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1. Introduction

Ecological studies may be defined as designs that examine associations between groups of

individuals, rather than between the individuals themselves, and are in wide-spread use

in a variety of scientific disciplines (Achen and Shively, 1995, King, 1997, Morgenstern,

1998). Although the ecological design is controversial, its continued use may be attributed

to the lack of availability of high-quality data for an individual-level analysis (perhaps due

to logistic, financial or ethical constraints), and the ease and low-cost with which ecological

data may often be obtained (Richardson and Monfort, 2000). Further, exposures which

exhibit greater between-area variability relative to within-area variability lend themselves

to studies at the group level (Prentice and Sheppard, 1995). When scientific interest lies at

the level of the individual, the ecological design is susceptible to a range of methodological

issues. These include problems common to all observational studies as well as a variety

unique to their design (Richardson et al., 1987, Greenland, 1992, Greenland and Robins,

1994, Morgenstern, 1998, Wakefield, 2003). The collective impact of these difficulties is

often referred to as ecological bias, and the ecological fallacy occurs when conclusions drawn

from an ecological study are interpreted as representing individual-level associations, while

an individual-level study (such as a cohort or case-control study) would have led to different

conclusions.

In epidemiological settings, the fundamental difficulty is the lack of information re-

garding within-group exposure and confounder variation. A consequence of this is that it

is not possible to uniquely identify individual-level models on the basis of ecological data

alone. Additional information is required and may include imposing (generally untestable)

assumptions regarding the individual-level model (e.g. King, 1997), or the collection of

individual-level data (e.g. Prentice and Sheppard, 1995). In general, however, without

individual-level information on both responses and confounders/exposures one cannot ad-

2

Hosted by The Berkeley Electronic Press



equately assess any assumed individual-level model (Wakefield, 2004).

As a means to overcoming methodological issues associated with the ecological design,

we supplement ecological data with a sample of carefully collected individual-level data.

We refer this general class of designs as hybrid designs where, given an individual-level

model, the individual-level data provide the basis for identifiability while the ecological

data provide efficiency gains.

The remainder of the paper is as follows. In Section 2 we present a general likelihood-

based framework for combining ecological and individual-level data. Section 3 provides

the details of the proposed approach in the context of a study of infant mortality in North

Carolina. Specific interest lies in the joint impact the of infant’s race and the mother’s age

at the time of birth. Section 3 also outlines computational details, and Section 4 provides

results. Finally, Section 5 concludes with a discussion, together with an outline of avenues

for further research.

2. Framework

In the context of a rare outcome, Haneuse and Wakefield (2006) proposed to combine

group-level ecological data with a sample of individual-level case-control data. They de-

rived the exact likelihood, and corresponding score and information matrix, in two set-

tings: (i) the unadjusted association between a binary outcome and binary exposure and

(ii) adjustment for a binary confounder, where the joint outcome/confounder and expo-

sure/confounder distributions are observed. Here we present a more general framework

for likelihood development, while Section 3 provides details in a more specific setting. In

the previous paper, the models contained fixed effects only, and inference was made via

the asymptotic distribution of the maximum likelihood estimate. Here we focus on hier-

archical models, with area-specific random effects, and follow a Bayesian approach with

computation via Markov chain Monte Carlo (MCMC).
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Suppose the study population may be partitioned into K mutually exclusive areas.

Let Y and X denote individual-level outcome and exposure information that would be

observed for all individuals in each of K study areas, had a fully individual-level analysis

been performed. We refer to Y and X as the complete outcome and complete exposure

data. Let θ denote a parameter vector that indexes the model relating X to Y, which

is assumed to be specified on the basis of a scientific question of interest. Given (Y, X),

estimation and inference regarding θ would proceed on the basis of the complete data or

individual-level likelihood

L(θ;Y| X) (1)

For both the ecological study design and the design proposed in this research, incomplete

data are observed. In ecological studies, such data is typically summary or aggregated

individual-level data and, consequently, information provided by the incomplete data may

be viewed as being contained in that provided by the complete data. A simple example

of this would be the marginal totals of a 2×2 table compared to the internal counts.

More generally, the extent of the incompleteness depends on the setting, and may refer

to incomplete outcome data alone or both incomplete outcome and exposure data. We

denote incomplete outcome data by Y∗ and incomplete exposure data by X∗.

