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Abstract

Analysis of high dimensional data often seeks to identify a subset of
important features and assess their effects on the outcome. Traditional
statistical inference procedures based on standard regression methods
often fail in the presence of high-dimensional features. In recent years,
regularization methods have emerged as promising tools for analyzing
high dimensional data. These methods simultaneously select important
features and provide stable estimation of their effects. Adaptive LASSO
and SCAD for instance, give consistent and asymptotically normal es-
timates with oracle properties. However, in finite samples, it remains
difficult to obtain interval estimators for the regression parameters. In
this paper, we propose perturbation resampling based procedures to
approximate the distribution of a general class of penalized parameter
estimates. Our proposal, justified by asymptotic theory, provides a simple
way to estimate the covariance matrix and confidence regions. Through
finite sample simulations, we verify the ability of this method to give
accurate inference and compare it to other widely used standard deviation
and confidence interval estimates. We also illustrate our proposals with a
data set used to study the association of HIV drug resistance and a large
number of genetic mutations.
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1. INTRODUCTION

Accurate prediction of disease outcomes is fundamental for successful disease pre-

vention and treatment selection. Recent advancement in biological and genomic re-

search has led to the discovery of a vast number of new markers that can potentially

be used to develop molecular disease prevention and intervention strategies. For

example, gene expression analyses have identified molecular subtypes that are associ-

ated with differential prognosis and response to treatment for breast cancer patients

(Perou et al. 2000; Dent et al. 2007). For non-small cell lung cancer patients, a com-

posite score consisting of several biological markers including cyclin E and Ki-67 was

shown to be highly predictive of patient survival (Dosaka-Akita et al. 2001). How-

ever, construction of accurate prediction models with a panel of markers is a difficult

task in general. For example, statistical models for calculating individual cancer risk

have been developed for a few types of cancer in the past two decades (Gail et al.

1989; Thompson et al. 2006; Cassidy et al. 2008; Freedman et al. 2009). However,

much refinement is needed even for the best of these models due to their limited

discriminatory accuracy (Spiegelman et al. 1994; Gail and Costantino 2001).

The increasing availability of new potential markers, while holding great promises

for better prediction of disease outcomes, imposes challenges to model development

due to the high dimensionality in the feature space and the relatively small sample

size. To improve prediction with a large number of promising genomic or biological

markers, an important step is to build a parsimonious model that only includes im-

portant markers. Such a model could reduce the cost associated with unnecessary

marker measurements and improve the prediction precision for future patients. For

such purposes, various regularization procedures such as the LASSO (Tibshirani 1996;

Knight and Fu 2000), the SCAD (Fan and Li 2001, 2002, 2004; Zhang et al. 2006),

the adaptive LASSO (ALASSO; Zou 2006; Wang and Leng 2007), the Elastic Net
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(Zou and Hastie 2005; Zou and Zhang 2009), and one-step local linear approximation

(LLA; Zou and Li 2008) have been developed in recent years. These procedures si-

multaneously identify non-informative variables and produce coefficient estimates for

the selected variables to induce a model for prediction.

These regularization procedures, while effective for variable selection and stable

estimation, yield estimators whose distributions are difficult to approximate. LASSO

type estimators have a non-standard limiting distribution that depends on which

components of the coefficient vector are zero. Since the LASSO type estimator is

not consistent in variable selection, the limiting distribution cannot be estimated di-

rectly. Furthermore, standard bootstrap methods fail when the true coefficient vector

is sparse (Knight and Fu 2000). Recently, Chatterjee and Lahiri (2010) proposed a

truncated LASSO estimator whose distribution can be approximated using a resid-

ual bootstrap procedure. To overcome the difficulties in LASSO estimators, other

regularized procedures such as the SCAD and ALASSO have been proposed. These

estimators possess asymptotic oracle properties including perfect variable selection

and super efficiency. However, our simulation results suggest that in finite samples,

such oracle properties are far from being true and inference procedures based on

asymptotic properties such as those given in Zou (2006) perform poorly especially

when the signal to noise ratio (SNR) is high and the between covariate correlations

are not low. Recently, Pötscher and Schneider (2009, 2010) developed theory on the

coverage probabilities of the confidence intervals for ALASSO type estimators under

the orthogonal design. It was shown that estimating the distribution function of the

ALASSO estimator is not feasible when the true parameter is of similar magnitude

to n−
1
2 , where n is the sample size. It is thus generally difficult to develop well per-

formed confidence regions (CRs) and hypothesis testing procedures based on these

regularized estimators. Such difficulties limit their applicability to clinical studies
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where confidence in statistical evidence is crucial for clinical decision making.

In this paper, we propose resampling methods to derive CR and testing proce-

dures for marker effects estimated from regularized procedures such as the ALASSO

and one-step SCAD estimator when the true parameter is fixed. Our preliminary

studies suggest that CRs constructed from such resampling procedures perform much

better than their asymptotic based counterparts. When the fitted model is merely

a working model, many frequently used estimation procedures may fail to produce

stable parameter estimates. Procedures that can provide stable parameter estimates

and valid interval estimates under a possibly misspecified working model are highly

valuable when building a prediction model with high dimensional data. Our proposed

procedures remain valid even if the fitted model fails to hold, provided that the em-

ployed objective function satisfies mild regularity conditions. The rest of the paper

is organized as follows. In Section 2, we introduce the proposed perturbation resam-

pling procedures and describe various methods for constructing confidence regions.

