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C-learning: a New Classification Framework
to Estimate Optimal Dynamic Treatment

Regimes

Baqun Zhang and Min Zhang

Abstract

Personalizing treatment to accommodate patient heterogeneity and the evolving
nature of a disease over time has received considerable attention lately. A dy-
namic treatment regime is a set of decision rules, each corresponding to a decision
point, that determine that next treatment based on each individual’s own available
characteristics and treatment history up to that point. We show that identifying
the optimal dynamic treatment regime can be recast as a sequential classifica-
tion problem and is equivalent to sequentially minimizing a weighted expected
misclassification error. This general classification perspective targets the exact
goal of optimally individualizing treatments and is new and fundamentally dif-
ferent from existing methods. Based on this fresh classification perspective, we
propose a novel, powerful and flexible C-learning algorithm to learn the optimal
dynamic treatment regimes backward sequentially from the last stage till the first
stage. C-learning is a direct optimization method that directly targets optimizing
decision rules by exploiting powerful optimization/classification techniques and it
allows incorporation of patient’s characteristics and treatment history to dramati-
cally improves performance, hence enjoying the advantages of both the traditional
outcome regression based methods (Q-and A- learning) and the more recent direct
optimization methods. The superior performance and flexibility of the proposed
methods are illustrated through extensive simulation studies.
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Abstract

A dynamic treatment regime is a set of decision rules, each corresponding to a
decision point, that determine that next treatment based on each individual’s own
available characteristics and treatment history up to that point. We show that identi-
fying the optimal dynamic treatment regime can be recast as a sequential optimization
problem and propose a direct sequential optimization method to estimate the optimal
treatment regimes. In particular, at each decision point, the optimization is equivalent
to sequentially minimizing a weighted expected misclassification error. Based on this
classification perspective, we propose a novel, powerful and flexible C-learning algo-
rithm to learn the optimal dynamic treatment regimes backward sequentially from the
last stage till the first stage. C-learning is a direct optimization method that directly
targets optimizing decision rules by exploiting powerful optimization/classification
techniques and it allows incorporation of patient’s characteristics and treatment his-
tory to dramatically improves performance, hence enjoying the advantages of both
the traditional outcome regression based methods (Q-and A-learning) and the more
recent direct optimization methods. The superior performance and flexibility of the
proposed methods are illustrated through extensive simulation studies.
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1 Introduction

Personalized medicine, which recognizes individual heterogeneity and focuses on making

treatment decisions for a patient based on his/her own characteristics (eg., demographic,

clinical, genetic information etc.) has received much attention lately (Moodie et al., 2007;

Chakraborty et al., 2010; Song et al., 2011; Zhang et al., 2012ab, 2013; Zhao et al., 2012

and 2015; Geng et al., 2015; Wallace and Moodie, 2015). Treatment of patients may

involve a series of decisions over time, especially in the case of chronic diseases, and the

disease and conditions of a patient are also evolving. Therefore, it is important that the

treatment decisions are adaptive with time-dependent information on patients over time.

A dynamic treatment regime is a set of sequential decision rules, each corresponding to

a decision point, that determine the next treatment from among possible options for an

individual patient based on his/her own available information up to that time (Murphy,

2003; Robins, 2004). A dynamic treatment regime approach explicitly takes into account

the heterogeneity among individuals and the evolving nature of a disease over time. The

goal is to identify the optimal dynamic treatment regime, ie., the set of decision rules that,

if followed by the entire patient population, would yield the most favorable outcome on

average.

Two common approaches to estimate the optimal dynamic treatment regime in a se-

quential decision-making setting are Q- and A-learning(Watkins and Dayan, 1992; Murphy,

2003; Robins, 2004). Both approaches involve modeling for the outcome given covariate

and treatment history to that point and treatment at the decision point. and the iden-

tification of the optimal treatment regime is through inverting the relationship between

outcome, patient information and treatment. Q- and A-learning work well under good

regression models for the outcomes. However, if the regression models are misspecified the
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estimated regime may far from optimal. This is due to that there is a mismatch between

the target of the outcome regression based methods and the goal of learning the optimal

treatment regime, as firstly pointed out by Murphy (2005). The outcome regression based

methods target good models for the outcome instead of optimizing decision rules to yield

the maximum expected potential outcomes.

More recent efforts have been made to mitigate the concern of outcome model misspec-

ification and several approaches have proposed to directly maximizing population mean

outcome across regimes, assuming larger values are preferred. The advantage of direct

optimization has been discussed in detail in literature mentioned below; also see Kang et

al.(2014) and discussion papers for more discussions. Zhang et al.(2012a and 2013) pro-

posed to estimate the population mean outcome under a given regime using a doubly robust

augmented inverse probability weighted estimator (AIPWE) and then directly maximize

AIPWEs across all regimes in a restricted class indexed by a finite number of parameters.

Zhao et al.(2012 and 2015) proposed to estimate the population mean outcome using the

simple inverse probability weighted estimator (IPWE), and then maximize IPWEs across

regimes by taking advantage of support vector machine (SVM) techniques, referred to as

outcome weighted learning (OWL). One other relevant work is that of Tian, et al., (2014),

which proposes a robust method for estimating interactions of treatment and a large num-

ber of covariates, with applications in estimating the optimal treatment regimes.

For the single decision point setting, Zhang et al. (2012b) proposed a general frame-

work within which identifying the optimal treatment regime is equivalent to minimizing a

weighted misclassification error, weighted by the contrast in outcome regression between

treatments. This framework allows one to take advantage of existing powerful classifica-

tion techniques and, equally importantly, this framework allows the optimization step for

optimizing decision rules decoupled from modeling outcomes as a function of patient char-
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acteristics and treatments. Therefore, it solves the mismatch issue pointed out by Murphy

(2005) and in the meantime is able to take advantage of outcome regression modeling.