Given complete exposure information but incomplete outcome information, the distri-

bution of the data may be obtained by considering the joint distribution of the complete

and incomplete outcome data given the complete exposure data:

P (Y∗| X,θ) =
∑

Y| Y∗,X

P (Y∗,Y| X,θ)

=
∑

Y| Y∗,X

P (Y| X,θ) P (Y∗| Y,X,θ)

In the above, the summation conditions on Y∗ since the complete outcome data must be

consistent with the incomplete data. For example, one cannot sum over values of Y where
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the number of cases is fewer than that observed in Y∗. Estimation and inference therefore

proceeds on the basis of a likelihood which is derived by averaging the individual-level

likelihood (1), P (Y| X,θ), over the distribution of the observed incomplete outcome data,

given the observed complete exposure and unobserved incomplete outcome data:

L(θ;Y∗| X) =
∑

Y| Y∗,X

L(θ;Y| X) P (Y∗| Y,X,θ) (2)

Given incomplete exposure information, one is further required to average over the

uncertainty in the unknown complete exposure data. This requires the specification of

the conditional distribution of the complete exposure data given the incomplete exposure

data, which is presumed to be indexed by the parameter vector φ. The distribution of the

data may be obtained in a similar manner to that used above to give

P (Y∗| X∗,θ,φ) =
∑

X| Y∗,X∗

P (Y∗,X| X∗,θ,φ)

=
∑

X| Y∗,X∗

P (Y∗| X,θ) P (X| X∗,φ)

Given incomplete data (Y∗, X∗), therefore, estimation and inference proceeds for both θ

and φ simultaneously via the likelihood

L(θ,φ;Y∗| X∗) =
∑

X| Y∗,X∗

⎧⎨
⎩

∑
Y| Y∗,X

L(θ;Y| X) P (Y∗| Y,X,θ)

⎫⎬
⎭ P (X| X∗,φ) (3)

For analyses within the frequentist statistical framework, expressions for both the score

vector and information matrix associated with (3) may be obtained by exploiting its mix-

ture representation (Haneuse and Wakefield, 2006). Specifically, starting with expressions

for the complete data score and information matrixes, based on (1), the corresponding

expressions for (3) are obtained by consideration of the conditional distribution of the

complete data given the incomplete data, Y,X| Y∗,X∗. For analyses within the Bayesian

statistical framework, posterior distributions may be obtained via MCMC methods where
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we introduce the complete data (Y,X) as auxillary variables to be estimated simultane-

ously with θ and φ.

3. North Carolina infant mortality data

To illustrate the combination of ecological and case-control data, we consider a hypothet-

ical study of infant (< 1 years old) mortality in North Carolina. Information on vital

statistics are provided by the North Carolina State Center for Health Statistics, and avail-

able for download from the Odum Institute for Research in Social Science at the University

of North Carolina at Chapel Hill (http://www.irss.nc.edu/ncvital). For each of 100

counties, we obtained the total number births and infant deaths by race and the age of the

mother, aggregated across years 2000-2004. For the purpose of illustrating the methods

of this paper we consider two binary exposure variables: ‘minority’ defined as whether

or not the babies race was non-white, and ‘teen mother’ defined as whether or not the

mother was a teenager at the time of birth. An attractive feature of these data is they

consist of (de-identified) individual-level records, so that complete joint information on

outcome, race and mother’s age are available. We may therefore construct a hypothetical

ecological study by considering the corresponding county-specific marginal totals. Further,

having individual-level information provides a basis for the direct assessment of competing

methods that do not use all information.

3.1 Data description

Across the 100 counties, there is substantial variation in both the number of births,

ranging from 221 to 61,960, and in the number of (all cause) infant deaths, ranging from

0 to 484. Figure 1 provides county-specific crude mortality rates, the percent minority

and the percent teen mothers. The mortality rates vary from 0 per 1,000 births to a

maximum of 17.5 per 1,000. County-specific percent minority exhibits substantial variation

across North Carolina, ranging from 0.6% to 73.3%, while the county-specific percent teen
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mothers ranges from 5.9% to 21.0%. Figure 2 presents two ecological correlation analyses,

for minority and teen status respectively. In each plot, two least square fits have been

added corresponding to an ordinary (unweighted) fit and a weight fit, with the latter

weighted by the county-specific number of births.

