorrelation in the county-specific mortality rates.

As a sensitivity analysis, we explore the impact of exposure period on the results, sepa-

rately by year. To explore the sensitivity of the results to the exposure period, we regress

county-specific average of PM2.5 for the period 1999-2001 on mortality rates for the period

2000-2002.
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Data manipulation and analyses are performed using R, version 2.2.1 (R Development

Core Team, 2005) and the SAS software package, version 9.1 (SAS Institute Inc., 2000).

Results

Figure 2 shows the averages PM2.5 used in the ACS (Pope et al., 1995) for the 1979-1983

period (Krewski et al., 2000b), plotted against the average PM2.5 used in the Med-ACS for

the 2000-2002 period. As expected, in most counties, average PM2.5 was higher in the ACS

study than in the Med-ACS. There is a good agreement among these measurements except for

the noticeable outlier of Fresno, CA which experienced an increase in PM2.5 concentrations

(American Lung Association, 2004).

Figure 3 shows age and gender adjusted mortality rates plotted against average PM2.5

over the 2000-2002 period for the 6 and 110 counties included in the Med-SCS and Med-

ACS, respectively. These adjusted mortality rates are obtained by fitting model (1) without

including PM2.5 nor the SES covariates in the model.

Table 3 summarizes the results of our comparative analysis of Med-SCS and Med-ACS

with the SCS and ACS, (Pope et al., 1995; Dockery et al., 1993), the reanalysis (Krewski

et al., 2000c) and the follow up SCS II and ACS II (Laden et al., 2006; Pope et al., 2002). In

the Med-SCS, we found that a 10µg/m3 increase in average PM2.5 is associated with a 20.8

% increase in the mortality rate (95% CI: 12.3, 30.0) adjusted for age and gender. In the

Med-ACS, we found that a 10µg/m3 increase in average PM2.5 is associated with a 10.8%

increase in the mortality rate (95% CI: 8.9, 12.8), adjusted for age and gender. Without

adjustment for area-level covariates, the Med-SCS and Med-ACS provide results similar to

the ACS and SCS. In the Med-ACS, when we adjust for area-level covariates, we estimate

6

http://biostats.bepress.com/jhubiostat/paper121



a 10.9% increase in the mortality rate (95% CI: 9.0, 12.8) which is slightly larger than the

ACS results reported by the re-analysis team (Krewski et al., 2000c).

Table 4 summarizes the results of the Med-SCS and Med-ACS by year and for all years

combined, with and without adjustment for area-level covariates. Results are similar across

years and robust to adjustment with SES variables. Finally, in Table 5, we report results

obtained by using as exposure the average PM2.5 over the previous year. We find that the

results are robust with respect to the time period over which PM2.5 is averaged.

Discussion

We have conducted a comparative analysis on the chronic effects of PM2.5 on mortality

using Medicare and air pollution data for the same geographical locations included in the

ACS and SCS. We use mortality data from the Medicare billing records and PM2.5 concen-

trations from the EPA National Monitoring Network for the period 2000-2002 period. We

adjust for individual-level covariates (age and gender) and area-level covariates (education,

income,poverty level, employment).

Although the Med-ACS and Med-SCS have a different cohort sampling design, study

period, data, and analysis approach than ACS and SCS, our results were qualitatively similar

to the findings from these landmark studies. This indicates that valid estimates of the chronic

effects of PM2.5 on mortality can be obtained from a cohort study based on a different

sampling strategy, a large number of locations (50 versus 110 for the ACS) and the most

recent PM2.5 measurements available.

Without adjustment for area-level covariates, the Med-ACS found results that are almost

identical to the ACS. In the Med-ACS we adjusted only for two individual-level covariates
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(age and sex), compared to the larger set of individual-level factors considered in the original

ACS (age, sex, cigarette smoking, BMI, alcohol consumption, education and occupational

exposure). Perhaps fewer individual-level risks factors at baseline are enough for proper

adjustment in an older population.

With adjustment for individual-level and area-level covariates, the Med-ACS found results

that are slightly larger than reported in the ACS. Several factors might explain the difference.