In this paper, we propose to extend the classification framework to the much more com-

plicated multiple decision point setting and, as in aforementioned methods, this extension

requires nontrivial and important methodological developments. This general framework

builds upon existing work on outcome regression-based methods (Q- and A-learning) and

the direct optimization methods discussed above and unifies them. In particular, the pro-

posed classification framework is a direct optimization method, where the optimization

can be viewed as a classification problem, and also allows incorporating information from

outcome regression models, as in Q- and A-learning, to improve efficiency, hence enjoy-

ing the advantages of both types of approaches. This classification framework leads to a

novel and general learning method that is very flexible in implementation and powerful in

performance, as illustrated by comprehensive simulations studies. In addition, this gen-

eral methodology allows sophisticated variable selection algorithms be developed within it,

leading to a wealth of future learning methods.

2 Notation and Dynamic Treatment Regimes

Consider a multistage decision problem where decisions are made at K decision points.

Assume there is a set of treatment options Ak = {0, 1}, corresponding to each decision

point k = 1, . . . , K, and the element of Ak is denoted by ak. A treatment history up

to and including the kth decision is denoted as āk = (a1, . . . , ak), taking values in Āk =

A1 × · · · × Ak. Denote the treatment actually received at stage k as Ak and the observed

treatment history up to decision k as Āk = (A1, . . . , Ak). Let Xk, taking values xk in

a set Xk, be the covariate information observed between decision k − 1 and k, ie., after
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treatment Ak−1 but prior to Ak. Similarly, we denote the observed covariate history up to

k as X̄k = (X1, . . . , Xk). The overall outcome of interest is Y , which can be a function of

intermediate information collected across allK decisions or a measurement ascertained after

the Kth decision. Without loss of generality suppose a larger value of outcome is preferred

and the goal is to identify the optimal sequential treatment decision rule leading to overall

maximum expected outcome if the decision rule is followed by the entire population. The

observed data are (ĀKi, X̄Ki, Yi), assumed to be independent and identically distributed

across subject i, i = 1, . . . , n.

A dynamic treatment regime is a set of sequential decision rules, g = (g1, . . . , gK), that

determine how to treat a patient over time, where gk is a decision rule corresponding to

stage k. The kth decision rule gk assigns a treatment among Ak for a subject based on

his/her covariate and treatment history up to decision k and hence is a function of x̄k and

āk−1, denoted as gk(x̄k, āk−1). We define the potential outcome associated with any regime

g = (g1, . . . , gK) ∈ G, denoted as Y ∗(g), ie., the outcome that would result if the subject

followed g. The optimal treatment regime gopt = (gopt1 , . . . , goptK ) ∈ G is the one that would

yield maximum expected outcome if were followed by all patients in the population. That

is, gopt satisfies

E{Y ∗(gopt)} ≥ E{Y ∗(g)} for all g ∈ G. (1)

We make some standard assumptions that make gopt identifiable from observed data (Schulte

et al., 2014). First, we make the consistency assumption that Y = Y ∗(ĀK) =
∑

āK∈ĀK

Y ∗
K(āK)I(ĀK = āK) and Xk = X∗

k(Āk−1) =
∑

āk−1∈Āk−1
X∗

k−1(āk−1)I(Āk−1 = āk−1) for

k = 2, . . . , K. We also assume that a patient’s covariates and outcome are not affected

by treatments received by other patients (the stable unit treatment value assumption; Ru-

bin, 1978). Finally, we make the no unmeasured confounders (or sequential ignorability)

assumption (Robins, 1994), i.e., given past treatment and covariate history, the treatment
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assignment at stage k is independent of potential outcomes. This assumption is reason-

able if all information used in making treatment decisions in an observational study is

recorded and is satisfied by design for data from a sequentially randomized clinical trial.

Under these assumptions, gopt can be expressed in terms of observed data via backward

induction, also referred to as dynamic programming (eg., Zhang et al., 2013). Denoting

QK(x̄K , āK) = E(Y |X̄K = x̄K , ĀK = āK), referred to as Q-functions with “Q” for “qual-

ity”, then the optimal decision rule at the K-th decision point satisfies

goptK (x̄K , āK−1) = arg max
aK∈ΦK(x̄K ,āK−1)

QK(x̄K , āK−1, aK). (2)

Recursively we can define the value function (V-function) as

Vk(x̄k, āk−1) = max
ak∈Ak

Qk(x̄k, āk−1, ak), (3)

for k = K, . . . , 2, with ā0 being null, and Q-functions as

Qk(x̄k, āk) = E{Vk+1(x̄k, Xk+1, āk)|X̄k = x̄k, Āk = āk} (4)

for k = K − 1, . . . , 1. The optimal decision rule at the k-th point satisfies goptk (x̄k, āk−1) =

argmaxak∈Φk(x̄k,āk−1) Qk(x̄k, āk−1, ak), which maximizes the expected potential outcomes

that would be achieved if optimal decisions were made in the future. Appendix A pro-

vides some further background on this.

3 The proposed C-learning

To provide some intuition consider first the single decision point setting (K = 1), for which

Zhang et al.(2012b) proposed a general framework for estimating the optimal regime from

the classification perspective. We omit the subscript denoting stage below. Recall the

7
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Q-function is defined as Q(x, a) = E(Y |X = x,A = a) and define a contrast function

C(x) = Q(x, 1) − Q(x, 0), which is the difference in expected potential outcomes for a

subject with covariate x were s/he to receive treatment 1 versus 0. By definition, gopt =

argmaxg∈G E{Y ∗(g)}. Because E{Y ∗(g)} = E{g(X)C(X)} + E{Q(X, 0)}, it follows that

gopt = argmaxg∈G E{g(X)C(X)}, ie., the optimal regime should assign treatment 1 to a

subject if the expected potential outcome under treatment 1 is greater than that under 0.