[Figure 1 about here.]

[Figure 2 about here.]

In the following we present details regarding a hybrid scheme, where the ecological

data (i.e. the marginal rates in Figures 1 and 2), are supplemented with a sample of

case-control data from each county.

3.2 Individual-level model

We emphasize that the scientific goal is inference with respect to individual-level as-

sociations, and consequently the first task is to write down an individual-level model.

Let Y denote the binary outcome, X = 0/1 represent white/minority and Z = 0/1 rep-

resent non-teen/teen mother. Also, let Nyxzk denote the number of individuals in the

[Y =y, X=x, Z=z] outcome/minority/teen stratum in the kth county, and Mxzk denote

the corresponding population in the [X=x, Z=z] minority/teen stratum, for y, x, z = 0,

1. We assume the county-specific outcome counts, Nyxzk, to be distributed according to a

Binomial(Mxzk, pxzk) distribution with

logit(pxzk) = β0 + βXx + βZz + βXZxz + Vk, (4)

and V = {V1, . . . , VK}T is a vector of county-specific random effects. We assume the

components of V are independent and identically distributed according to a zero mean

Normal distribution with variance σ2
v > 0. Let β = {β0, βX, βZ, βXZ} and θ = exp{β} =

{θ0, θX, θZ, θXZ} the corresponding baseline odds and odds ratio parameters.
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3.3 Hybrid sampling scheme

We initially present development of the hybrid likelihood for a generic area, temporarily

ignoring the county-specific index, k, and random effect, Vk. Table 1 provides an overview

of the notation for an area of size N ; Nyxz and Mxz are presented within square brackets

to emphasize that in an ecological study, and hence the scheme we propose, they are

unobserved. We assume, therefore, that the marginal covariate data are available for X

and Z, but not the cross-classification. Further non-cases and cases are not classified by

either covariate.

Suppose we obtain a sample of n0 controls and n1 cases. Let nyxz denote the number

of individuals in the [Y =y, X=x, Z=z outcome/minority/teen stratum of the case-control

sample. This case-control sampling scheme differs from Haneuse and Wakefield (2006) in

which cases and controls were gathered separately within confounder-defined strata.

[Table 1 about here.]

If the Nyxz = {Nyxz; y, x, z,= 0, 1} were observed, then conditional on the joint ex-

posure distribution, Mxz = {Mxz;x, z,= 0, 1}, the individual-level likelihood, denoted

LI(β;Nyxz|Mxz), is the product of four independent Binomial distributions. Using the

notation of Section 2 we have Y ≡ Nyxz and X ≡ Mxz.

Let Y∗ = (Ny,nyxz) denote the totality of the observed data under the hybrid sampling

scheme. Given Mxz, the hybrid likelihood may be derived via the introduction of the Nyxz

as auxiliary variables. Specifically, we consider the joint distribution of (Y∗, Nyxz) and

integrate over the Nyxz margin to obtain the following weighted average of individual-level

likelihoods

LH(β;Y∗| Mxz) =
∑

Nyxz∈RN (Y∗,Mxz)

W (nyxz|Nyxz) LI(β;Nyxz|Mxz), (5)

8
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where the weights

W (nyxz|Nyxz) =

{(
N0

n0

)(
N1

n1

)}−1
{

1∏
x=0

1∏
z=0

(
N0xz

n0xz

)(
N1xz

n1xz

)}
, (6)

consist of multivariate hypergeometric terms for the cases and controls respectively. Equa-

tion (5) corresponds to (2) in the general framework of Section 2. Due to the constraints

imposed by both the marginal totals and case-control data, RN (Y∗,Mxz), the space of

admissible configurations of the Nyxz, is complex. The Appendix provides one represen-

tation which is computationally convenient.

To obtain the form of the hybrid likelihood given solely marginal information regarding

X and Z, denoted Mx+ = {M0+,M1+} and M+z = {M+0,M+1} respectively, we adopt

the same general approach. Specifically, we introduce the Mxz as an additional set of

auxiliary variables and then integrate over their distribution. The latter depends solely on

the underlying odds ratio between X and Z, denoted by φXZ, which must be estimated.

Using the notation of Section 2 we have X∗ = {Mx+,M+z}. In the aggregate data design

of Prentice and Sheppard (1995), information on within-area joint exposure distributions

is obtained via supplementary survey samples. In the setting of the hybrid design, infor-

mation is provided by the retrospective exposure observations in the case-control data.