First, this difference could be attributed to aggregation bias resulting from the estimated

ambient exposure. The Med-ACS uses smaller geographical areas (110 counties) than ACS

(50 metropolitan areas). The Netherlands Cohort study (Hoek et al., 2002) found that risk

estimate almost doubled when local sources of pollution were used versus community-wide

concentration levels. Therefore chronic effects of PM2.5 on mortality might be underestimated

when using exposure aggregated at the larger metropolitan area-level (Pope and Dockery,

2006). Second, the study population in Med-ACS is older than the populations of ACS and

SCS. The average age at enrollment in the ACS and SCS was 58.6 and 49.7 respectively

(Krewski et al., 2003). The Medicare cohort comprises only people over 65 years of age,

which is a more sensitive sub-population to the chronic effects of ambient PM2.5 on health.

Previous studies have shown that when pollution levels are high, senior citizens are more

likely to be hospitalized for heart and lung problems, and some may die prematurely (Pope,

2000).

The HEI reanalysis of the ACS and SCS (Krewski et al., 2000c, 2003, 2005a,b, 2004; Vil-

leneuve et al., 2002; Willis et al., 2003a) used the data provided by the original investigators

and explored the sensitivity of the results to the adjustment for a large set of ecological covari-

ates (Willis et al., 2003b; Siemiatycki et al., 2003) representing socioeconomic, demographic,

climate and environmental indicators and to alternative modeling approaches (Cakmak et al.,
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2003; Jerrett et al., 2003a,b). The re-analysis team replicated the original results and found

that longer term exposure to PM2.5 was modified by individual-level educational attainment

(Krewski et al., 2000c; Willis et al., 2003b). Unfortunately because the Medicare data does

not contain individual-level information on education, we were not able to verify this finding.

For the SCS data, the HEI reanalysis also investigated the impact of time-dependent

risk factors on the risk estimates (Krewski et al., 2000c). The results were robust to the

incorporation of time dependency in smoking, BMI and city-specific annual averages of PM2.5

(Krewski et al., 2000c, 2003).

An important limitation of this analysis is the lack of adjustment for spatial correlated

unmeasured confounders. This is an issue of primary concern in epidemiological studies that

compare adjusted mortality rates and longer term air pollution exposure across different lo-

cations. The HEI reanalysis (Krewski et al., 2000c, 2003, 2005a,b, 2004) developed statistical

methods for analyses of spatially correlated data aimed at minimizing the autocorrelation

in the residuals (Jerrett et al., 2003a,b; Burnett et al., 2001; Ma et al., 2003). The original

results were confirmed, but the confidence intervals were larger, suggesting that there was

significant residual autocorrelation in the data.

The full Medicare cohort study will include PM2.5 and mortality data for several hundred

U.S. counties, thus increasing our ability to develop statistical methods for spatial confound-

ing adjustment.
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Figure 1: Locations of the counties included in the Med-ACS and Med-SCS. The diamonds
represent the 110 locations included in the American Cancer Society study (Pope et al., 1995),
and the letters represent the six cities included in the Six Cities Study (Dockery et al., 1993):
Topeka KS (T), St. Louis MO (L), Steubenville OH (S), Watertown MA (W), Harriman TN
(H), and Portage, WI (P).

15

Hosted by The Berkeley Electronic Press



5 10 15 20 25 30 35

5
10

15
20

25
30

35

Average PM2.5 (2000−2002)

A
ve

ra
ge

 P
M

2.
5 

(1
97

9−
19

83
)
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over the years 2000-2002, for 110 U.S. counties.
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Med-SCS and the 110 Med-ACS counties. T denotes Topeka, KS (the reference city for all
plots); W Watertown, MA; L St. Louis, MO; S Steubenville, OH; H Harriman, Tennessee; P
Portage, Wisconsin.
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Table 1: Comparison of characteristics between the Medicare study versus the ACS and SCS.
Medicare ACS and SCS

Study design open to enrollment closed to enrollment
Geographical areas counties metropolitan areas
Population age 65 and older 25 and older
Exposure measured PM2.5 only measured PM2.5 and estimated PM2.5

from PM10

Time scale of exposure concurrent with the study period preceeding and concurrent
with the study period

Individual-level risk factors age, gender age, race, gender, education, smoking, and more
Statistical model Log-linear regression Cox proportional hazards regression
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Table 2: Study characteristics for Med-ACS, ACS II (Pope et al., 2002), Med-SCS and SCS
(Laden et al., 2006).
Characteristcs Med-ACS ACS II Med-SCS SCS II
No. of counties 110a 50b 6b∗ 6
No. of subjectsc 7, 333, 040c 295,223 341, 099c 8,096
No. of deathsd 1,12,311 62,000 54,160 2,732
Average PM2.5,µg/m3 13.6 17.7 14.1 16.4e