By separating information in C(X) into sign I(C(X) > 0) and magnitude |C(X)|, Zhang

et al. (2012b) show that gopt minimizes an expected weighted misclassification error; that

is,

gopt = argmin
g∈G

E{|C(X)|I(Z 6= g(X))}, where Z = I{C(X) > 0}. (5)

This allows one to recast the problem of estimating the optimal treatment regime as a

weighted classification problem. Consider viewing each subject as belonging to one of the

two (latent) classes defined by Z = I{C(X) > 0}, where class Z = a include those subjects

who would benefit from treatment a relative to the other and therefore should be treated

with treatment a. If g(X) = I(C(X) > 0), a correct treatment decision is made and

there is no loss incurred. However, if g(X) 6= I(C(X) > 0), the decision is not optimal

and the corresponding loss is W = |C(X)|; that is, the larger the difference in expected

potential outcomes between two treatment options, the larger the loss. Note, (5) only

involves patient characteristics (covaraites) and the true treatment contrast but not the

observed treatment assignment and therefore can be viewed as an alternative definition of

the optimal treatment regime.

In this article, we provide a novel and alternative definition of the optimal dynamic

treatment regime in the multiple decision point setting from the classification perspec-

tive and, based on this fresh perspective, propose a new and powerful statistical learning

method. We term our approach as C-learning, where “C” stands for classification. As in the
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single decision point setting, we define a contrast function for each decision point; ie., for

stage k, k = 1, . . . , K, the contrast function is defined as Ck(x̄k, āk−1) = Qk(x̄k, āk−1, ak =

1) − Qk(x̄k, āk−1, ak = 0), where Qk(x̄k, āk−1, ak) are defined recursively in Section 2. The

contrast function at stage k represents the difference in expected potential outcomes be-

tween treatment option 1 and 0 at stage k assuming that optimal decisions are made in

the future. To simplify notation, we define Lk ≡ (X̄k, Āk−1), which is the covariate and

treatment history available at decision point k. We discuss how one can embed the clas-

sification approach in backward induction to find the optimal dynamic treatment regime.

The key lies in the following Theorem 1 and Proposition 1 and the proofs are given in the

Appendix B and C.

Theorem 1. A sequence of decision rules g∗ = (g∗1, . . . , g
∗
K), that satisfy the following

conditions,

g∗k(Lk) = arg min
gk∈Gk

E{|Ck(Lk)|I(Zk 6= gk(Lk))}, where Zk = I(Ck(Lk) > 0)

k = K, . . . , 1, is the optimal dynamic treatment regime.

Theorem 1 states that the optimal treatment decision rule at each stage minimizes an

objective function that can be interpreted as a weighted misclassification error, where

the goal of classification is to classify subjects at each stage to one of two latent classes,

denoted by Zk = I(Ck(Lk) > 0), for whom the optimal decision at the stage is 0 and 1

respectively. That is, class Zk = 1 include subjects for whom treatment ak = 1 leads to a

larger expected potential outcome than decision 0, given that optimal decisions are made

in the future. If gk(Lk) is not the optimal decision at stage k, ie., I(Ck(Lk) > 0) 6= gk(Lk),

then the loss incurred is |Ck(Lk)|; otherwise, the loss is zero. In Theorem 1, the optimal

dynamic treatment regime depends only on treatment contrast and patient characteristics

at each stage, but not on the observed treatments in the data, and therefore Theorem 1 can

be viewed as an alternative definition of the optimal dynamic treatment regime from the

9
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classification perspective. This is a general result that recasts the problem of identifying

the optimal dynamic treatment regime into a meaningful sequential classification problem

where the interpretation of the classification at each step is consistent with the definition

of the optimal treatment regimes. We note that classification technique is first used in the

backward outcome weighted learning (BOWL) of Zhao et al.(2015) to sequentially estimate

the optimal treatment regime. Our result differs from that in two important ways. First,

BOWL is based on the particular IPWE estimator of E{Y ∗(g)} and classification technique

is possible because of the form of the IPWE estimator, whereas the classification perspective

of Theorem 1 is a general result that does not depend on any estimator of E{Y ∗(g)} or

C(X) or even the observed treatment A. For simplicity taking K = 1, the IPWE estimator

is the empirical analogue of E{Y I(A = g(X))/π(A,X)}, where π(a,X) = Pr(A = a|X),

and maximizing it is equivalent to minimizing E{Y I(A 6= g(X))/π(A,X)}. Because of

the particular form of IPWE, where a term I(A 6= g(X)) is involved, I(A 6= g(X)) can

be viewed as a zero-one loss in a classification problem and Y/π(A,X) can be viewed as

the weight when Y is positive. Second, the interpretation of classification is different,

which has important implications on the properties of the resulting learning method. The

classification in BOWL is to classify patients based on his/her characteristics to classes

that actually received treatment A=0 or 1, ie., an error is made if A 6= g(X). This is

indeed the idea behind IPWE by viewing the problem as a missing data problem in the

sense that the potential outcome for a subject under a regime is missing if the actually

received treatment is not the one determined by the regime, ie., A 6= g(X); see Zhang et

al. (2012a) for details. In our classification perspective, based on patients characteristics

we aim to classify patients to the class that would potentially benefit from one treatment

relative to the other and hence should receive the particular treatment, ie., an error is

made if I(C(X) > 0) 6= g(X). The interpretation of this classification corresponds exactly
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to the intuitive meaning of optimizing individual treatment decisions. As pointed out by

Zhou, et al. (2015), the estimated treatment regime from OWL-based methods tries to

keep treatment assignments that subjects actually received and, from the discussion above,

it is clear that this is due to that in the classification perspective of OWL-based methods

it tempts to classify patients to the group corresponding to A, ie., an error is made if

g(X) 6= A. The proposed classification framework does not suffer from this feature.

Proposition 1. The value functions defined recursively in Section 2 satisfy the follow-

ing condition:

E[Vk+1(Lk+1) + {Qk(Lk, 1)−Qk(Lk, 0)}{g
opt
k (Lk)− Ak}|Lk] = Vk(Lk),

k = K, . . . , 1, VK+1 ≡ Y , where goptk is the optimal decision rule at stage k.