The hybrid likelihood is given by

LH(β, φXZ;Y
∗| X∗) =

∑
Mxz∈RM (X∗,Y∗)

LH(β;Y∗| Mxz) L(φXZ;Mxz| X∗), (7)

where

RM (Y∗,X∗) ≡ [max(m11,M1+ − M+0 + m00),min(M1+ − m10,M+1 − m01)]

is the support over which the unknown exposure/confounder cross-classification Mxz is

marginalized and L(φXZ;Mxz| X∗) denotes the extended hypergeometric distribution of

Mxz given X∗ (Harkness, 1965, Johnson and Kotz, 1969). The hybrid likelihood (7)
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corresponds to (3) in the framework of Section 2. As in previous cases, its form has

the intuitive interpretation of a weighted average of hybrid likelihoods, where we average

over the uncertainty in the unknown Mxz. An alternative hybrid scheme could be to

collect supplementary information solely on cases, with the weights in (6) consisting of the

multivariate hypergeometric term for the cases. Under both the case-control and cases-

only scheme, in settings where the total number of cases N1 is small it may be that n1 =

N1, so that all cases are sampled. Given the ecological margins and complete information

on the cases, the hybrid likelihood reduces to the individual-level likelihood, and no further

information is provided by the collection of controls.

Finally, we also consider extending the above model to allow the exposure/confounder

odds ratio to vary across areas. Specifically we incorporate heterogeneity into the model

by introducing area-specific odds ratio parameters, φXZk. We assume the area-specific

log-odds ratio parameters to be independently and identically distributed according to a

Normal distribution with mean log(φXZ), and variance σ2
φ > 0.

3.4 Estimation and Inference

In a frequentist analysis, estimation and inference may proceed via maximization of

the hybrid likelihood (7) and evaluation of the corresponding information matrix. A key

difficulty however, is the computational burden of repeated evaluations of univariate and

multivariate hypergeometric distributions, potentially over very large spaces RN and RM .

The introduction of random effects into the disease model, as in (4), further requires in-

tegration with respect to their distribution to obtain a marginal likelihood. For most

realistic disease models this will be computationally prohibitive. One possible approach

is to consider approximations to the likelihood contributions. In the scheme we propose,

where case-control sampling may result in small cell counts for some areas, such approx-

imations may be inaccurate, and an investigation of the trade-off between computational
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tractability and accuracy of likelihood evaluations will be the subject of future work.

As an alternative, we consider a Bayesian implementation. While computation is still

an issue, implementation via MCMC offers the opportunity of fitting more flexible disease

models in a relatively straightforward and structured manner. To complete the Bayesian

specification, we outline a priori distributional assumptions regarding the unknown β, σ2
v ,

φXZ, and possibly σ2
φ. In the setting of a purely ecological study, considerable care is

required in the specification of priors since identifiability may be driven solely by such

choices (Wakefield, 2004). Under the hybrid sampling scheme, the case-control data pro-

vide identifiability and, hence, improper priors need not necessarily be avoided and we

adopt an improper flat prior for β. For the random effects variance components, a stan-

dard approach is to assume τv = σ−2
v follows a conjugate Gamma(av , bv) distribution. In

Section 4 we explore sensitivity to the choice of av and bv. Finally, in the setting where φXZ

is allowed to vary across areas, we assume a vague but proper prior for the mean log-odds

ratio and a Gamma(aφ, bφ) distribution for the inverse variance.

3.5 Auxiliary variable scheme

Samples from the hybrid posterior are obtained via an auxiliary variable scheme (Tan-

ner and Wong, 1987). Here we present the scheme where φXZ is assumed fixed across

areas, although it is easily modified to accommodate heterogeneity. Consider the joint

distribution of the unknown parameters, γ = {β,V, σ2
v , φXZ} and the two sets of unknown

auxiliary variables, N1xz and Mxz, given by

πH(N1xz,Mxz,γ| Y∗,X∗) = πH (N1xz| Y∗,X∗,γ,Mxz)

πH (Mxz| Y∗,X∗,γ) πH(γ| Y∗,X∗).
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The final component on the right-hand side, πH(γ| Y∗,X∗), is the target posterior. We

consider an MCMC scheme which alternates between the full conditionals:

(i) πH(γ| Y∗,X∗,N1xz,Mxz)
(ii) πH(N1xz| Y∗,X∗,γ,Mxz)
(iii) πH(Mxz| Y∗,X∗,γ,N1xz).