(standard deviation) (2.8) (3.7) (3.1) (5.6)e

range 6.0 - 25.1 9 - 33.5 9.6 - 19.1 9 - 39.0e

Study period 2000-2002 1982-1998 2000-2002 1974-1998
Period of measured exposure 2000-2002 1979-1983, 1999-2000 2000-2002 1979-1988
a Counties identified by the Reanalysis team (Krewski et al., 2000a) as being within the 50
metropolitan areas included in the ACS (Dockery et al., 1993).
b These are metropolitan areas.
b∗ The six counties that include the six cities in the SCS.
c The number of subject for the Med-ACS and Med-SCS datasets is the number of persons at
risk in year 2000. For ACS II and SCS II, it is the number of persons enrolled at the beginning of the
study period.
d Total deaths occurred during the entire study period. For ACS II (Pope et al., 2002), the number
of deaths is approximately triple the number of deaths in the original ACS (Pope et al., 1995).
e Calculated based on Table 1 and Figure 1 from Laden et al. (2006).
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Table 3: Comparison of results across studies: estimated % increase in mortality rate per
10µg/m3 increase in PM2.5 by chronic effects of PM2.5 on mortality for exposure period
2000-2002.

Duration of measured % Change in mortality risk per
Study Primary source exposure (PM2.5 ) 10µg/m3 increase in average PM2.5

SCSa (Dockery et al., 1993) 1979-1988 13.2 (4.2 - 23)
SCSb (Krewski et al., 2000c) 1979-1988 16.6 (7.3 - 26.1)
SCS IIa (Laden et al., 2006) 1979-1988 16 (7 - 26)
Med-SCSb 2000-2002 20.8 (12.3- 30.0)
ACSc (Pope et al., 1995) 1979-1983 6.6 (3.5 - 9.8)
ACSd (Krewski et al., 2000c) 1979-1983 10.2 (7.0 - 13.7)
ACSe (Krewski et al., 2000c) 1979-1983 7.4 (4.4 - 10.6)
ACS IIf (Pope et al., 2002) 1979-1983, 1999-2000 6.2 (1.6 - 11.0)
Med-ACSb 2000-2002 10.8 (8.9 - 12.8)
Med-ACSg 2000-2002 10.9 (9.0 - 12.8)
aAdjusted for individual-level age, gender, cigarette smoking, BMI, education.
b Adjusted for individual-level age and gender.
cAdjusted for individual-level age, gender, cigarette smoking, BMI, education, race, alcohol
consumption and occupational exposure.
dAdjusted for individual-level age, race, and gender.
eAdjusted for population change, income, poverty, income disparity, unemployment and education.
See Table 47, Part II, (Krewski et al., 2000c).
fAdjusted for age, gender, race, cigarette smoking, body-mass index, education, alcohol
consumption, marital status, diet and occupational exposure.
gAdjusted for individual-level age and gender, and for area-level education, income, poverty
and employment.
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Table 4: Estimated % increase in mortality rate per 10µg/m3 increase in PM2.5 by year and
for exposure period 2000-2002.

Years
Model Overall 2000 2001 2002
Med-ACSa 10.8 (8.9, 12.8) 10.9 (7.9, 14.0) 9.1 (5.8, 12.1) 10.1(6.3, 13.9)
Med-SCSa 20.8 (12.3, 30.0) 17.8 (6.2, 30.7) 16.5 (2.1, 29.0) 33.5 (16.0, 53.5)
Med-ACSb 10.9 (9.0, 12.8) 11.4 (8.4, 14.4) 8.7 (5.6, 11.6) 10.4 (6.9, 13.9)
a Adjusted for individual-level age and gender.
b Adjusted for individual-level age and gender, and for area-level education, income,
poverty and employment.
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Table 5: Estimated % increase in mortality rate per 10µg/m3 increase in PM2.5. The exposure
period is 1999-2001.

Years
Model Overall 2000 2001 2002
Med-ACSa 9.5 (7.8, 11.3) 8.4 (5.7, 11.1) 8.9 (5.8, 11.6) 11.0 (7.4, 14.7)
Med-SCSa 17.9 (10.8, 25.4) 15.2(5.2, 26.2) 17.1 (4.8, 28.3) 21.9 (8.3, 37.1)
Med-ACSb 10.0 (8.2, 11.8) 9.3 (6.5, 12.2) 9.1 (6.1, 12.0) 11.2 (7.8, 14.7)
a Adjusted for individual-level age and gender.
b Adjusted for individual-level age and gender, and for area-level education, income,
poverty and employment.
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