Theorem 1, combined with proposition 1, leads to a very flexible and powerful learning

method based on backward induction. We start at the last decision pointK. Then covariate

and treatment history (X̄K , ĀK−1) ≡ LK before stage K can be regarded as baseline

covariate vector and the data can be rewritten as (Y, LK , AK). As in the single decision

point setting, by separating the contrast function into two parts, with one part representing

the magnitude and the other representing the sign, we shown in the proof of Theorem 1

that equivalently the optimal treatment rule at K minimizes a weighted misclassification

error; that is

goptK = arg min
gK∈GK

E{|CK(LK)|I(ZK 6= gK(LK))}. (6)

Therefore, goptK can be estimated by

ĝoptC,K = arg min
gK∈GK

n∑

i=1

{ŴKiI(ẐKi 6= gK(LKi))},

11

Hosted by The Berkeley Electronic Press



where ẐKi = I(ĈK(LKi) > 0), ŴKi = |ĈK(LKi)| and ĈK(LKi) is an estimate of CK(LKi).

The contrast function can be estimated using various ways as discussed in Zhang et

al.(2012b) and the AIPWE method has superior performance relative to other methods.

Therefore, we recommend estimating CK(LKi) by the AIPWE estimate

ĈK(LKi) =
AKi

π̂K(LKi)
Yi −

AKi − π̂K(LKi)

π̂K(LKi)
Q̂K(LKi, 1)

− {
1− AKi

1− π̂K(LKi)
Yi +

AKi − π̂K(LKi)

1− π̂K(LKi)
Q̂K(LKi, 0)}, (7)

where π̂K(LKi) is the estimated probability of receiving treatment AK = 1 at time K

conditional on covariate and treatment history LK using, for example, a logistic regression

model; and Q̂K(LKi, AK = aK), aK = 0, 1, are estimates based on parametric or nonpara-

metric models for E(Y |LK), further discussed in Section 4. We acknowledge that other

estimators of the contrast functions can also be used within this framework; for example,

one can directly estimate CK(LKi) by the difference in Q-functions. The minimization

can be viewed as a typical classification problem with ẐK as the binary “response,” LK

the “predictor,” ŴK the “weight,” and gK the “classification rule.” In simulation studies

in Section 4, we show various ways to implement this optimization step. We denote the

estimated regime as ĝoptC,K .

After obtaining ĝoptC,K , the C-learning moves backward sequentially till the first stage to

estimate the optimal decision rule at stage k, k = K−1, . . . , 1. By Theorem 1, the optimal

decision rule at stage k satisfies

goptk = arg min
gk∈Gk

E{|Ck(Lk)|I(Zk 6= gk(Lk))}, (8)

where Ck(Lk) = Qk(Lk, 1) − Qk(Lk, 0) is the contrast function at stage k. Therefore,

if one can estimate Ck(Lk) or equivalently Qk(Lk, ak), then we can proceed similarly as

in stage K and estimate goptk by minimizing a weighted misclassification error. Recall
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that Qk(Lk, ak) = E{Vk+1(Lk+1)|Lk, ak}, and if Vk+1(Lk+1) is available, one can estimate

Qk(Lk, ak) by treating Vk+1(Lk+1) as the response. However, except for the last stage,

Vk+1(Lk+1) is not directly observable and has to be estimated. By proposition 1, Vk(Lki)

can be estimated recursively by

Ṽki ≡ Ṽk(Lki) = Ṽ(k+1)i + {Q̂k(Lki, 1)− Q̂k(Lki, 0)}{ĝ
opt
C,k(Lki)− Aki}, (9)

for k = K,K − 1, . . . , 2, and Ṽ(K+1)i ≡ Yi. Then one can estimate Qk(Lk, ak) and the

contrast function Ck(Lk) based on “optimal responses” Ṽ(k+1)i, as discussed below. This

strategy is similar in spirit to the contrast-based A-learning (Schulte, 2014). For example,

after we obtain ĝoptC,K , the value function VK(LKi), i = 1, . . . , n, can be estimated by

ṼKi ≡ ṼK(LKi) = Yi + {Q̂K(LKi, 1)− Q̂K(LKi, 0)}{ĝ
opt
C,K(LKi)− AKi},

which is Yi if the estimated optimal treatment at K is the same as the actual received

treatment AKi and is Yi plus the absolute difference in expected potential outcomes if AKi

is not the estimated optimal treatment option.

Similar to stageK, recursively at stage k, k = K−1, . . . , 1, treating (Ṽ(k+1)i, Lki, Aki), i =

1, . . . , n, as “data”, where Lk = (X̄k, Āk−1) is regarded as baseline covariate vector, Ṽ(k+1)i

as response, and Aki as treatment, we estimate Ck(Lki) by the AIPWE estimate

Ĉk(Lki) =
Aki

π̂k(Lki)
Ṽ(k+1)i −

Aki − π̂k(Lki)

π̂k(Lki)
Q̂k(Lki, 1)

− {
1− Aki

1− π̂k(Lki)
Ṽ(k+1)i +

Aki − π̂k(Lki)

1− π̂k(Lki)
Q̂k(Lki, 0)}, (10)

where π̂k(Lki) are estimated propensity score P (Aki = 1|Lki) based on, say, logistic regres-

sion model, and Q̂k(Lki, ak), ak = 0, 1, are estimates of Qk(Lki, ak) = E{V(k+1)i|Lki, Aki =

ak} based on parametric or nonparametric models. The main difference from stage K is

that here the estimated value function Ṽ(k+1)i plays the role of Yi as in the Kth decision
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point. We then obtain the corresponding Ẑki = I(Ĉk(Lki) > 0) and Ŵki = |Ĉk(L(ki)| and,

according to (8), goptk (Lk) can be estimated by

ĝoptC,k = arg min
gk∈Gk

n∑

i=1

ŴkiI(Ẑki 6= gk(Lki)) (11)

using some classification or optimization technique. The final estimated optimal regime is

ĝoptC = (ĝoptC,1, . . . , ĝ
opt
C,K).