The first set of conditionals correspond to a standard Bayesian logistic regression analysis.

The second set of conditionals correspond to the conditional distribution of the unobserved

Nyxz counts, given the underlying disease model, the totality of the observed data and the

auxiliary variables Mxz. We refer to this distribution as the multivariate supplemented

extended hypergeometric distribution (see the Appendix). Sampling from this distribution

follows from a scheme developed for the closely related extended hypergeometric distri-

bution (Liao and Rosen, 2001). For the final set of conditionals, we apply a Metropolis

step. Ignoring terms which act as normalising constants with respect to Mxz, the full

conditional may be decomposed as

πH(Mxz| Y∗,X∗,N1xz,γ) ∝ Pr(Ny| N1xz,Mxz,γ)

×Pr(nyxz| Ny,ny,N1xz,Mxz,γ) (8)

×Pr(N1xz| Mxz,γ) × Pr(Mxz| X,γ)

The first component of (8) is determined trivially, since the elements of (N1xz,Mxz) must

satisfy the constraints imposed by the marginal outcome totals Ny. The second component

is the product of two independent multivariate hypergeometric distributions. The third

component is the product of four Binomial distributions and the final component is an

extended hypergeometric distribution with odds ratio φXZ.

4. Results

Table 2 provides a summary of results based on the methods of Section 3. Care must be

taken in the specification of the gamma prior for the precision of the random effects. For

12
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example, Kelsall and Wakefield (1999) point out that the choice Gamma(ε, ε), with ε small,

leads to very little weight on small values of the standard deviation and hence may impose

between-area variability. For all analysis, we consider two prior choices; Gamma(0.5,

0.001) and Gamma(0.5, 0.1). The first induces a prior for σv with median 0.05 and central

95% credible range of (0.01, 1.01), while the second induces a prior with median 0.66 and

central 95% credible range of (0.20, 14.24). We note that a Gamma(0.1, 0.1), a common

choice, induces a prior median of 12.9 with 95% credible range of approximately (0.32,

4.1×107).

Given the ecological data (see Figures 1 and 2), we consider two sampling designs for

the collection of case-control data. The first collects n = 20 case-control samples from each

of the 100 counties. In counties for which the total number of cases N1 exceeds 10, we

take 10 cases and 10 controls. In counties for which N1 is less than or equal to 10 (there

are 18 such counties), we take all available cases and the remaining samples are taken

from the controls. This scheme yielded a total of 885 cases and 1115 controls. The second

design collects n = 100 case-control samples form each of the 9 counties in which there

are at least 100 cases, while no individual-level data are obtained from the remaining 91

counties. Consequently, under this scheme, there are a total of 450 cases and 450 controls.

[Table 2 about here.]

Table 2 outlines posterior results based on a Gamma(0.5, 0.001) prior for the precision

of the random effects, assuming a common exposure/confounder odds ratio across the 100

counties. For each design, a single data set was generated and six analyses performed,

the first being based on the complete individual-level data. For the purposes of compari-

son with the alternative analyses which rely, to various extents, on incomplete data, the

individual-level analysis acts as a gold standard. For the case-control analysis the intercept
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is identifiable via the known totals in each area and the introduction of an appropriate off-

set into the regression (Breslow and Day, 1980). In this case, however, the random effects

standard deviation, σv, is not identifiable. Further, as the case-control sample represents

a biased (marginal) sample for the minority/teen mother status relationship, φXZ is not

estimated. For the hybrid design we present four scenarios which depend on the extent of

the available ecological and individual-level data. For the ecological data we consider the

situation where a complete cross classification of minority status and teen mother status

is available (denoted Mxz), as well as the situation where only their marginal totals are

observed (denoted {Mx+,M+z}). Within each of these, we consider an analysis based on

the cases only as well as an analysis based on all case-control samples.