C-learning is a very flexible approach. First, all existing modeling building/selection

techniques can be used to best estimate the Q-function to improve efficiency, for example,

parametric regression (see discussions in Zhang et al., 2012a and 2013 on augmentation

terms) as in Q-learning or nonparametric regression. Second, existing powerful optimiza-

tion/classification techniques can easily be used in the optimization step to optimize de-

cision rules. Moreover, new variable selection methods targeting optimizing decision rules

instead of Q-functions can be developed within this framework in thet optimization step,

for example, to handle high dimensional covariates and improve performance. Last, deci-

sion rules can be linear decision rules, decision trees or of other forms. This flexibility and

the resulting superior performance is illustrated by various examples in simulation studies.

4 Simulation Studies

We report results on simulation studies under various scenarios. Specifically, (i). scenario

1 is adopted from Zhao et al.(2015). (ii). Scenario 2 is otherwise similar to scenario 1

except that the number of covariates are of a much higher dimension and the optimal

decision rule at each stage depends on more covariates. (iii). Scenario 3 also considers

a high dimensional set of covariates, but the true optimal treatment regime is of a tree

form. Scenarios 1-3 imitate a multi-stage randomized trial with three stages (K = 3). We
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vary the sample size n (n=200, 400 or 800) and use 500 Monte Carlo Replicates for each

scenario. For each simulated data set, we apply the proposed C-learning method as well as

other methods including BOWL (Zhao et al., 2015), Q-learning and the method of Zhang

et al. (2013).

4.1 Data Generation and Methods Implementation

The first simulation was adopted from Zhao et al. (2015). Treatments A1, A2 and A3

are randomly generated from {1, 0} with equal probability 0.5. Three baseline covari-

ates X1,1, X1,2, X1,3 are generated from N(45, 152). X2 is generated according to X2 ∼

N(1.5X1,1, 10
2) and X3 is generated according to X3 ∼ N(0.5X2, 10

2). The outcome was

generated as Y = µ(Ā3, X̄3) + ǫ for ǫ standard normal and µ(Ā3, X̄3) = 20 − |0.6X1,1 −

40|(A1−gopt1 )2−|0.8X2−60|(A2−gopt2 )2−|1.4X3−40|(A3−gopt3 )2, where gopt1 = I(X1,1−30 >

0), gopt2 = I(X2 − 40 > 0), and gopt3 = I(X3 − 40 > 0). The optimal treatment regime is

gopt = (gopt1 , gopt2 , gopt3 ) and E{Y ∗(gopt)} = 20.

For Q-learning, we posited Q-functions

Q3(x̄3, ā3; β3) = β3,0 + β3,1x1,1 + β3,2x1,2 + β3,3x1,3 + a1(β3,4 + β3,5x1,1) + β3,6x2

+a2(β3,7 + β3,8x2) + β3,9x3 + a3(β3,10 + β3,11x3),

Q2(x̄2, ā2; β2) = β2,0 + β2,1x1,1 + β2,2x1,2 + β2,3x1,3 + a1(β2,4 + β2,5x1,1) + β2,6x2

+a2(β2,7 + β2,8x2),

Q1(x1, a1; β1) = β1,0 + β1,1x1,1 + β1,2x1,2 + β1,3x1,3 + a1(β1,4 + β1,5x1,1).

For the AIPWE-based method of Zhang et al.(2013), we took Gη to have elements gη =

(gη1 , gη2 , gη3), where gη3(x̄3, ā2) = I(η3,0 + η3,1x1,1 + η3,2x1,2 + η3,3x1,3 + η3,4x2 + η3,5x3 > 0),

gη2(x̄2, a1) = I(η2,0 + η2,1x1,1 + η2,2x1,2 + η2,3x1,3 + η2,4x2 > 0), gη1(x1) = I(η1,0 + η1,1x1,1 +

η1,2x1,2 + η1,3x1,3 > 0). Clearly, gopt ∈ Gη and all available covariates at each stage were
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considered in parameterizing the treatment regime. In BOWL and C-learning, we estimated

πk(Lk) by π̂k(Lk) =
∑n

i=1 Aki/n, k = 1, 2, 3. For C-learning, one also needs to specify model

for the outcome and we used the same Q-function models as in Q-learning. To carry out

minimization in C-learning, we used a genetic algorithm discussed by Goldberg (1989),

implemented in the rgenoud package in R (Mebane and Sekhon, 2011).

In the second set of simulations, we increased the dimension of covariates so that the

total number of covariates is 50. Treatments A1,A2 and A3 are randomly generated from

{1, 0} with equal probability 0.5. At baseline, 40 covariates X1,1, ..., X1,40 are generated

from N(45, 152). At stage 2, X2,j is generated according to X2,j ∼ N(1.5X1,j, 10
2), j =

1, ..., 5. At stage 3, X3,j is generated according to X3,j ∼ N(0.5X2,j, 10
2), j = 1, ..., 5.

The outcome was generated as Y = µ(Ā3, X̄3) + ǫ for ǫ standard normal and µ(Ā3, X̄3) =

20−|0.6X1,1−40|(A1−gopt1 )2−|0.8X2,1−60|(A2−gopt2 )2−|1.4X3,1−40|(A3−gopt3 )2, where

gopt1 = I(X1,1−X1,2 > 0), gopt2 = I(X2,1−X2,2 > 0), gopt3 = I(X3,1−X3,2 > 0). This scenario

is similar to scenario 1, but we further made the optimal decision rule at each stage depend

on a linear combination of two covariates instead of a single covariates as in scenario 1.