Although not presented, there is little sensitivity in the results of the regression coeffi-

cients, or for the φXZ odds ratio, to the choice of Gamma(av , bv) prior. With the exception

of the case-control analysis, the posterior summaries for the random effects standard devi-

ation, σv, are the same across each analysis. Based on the hybrid design which collected 20

case-control samples from each county, the posterior median (95% credible interval) for σv

under the Gamma(0.5, 0.001) and Gamma(0.5, 0.1) priors are 0.14 (0.08, 0.20) and 0.18

(0.13, 0.23) respectively, showing moderate sensitivity to the prior and in the expected

direction. We note that, a useful interpretation of σv is to consider the extent of residual

variability in the relative risks. Based on an estimate of σ̂v = 0.14, we find 95% of the

residual relative risk lies between 0.76 and 1.32.

From Table 2 we find that for both designs the analysis based on the case-control

data alone performs quite poorly. For each of the odds ratio parameters, point estimates

differ substantially from their individual-level counter parts. Each of the analyses based

on the hybrid likelihood provide point estimates that are closer to the gold standard. The

inclusion of the ecological data also provides improvements in efficiency, over the case-

14
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control analysis, as is evident from the tighter credible intervals. With the introduction

of the ecological data the credible intervals tighten, indicating the utility of combining

the two sources of information. Given the joint minority/teen mother status distribution,

there seems to be little difference in sampling cases only in the hybrid design. However,

given marginal data alone we see that there is slightly more sensitivity with the loss of

information having the greatest impact on the estimation of φXZ.

Finally, for the model where the φXZ are allowed to vary the results did not differ

significantly from those presented in Table 2. In particular, the posterior summaries for

the regression parameters remained the same. Under a Gamma(0.5, 0.001) prior for the

(inverse) variance component σ2
φ, the posterior median (95% credible interval) for φXZ was

1.96 (1.86, 2.06). The corresponding posterior summaries for σφ were 0.21 (0.17, 0.26).

5. Discussion

The use of an ecological study design, which examines associations among groups of in-

dividuals, results in a disconnect between the level of the hypothesis and the level of the

analysis. The disconnect arises, in part, from the inability to characterise within-group

exposure/confounder variation, which results in non-identifiability of the individual-level

model. While ecological studies are subject to potential biases common to all observa-

tional studies, they are further subject to biases which arise from inappropriate assump-

tions made to overcome the issue of non-identifiability. A fundamental difficulty in the use

of ecological studies is that assumptions are required to overcome methodological issues

which give rise to ecological bias. Unfortunately, however, such assumptions may not be

critically assessed given ecological data alone.

The solution to the ecological inference problem, where we seek to elluciate individual-

level associations from group-level data, is to collect and incorporate information on indi-

viduals. In this paper we have proposed a study design aimed at combining group-level
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ecological information with individual-level data for a sample of the population, which we

refer to as the hybrid study design. While there exist methods aimed at combining ecolog-

ical and individual-level data, such as the aggregate data approach of Prentice and Shep-

pard (1995), they generally concentrate on retrieving the within-area exposure/confounder

distribution. The basis for their approach is the induced aggregate-level model, and hence

the analysis is viewed as being at the level of the group. The basis for the statistical

analysis for the hybrid design is the induced likelihood that corresponds to the observed

data, and so is at the level of the individual. This in turn allows individual-level model

checking and the assessment, for example, of the need for contextual effects (Wakefield,

2004). The latter refer to the case where an individuals risk is not only determined by their

own exposure but also by that of other individuals in their shared area (via the group-level

measure), and are often of interest in the social sciences. An alternative interpretation of

the combination of the two sources of information is to consider supplementing a small

case-control study with ecological information obtained from the same population.

It is critical to ensure the compatability of the two sources of information, and in par-

ticular, to ensure that the underlying individual-level likelihood/model is common for both

sets of data. In our scheme, we assume that the case-control samples are drawn directly

from the population for which the ecological data provide summary information, but in

practice this requires care. Valid estimation and inference based on the hybrid likelihood

will depend on the assumption of no selection bias in the case-control samples. Such a

requirement may viewed as being a part of broader epidemiological issues concerned with

traditional case-controls studies which include, for example, the issue of the compatability

between the control and case populations from which samples are being drawn. While we

concentrate on retrospective case-control sampling of individuals, motivated by efficiency

gains in the setting of a rare outcome, much of the methodology follows when individuals
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are collected via a prospective cohort scheme.

The Bayesian framework we have adopted here provides an algorithmic basis for es-

timation and inference which may offer a more reasonable approach to extending the

methods to more complex settings. For the Ohio data, it would be natural to incorporate

an additional set of spatially structured random effects (e.g. Besag et al., 1991), which

may help account for some of the residual relative risk variability. This will be the subject

of further work, together with extending these methods to continuous exposures. Other

advantages of the Bayesian approach are the ability to incorporate prior information and

the absence of reliance on asymptotics. The latter is especially useful for the hybrid design

since one may only require small sample sizes, perhaps even using case information alone,

to induce identifiability of the individual-level model. Finally, further development of the

hybrid design we propose will likely benefit from exploring connections with the miss-

ing data literature (e.g. Little and Rubin, 2002, Robins et al., 1994) and sample survey

literature (e.g. Breckling et al., 1994).

The collection and incorporation of the case-control data into the analysis is motivated

by the need to avoid making untestable assumptions which may result in ecological bias.

The simulation studies of Haneuse and Wakefield (2006) indicate that only a small amount

of individual-level data is required to induce identifiability of the underlying disease model.

Further, their simulations suggest that in a variety of settings there is utility in jointly

modeling the ecological and case-control data, rather than performing analyses based solely

on the case-control data. The greatest benefit is in terms of efficiency gains, the extent of

which depend on the underlying disease model and the interplay between the ecological

and case-control information.
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Appendix A

Multivariate supplemented extended hypergeometric distribution

The auxiliary variable MCMC scheme of Section 3 requires the ability to sample from the

conditional distribution of the unobserved Nyxz counts, given the remaining components

of the model. Given Mxz, and in the absence of case-control data, this distribution is the

multivariate analogue of the well-known extended hypergeometric distribution (Harkness,

1965, Johnson and Kotz, 1969), which we denote as MXHG(Nyxz| Mxz). The probability

mass function for this latter distribution is

P (Nyxz| Mxz, θ) =

1∏
x=0

1∏
z=0

(
Mxz

N1xz

)
ξN1xz

xz

∑
u∈RN (Mxz)

1∏
x=0

1∏
z=0

(
Mxz

uxz

)
ξuxz
xz

, (A.1)

where ξ00 = 1 and ξxz denotes the odds ratio comparing exposure level X/Z = x/z to

X/Z = 0/0. Under (4), we have ξ10 = θX, ξ01 = θZ and ξ11 = θXθZθXZ.

The space RN (Mxz) denotes the range of possible configurations for the unknown
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Nyxz, given Mxz. In the setting of Section 3, RN (Mxz) is a complex three-dimensional

space; given the marginal totals, only three of the eight components are required to com-

pletely specify Nyxz. A computationally convenient ordering of RN (Mxz) may be obtained

by successive reductions of the 4×2 table via a series of 2×2 tables. Initially, consider col-

lapsing all exposure groups in Table 1, with the exception of the X/Z = 1/1 level. This

results in a 2×2 table, where the marginal outcome totals are (N0, N1) and the marginal

exposure totals are (M00 + M10 + M01, M11). The cell corresponding to the case total in

the X/Z = 1/1 exposure group takes on values in the range

N111 ∈ [max(0, N1 − (M00 + M10 + M01)), min(N1,M11)]. (A.2)

For a given value of N111 in this range (and N011 = M11−N111), there are three remaining

exposure levels. Collapsing the first two of these results in a 2×2 table where the marginal

outcome totals are (N0−N011, N1−N111) and the marginal outcome totals are (M00+M10,

M01). The cell corresponding to the case total in the X/Z = 0/1 exposure group takes on

values in the range

N101|N111 ∈ [max(0, (N1 − N111) − (M00 + M10)), min(N1 − N111,M01)]. (A.3)

For a given value of N011 in this range (and N001 = M01 −N101), there are two remaining

exposure levels. The cell corresponding to the case total in the X/Z = 1/0 exposure

group, in the corresponding 2×2 table, takes on values in the range

N110|N111, N101 ∈ [max(0, (N1−N111−N101)−M00), min(N1−N111−N101,M10)]. (A.4)

Finally, the space RN (Mxz) is taken to be the recursive product of these three ranges.