For Q-learning, we posited Q-functions

Q3(x̄3, ā3; β3) = β3,0 + β3,1x1,1 + β3,2x1,2 + a1(β3,3 + β3,4x1,1 + β3,5x1,2) + β3,6x2,1 + β3,7x2,2

+a2(β3,8 + β3,9x2,1 + β3,10x2,2) + β3,11x3,1 + β3,12x3,2 + a3(β3,13 + β3,14x3,1 + β3,15x3,2),

Q2(x̄2, ā2; β2) = β2,0 + β2,1x1,1 + β2,2x1,2 + a1(β2,3 + β2,4x1,1 + β2,5x1,2) + β2,6x2,1 + β2,7x2,2

+a2(β2,8 + β2,9x2,1 + β2,10x2,2),

Q1(x1, a1; β1) = β1,0 + β1,1x1,1 + β1,2x1,2 + a1(β1,3 + β1,4x1,1 + β1,5x1,2).

Note, these model specifications favor the Q-learning method in that they only include the

correct interaction of treatment and covariate at each stage and main effects of important
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covariates, leaving out those unimportant interaction terms and main effect terms, although

the Q-functions are still misspecified. For the method of Zhang et al (2013) , we took Gη

to have elements gη = (gη1 , gη2 , gη3), where gη3(x̄3, ā2) = I(η3,0 + η3,1x3,1 + η3,2x3,2 > 0),

gη2(x̄2, a1) = I(η2,0+η2,1x2,1+η2,2x2,2 > 0), gη1(x1) = I(η1,0+η1,1x1,1+η1,2x1,2 > 0). Clearly,

gopt ∈ Gη. Similarly for BOWL, in one implementation we considered only important

variables in searching for the optimal regimes and considered all variables in the other

implementation. Of course, in real application, although possible, it is difficult to pre-

specify the right variables and forms for the true optimal regime and the results on these

methods in the presence of high-dimensional covariates are too optimistic. We intend to

illustrate their ideal performance in the presence of high dimensional covariates for the

purpose of comparing with the proposed C-learning method.

Unlike the other methods, in the implementation of the C-learning, we did not pre-

specify the correct variables in the form of the treatment regime, but instead we use a

data-driven way to choose the important covariates from the high dimensional set of co-

variates. Therefore, the C-learning considers all linear decision rules constructed by the

high dimensional set of covariates, which is a much larger class than Gη. Specifically, in

the minimization step for each time point k, we used a forward selection algorithm to se-

quentially choose important covariates in forming the treatment regime, where the forward

selection is on the basis of the proportion of reduction in the weighted misclassification

error. Hence, the variable selection algorithm for the optimization step directly targets the

goal of finding the optimal treatment regimes, in contrast to the model selection in the

Q-learning method, where the selection targets the optimal model for the Q-learning. The

forward selection algorithm is detailed in a unpublished technical report. We implemented

C-learning using two different ways that differ in how AIPWE is constructed: in C-learning-

Q, we used parametric model for the Q-functions and the parametric forms are the same as

17

Hosted by The Berkeley Electronic Press



in the Q-learning method, and in C-learning-RF, we used random forest to nonparametri-

cally model the Q-functions. In both ways, all linear decision rules constructed by the high

dimensionl set of covariates are considered, as opposed to Q-learning, the method of Zhang

et al. (2013) and BOWL in one implementation. For our purpose the random forest is

simply a black box predictor which takes as input covariate values (Lki, Aki), and gives as

output an estimate of E(Ṽk+1|Lk, Ak) = Qk(Lk, Ak) for that set of covariate values. Fitting

of the random forest is done using the R function randomForest with default settings.

In the third set of simulations, the data generating scenario is the same as the second

one except that gopt1 = I(X1,1 > 40)I(X1,2 < 60), gopt2 = I(X2,1 > 60)I(X2,2 < 90), and

gopt3 = I(X3,1 > 30)I(X3,2 < 50) in µ(Ā3, X̄3). Here the optimal decision rule at each

stage is of the form of a tree, which is more familiar to clinicians and perhaps more in

line with the current practice in medicine. In implementation, the posited Q-function

models were taken to be the same as in the second simulation. Therefore, out of a relative

high dimensional candidate variables, the correct sets of important variables were used to

favor the performance of this method, but the form of the optimal treatment regime was

still misspecified. For the method in Zhang et al. (2013), we took Gη to have elements

gη = (gη1 , gη2 , gη3), where gηk(x̄k, āk−1) = I(Xk,1 > ηk,1)I(Xk,2 < ηk,2), k = 1, 2, 3. Again,

in BOWL, we also limited the search among regimes constructed by relevant variables in

one implementation. As above we implemented C-learning using two different ways, C-

learning-Q and C-learning-RF. Once we get the classification data set (Ẑki, Lki, Ŵki), we

input this new data set into the CART algorithm to find the estimated optimal treatment

regime among all tree decision rules constructed by the high dimensional sets of covariates,

instead of Gη in the implementation of Zhang et al. (2013). We used the R function rpart

with default settings, except that we set the weights as the estimated weight Ŵ .
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4.2 Results and Discussion

Results from scenarios 1-3 are shown in Tables 1-3 respectively. Table 1 shows that the

proposed C-learning out-performs all other methods in this scenario. We first note that, in

Table 1, all methods consider the same class of regimes, which is different from Table2 and

3 discussed below. C-learning performs considerably better than Q-learning even though

it used the same models for Q-functions in the augmentation terms and this is because

that the performance of C-learning is not dictated by the specification of the Q-function

and the optimization step directly targets the optimization of treatment regimes. It is also

interesting to note that, although C-learning and the method of Zhang et al. (2013) are

based on the same AIPWEs, and consider optimization over the same class of regimes, the

performance of C-learning is still much better than that of Zhang et al. (2013). This is

due to the difference in estimation across stages and the amount of information used in

estimation; ie., Zhang et al. (2013) simultaneously estimates regimes at all stages and C-

learning backward sequentially estimates the regime at each stage. The method of Zhang et

al. (2013) is based on an AIPWE estimator of E{Y ∗(g)} for monotone coarsening (missing)

data. In the missing data perspective, the potential outcome of a subject is observed only

if the observed treatments at all stages are consistent with a regime as regimes at all stages

are estimated simultaneously. In C-learning, however, at stage K, the potential outcome of

a subject is observed as long as the treatment at K is consistent with a regime, regardless

of treatments received prior to K since covariate and treatment histories at previous stages

are treated as baseline covariates. Once we estimate the optimal treatment regime at

stage K, we move backward and, intuitively, in C-learning the best effort can be made

to only estimate the optimal regime at that stage. In addition, we note that one has

to optimize across a large number of parameters for parameterizing the whole dynamic

treatment regime in the simultaneous optimization, whereas in C-learning at each stage
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the optimization is among a smaller number of parameters relevant only to that stage.