Haneuse and Wakefield (2006) introduce the univariate supplemented extended hyper-

geometric distribution, where a single 2×2 is supplemented with case-control data under
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a hybrid sampling scheme. In the setting of Section 3, the multivariate analogue has

probability mass function

P (Nyxz| Mxz, θ) =
W (nyxz|Nyxz)MXHG(Nyxz| Mxz)∑

u∈RN (Y∗,Mxz)

W (nyxz|u)MXHG(u| Mxz)
(A.5)

where the weights are given by (6). An expression for the space RN (Y∗,Mxz) may be

obtained in the same recursive way as above, with the addition of the case-control data

modifying each of the components.

Sampling from this distribution follows from an approach developed for the extended

hypergeometric distribution in the 2×2 case (Liao and Rosen, 2001). When supplemental

case-control data are available, only minor modifications are required. Sampling from the

multivariate version follows from the above recursive partitioning of the 4×2 table into a

series of 2×2 tables, and applying the methods of Liao and Rosen.
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Figure 1. Crude infant mortality death rates (×1,000), percent minority and percent
teen mother for 100 counties in the state of North Carolina.
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Figure 2. Ecological correlations of percent minority and percent teen mother versus
crude mortality rates. Plotted line indicates least-squares fit; solid = ordinary LS and
dashed = weight (by county-specific birth totals) LS.
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Table 1

Notation for ecological and case-control data in a generic area

Covariate Ecological Case-control
X=0 X=1 X/Z Y =0 Y =1 X/Z Y =0 Y =1

Z=0 M+0 0/0 [N100] [M00] 0/0 n000 n100 m00

Z=1 [M11] M+1 1/0 [N110] [M10] 1/0 n010 n110 m10

M0+ M1+ N 0/1 [N101] [M01] 0/1 n001 n101 m01

1/1 [N111] [M11] 1/1 n011 n111 m11

N0 N1 N n0 n1 n
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Table 2

Posterior summaries for the North Carolina infant mortality data. DesignA:
individual-level data consist of 20 case-control samples from each of 100 counties; total

n1 = 885 and total n0 = 1115. Design B: individual-level data consist of 100 case-control
samples from each of 9 counties with at least 100 cases; total n1 = 450 and total n0 =

1115.

Median (95% central credible interval)

Minority Teen mother Interaction Minority/Teen mother
main effect, θX main effect, θZ θXZ odds ratio, φXZ

Design A

Individual-level 2.49 (2.33, 2.65) 1.56 (1.40, 1.74) 0.61 (0.53, 0.71) 2.03 (2.00, 2.07)
Case-control only 2.13 (1.69, 2.68) 1.34 (0.96, 1.89) 0.77 (0.45, 1.34) -
Hybrid; Mxz

Cases only 2.34 (2.04, 2.70) 1.60 (1.26, 2.00) 0.67 (0.47, 0.94) 2.03 (2.00, 2.07)
Case-control 2.34 (2.03, 2.70) 1.59 (1.26, 1.99) 0.67 (0.47, 0.94) 2.03 (2.00, 2.07)
Hybrid; {Mx+,M+z}
Cases only 2.34 (2.03, 2.71) 1.60 (1.25, 2.01) 0.66 (0.45, 0.98) 2.00 (1.62, 2.50)
Case-control 2.31 (1.99, 2.66) 1.54 (1.22, 1.94) 0.73 (0.51, 1.04) 1.79 (1.59, 2.01)

Design B

Individual-level 2.49 (2.34, 2.65) 1.56 (1.40, 1.73) 0.61 (0.53, 0.72) 2.03 (2.00, 2.07)
Case-control only 2.91 (2.18, 3.91) 2.53 (1.42, 4.59) 0.47 (0.21, 1.06) -
Hybrid; Mxz

Cases only 2.59 (2.19, 3.08) 2.13 (1.42, 3.04) 0.50 (0.30, 0.83) 2.03 (2.00, 2.07)
Case-control 2.60 (2.18, 3.08) 2.12 (1.42, 3.08) 0.50 (0.30, 0.83) 2.03 (2.00, 2.07)
Hybrid; {Mx+,M+z}
Cases only 2.52 (2.08, 3.07) 1.98 (1.25, 3.11) 0.60 (0.28, 1.24) 1.57 (0.94, 2.70)
Case-control 2.55 (2.13, 3.07) 2.06 (1.33, 3.09) 0.54 (0.29, 1.04) 1.69 (1.13, 2.40)
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