C-learning has better performance than BOWL due to two reasons. First, C-learning uses

outcome regression model in the augmentation terms to improve efficiency whereas BOWL

does not. Second, C-learning and BOWL differ in their way to handle multiple stages.

The extension to multiple stages in C-learning is based on proposition 1 which allows us

to use information on all subjects at all stages. In BOWL, the extension to multiple stages

is based on an IPWE for monotone coarsening data, as in Zhang et al. (2013), and to

sequentially estimate the regimes it has to lose sample size geometrically with stages.

Table 2 shows the performance of various methods when the dimension of covariates

is relatively high. We comment that, in Table 2 as well as Table 3, the performance of

Q-learning, BOWL (in one implementation), and the method of Zhang, et al. (2013) is

too optimistic due to the implementation and we should take this into account when com-

paring their performance with other methods and with results in Table 1. A superscript

† is used to indicates the difference in implementation. C-learning (both implementa-

tions) as well as BOWL consider all regimes constructed by linear combinations of the

high dimensional set of covariates, whereas Q-learning†, BOWL† and the method of Zhang

et al. (2013)† only consider regimes constructed by relevant covariates, which is a much

smaller class. As explained previously, this is because we try to give the best advantage to

our comparison methods in implementation since the performance of Q-learning and the

method of Zhang et al. (2013) is highly dependent on the chosen parametric models or the

class of regimes indexed by a finite number of parameters. Although our implementation

unrealistically favors other methods by eliminating the burden of dealing with the high

dimensional set of covariates, the performance of the C-learning (both implementations),

combined with suitable variable selection algorithm in the optimization step, is still con-

siderably better than BOWL† and Q-learning† and is comparable to the method of Zhang
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et al.(2013)† when n=200 and slightly better when n=400, 800 for reasons explained pre-

viously. The C-learning framework can naturally accommodate variable selection methods

targeted towards optimal treatment regime instead of prediction to improve performance

in the presence of high dimensional covariates. This (in addition to reasons discussed pre-

viously for Table 1) explains the dramatically better performance than BOWL when they

both consider the same class of regimes.

Table 3 shows the results when the true treatment regime is of the form of a decision

tree and the dimension of covariates is relatively high. The pattern of relative perfor-

mance is similar to that in Table 2. As in Table 2, here BOWL† , Q-learning† and the

method of Zhang et al. (2013)† consider only important covariates in optimizing regimes

and hence results on these methods are overly optimistic. The C-learning-RF, with both

outcome regression models and important variables in the regimes chosen data-adaptively

using existing off-the-shelf algorithms and software (Random Forest and CART), has su-

perior performance and is comparable to C-learning-Q, where the Q-functions are modeled

parametrically but important variables in the regimes are still chosen data-adaptively. The

performance of C-learning is much better than BOWL† where the important variables are

taken to be known and dramatically better than BOWL when BOWL searches the optimal

treatment regimes among the same class as C-learning. For the same reasons explained for

Table 1, when n=400 and 800, C-learning performs even better than the overly optimistic

benchmark, the method of Zhang et al. (2013)†, and approaches that of the true optimal

treatment regime.

Finally, we comment that our simulation scenarios are either adopted from scenario 3 of

Zhao, et al. (2015) or further built upon it, and in this scenario, BOWL has overall better

performance than SOWL and IOWL (other two OWL-based methods). In our additional

simulations using scenarios 1 and 2 of Zhao, et al. (2015), we see the same pattern of
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Table 1: Results for the first simulation scenario using 500 Monte Carlo data sets .

E{Y ∗(gopt)} = 20. E(ĝopt) shows the Monte Carlo average and standard deviation of

values E{Y ∗(ĝopt)} obtained using 106 Monte Carlo simulations for each data set.

n=200 n=400 n=800

Estimator E(ĝopt) E(ĝopt) E(ĝopt)

BOWL 10.84(1.85) 12.13(1.54) 13.02(1.36)

Q-learning 12.49(1.83) 12.76(1.46) 13.05(1.14)

Zhang et al.(2013) 13.25(2.12) 15.08(1.46) 16.28(1.01)

C-learning 17.27(0.97) 18.52(0.74) 19.37(0.41)

relative performances of C-learning versus BOWL . We have already discussed reasons

that lead to the difference in performance and they are further summarized in Section 5.

5 Discussion

We show a general result that identifying the optimal dynamic treatment regime can be

recast as a sequential classification problem that aims to minimize a weighted misclassi-

fication error at each stage; ie., at stage k, each subject can be viewed as belonging to

one of two classes for whom the optimal decision at stage k given available patient char-

acteristics and treatment history is 0 or 1. This equivalence leads to a novel and general

learning method that allows us to exploit the wealth of existing/new powerful classification

algorithms. We comment that Zhao, et al. (2015) first exploited powerful classification

techniques to estimate the optimal dynamic treatment regime in the multiple stage set-

ting. Our classification framework differs from their work in several aspects. First, as

discussed below Theorem 1, Theorem 1 is a general result and this equivalence does not
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Table 2: Second simulation scenario (500 Monte Carlo data sets, E{Y ∗(gopt)} = 20).

Superscript“†” indicates that only relevant variables among the high dimensional set of

covariates are used to construct the optimal treatment regime. Methods without “†” are

searching the optimal treatment regimes without any a priori information on which variables

are important.

n=200 n=400 n=800

Estimator E(ĝopt) E(ĝopt) E(ĝopt)

BOWL 3.38(1.62) 5.93(1.37) 7.79(1.10)

BOWL† 14.76(1.74) 15.43(1.38) 15.74(1.12)

Q-learning† 14.01(1.05) 13.94(0.78) 13.78(0.56)

Zhang et al.(2013)† 17.98(1.42) 18.83(0.87) 19.35(0.45)

C-learning-Q 17.70(1.75) 19.45(0.61) 19.78(0.22)

C-learning-RF 16.59(2.14) 19.21(0.80) 19.75(0.14)
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Table 3: Third simulation scenario (500 Monte Carlo data sets, E{Y ∗(gopt)} = 20).

Superscript“†” indicates that only relevant variables among the high dimensional set of

covariates are used to construct the optimal treatment regime. Methods without “†” are

searching the optimal treatment regimes without any a priori information on which vari-

ables are important.

n=200 n=400 n=800

Estimator E(ĝopt) E(ĝopt) E(ĝopt)

BOWL 3.01(1.63) 5.02(1.42) 6.73(1.15)

BOWL† 12.55(1.28) 12.91(0.95) 13.12(0.72)

Q-learning† 13.12(0.45) 13.08(0.35) 13.07(0.23)

Zhang et al.(2013)† 17.02(1.25) 18.02(0.90) 18.71(0.63)

C-learning-Q 17.44(1.29) 18.91(0.73) 19.52(0.32)

C-learning-RF 16.94(1.48) 18.92(0.63) 19.61(0.24)
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depend on any particular estimator of the contrast functions or the observed treatment

assignment, whereas the OWL-based method of Zhao, et al. (2015) is based on a specific

IPWE estimator and the classification perspective is possible due to the IPWE estimator.

As a result, although we focus on using AIPWE to estimate the contrast functions in our

presentation, the framework can accommodate other estimators of the contrast functions,

for example, the difference in estimators of the Q-functions. Second, the interpretation of

the classification is different and this has important implications. In OWL-based methods,

an error is made if g(X) 6= A, ie., if the prescribed treatment is different from the observed

treatment, and in our framework an error is made if g(X) 6= I(C(X) > 0), ie., if the

prescribed treatment is different from the one that leads to larger expected potential out-

comes. As a result, our approach does not suffer from the feature of OWL-based methods

as noted by Zhou, et al. (2015), namely, OWL-based methods tempts to classify patients

to the group corresponding to the actually assigned treatment A. Third, as discussed in

Section 4.2, the way to handle multiple stages are different. In direct optimization methods

including BOWL and other OWL-based methods studied in Zhao, et al. (2015) and the

robust AIPWE-based method of Zhang, et al. (2013), the extension to multiple stages are

based on the monotone coarsening idea for IPWE/AIPWE estimators. This would natu-

rally suggest simultaneous optimization across stages as in SOWL of Zhao, et al. (2015)

and to achieve sequential optimization, BOWL needs to decrease sample size geometrically.

In the proposed approach, the extension to multiple stages is based on Proposition 1 and

this is in spirit more similar to outcome-regression based methods (Q- and A-learning). As

discussed in Section 4.2, this approach has advantages and leads to better performance. We

are not aware of any direct optimization methods that are able to handle multiple stages

this way. Our approach, being a direct optimization method, is able to take advantage of

this and combine the benefits of both direct optimization methods and outcome-regression
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based methods. Finally, our classification framework can naturally accommodate model

selection targeted for optimizing decisions instead of prediction, whereas the classification

method of Zhao, et al. (2015) cannot, as noted by Zhou, et al. (2015).

Based on this general result, we proposed a novel, powerful and flexible C-learning algo-

rithm to learn the optimal treatment regime. It is a direct optimization method that targets

the goal of optimizing decision rules and it is also able to exploit outcome regression models

(Q-functions) to improve efficiency. As discussed in Section 1, there is a mismatch between

outcome regression based approach (Q- and A-learning) and the goal of optimizing decision

rules. Nevertheless, outcome regression based approaches are appealing as intuitively and

theoretically the optimal treatment decision should depend on how outcomes are related

to patient characteristics and treatments and information from outcome regression models

(even if incorrect or only approximately true) should be exploited to estimate the opti-

mal treatment regime. The proposed C-learning is able to address the mismatch problem

and exploit outcome regression models simultaneously and the two goals are achieved in

C-learning by decoupling the optimization steps from the modeling steps.

The C-learning is a very flexible general methodology. As illustrated by our simulations

studies, within this framework, first, data analysts have the freedom to use all existing

model building/selection techniques to best model the Q-functions to improve efficiency.

For example, one can model the Q-function using parametric regression models or nonpara-

metric regression models (eg, random forest), and all available model selection techniques

(eg., forward selection, Lasso., etc) that target predictions can be readily incorporated.

Second, existing powerful off-the-shelf optimization tools can easily be accommodated in

this framework to carry out the optimization to learn the optimal decision rules. In ad-

dition, new and sophisticated variable selection techniques, targeting optimizing decision

rules in contrast to predictions, can be developed within this framework to best select the
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important sets (and combination) of covariates and treatment history from among a high

dimensional set of covariates to form the optimal decision rules. This point is illustrated by

our simulation studies and will be the focus of future work. Furthermore, this framework

allows decision rules of different forms. In our simulations we illustrated this flexibility

by considering both linear and tree decision rules. Other forms of decision rules can also

be accommodated in this framework, making the C-learning a very flexible and general

approach.

Because of the flexibility and the advantages discussed above, the proposed C-learning

has superior performance relative to existing methods. We have devoted a whole subsection

4.2 in the simulation section to discuss and explain the results.
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