In Section 3, we demonstrate the validity of the proposed procedures in finite samples

via simulation studies. In Section 4, we illustrate our proposed procedure with an

HIV drug resistance study where the goal is to predict phenotypic drug resistance

levels using genotypic viral mutations.

2. RESAMPLING PROCEDURES

Suppose that y = (y1, . . . yn)T is the n × 1 vector of response variables and xj =

(x1i, . . . , xpi)
T, i = 1 . . . n, are the predictors. Let X = [x1, . . . ,xn]T be the n×p matrix

of these covariates. Assume that the effect of x on y is determined via an objective

function L(θθθ; D) = `(y, α + βTx), where θθθ = (α,βT)T, α is an unknown location

parameter, β is an unknown p × 1 vector of covariate effects, and D = (y,xT)T. To

assess the association between x and y, let L̃(θθθ) = n−1
∑n

i=1 L(θθθ; Di) be the objective

function used to fit a regression model and θ̃θθ = (α̃, β̃
T

)T = argminθθθ L̃(θθθ). To obtain

3

http://biostats.bepress.com/harvardbiostat/paper119



a regularized estimator for θθθ0, we minimize the regularized objective function

L̂(θθθ) = L̃(θθθ) +

p∑
j=1

p′λnj(|β̃j|)|βj| (1)

where p′λnj(|β̃j|) is the derivative of a penalty pλnj(|βj|) evaluated at the initial es-

timate of β0j. We consider the cases where pλnj(|βj|) is the concave SCAD penalty

or the Lq penalty for 0 < q < 1, and utilize a one-step estimator of these penal-

ties with the local linear approximation (LLA) method proposed by Zou and Li

(2008). Additionally, we consider the ALASSO penalty of Zou (2006) that arises

when p′λnj(|β̃j|) = n−
1
2λn|β̃j|−1.

2.1 Regularity Conditions

To ensure the asymptotic oracle properties of the regularized estimators and the valid-

ity of the proposed resampling procedures, we require the following set of conditions:

C1. P{L(θθθ; D)} has a unique minimum at θθθ0 and a continuous secondary derivative

with a positive definite A = ∂2P{L(θθθ; D)}/∂θθθθθθT|θθθ=θθθ0
> 0, where P is the

probability measure generated by the data X = {Di, i = 1, ..., n}.

C2. The class of functions indexed by θθθ, {L(θθθ; D) | θθθ ∈ Ω}, is Glivenko-Cantelli

(Kosorok 2008), where Ω is the compact parameter space containing θθθ0.

C3. There exists a “qausi-derivative” function U(θθθ; D) for L(θθθ; D) such that for any

positive sequence δn → 0

(a) P{U2(θθθ0; D)} = B, a positive definite matrix.

(b) P{L(θθθ; D)−L(θθθ0; D)−U(θθθ0; D)(θθθ− θθθ0)} = 1
2
(θθθ− θθθ0)

TA(θθθ− θθθ0) + o(‖θθθ−

θθθ0‖2), where ‖θθθ − θθθ0‖ ≤ δn.
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(c) For ‖θθθ − θθθ0‖ ≤ δn = o(1),

sup
θθθ

P
{

L(θθθ; D)− L(θθθ0; D)− U(θθθ0; D)(θθθ − θθθ0)

‖θθθ − θθθ0‖

}2

= o(1)

(d) The class of functions

Dn =

{
L(θθθ; D)− L(θθθ0; D)− U(θθθ0; D)(θθθ − θθθ0)

‖θθθ − θθθ0‖

∣∣∣∣ ‖θθθ − θθθ0‖ ≤ δn

}

is Donsker (Kosorok 2008, p11).

These conditions are parallel to the conditions required in Proposition A1-A3 in Jin

et al. (2001). These conditions also guarantee that θ̃θθ is a consistent estimator of θθθ0

and n
1
2 (θ̃θθ− θθθ0) converges in distribution to N(0,A−1BA−1). Let A = {j : β0j 6= 0} of

size p 6=0 and Ac = {j : β0j = 0}, where aj denotes the jth component of a vector a.

Following similar arguments to those given in Zou (2006), Zou and Li (2008) and

the unconditional arguments given in the Appendix, θ̂θθ = argminθθθ L̂(θθθ) has ‘good’

properties for certain choices of λn, including the oracle property,

Lemma 1: (Oracle properties) Suppose that λn → 0 and λnn
1
2 → ∞. Then the

regularized estimates must satisfy the following:

1. Consistency in variable selection: limnpr(Â = A) = 1, where Â = {j : β̂j 6= 0}

2. Asymptotic normality: n
1
2 (θ̂θθA − θθθ0 bA)→d N(0,A−1

11 B11A−1
11 ), where A11 and B11

are the respective p 6=0 × p 6=0 submatrices of A and B corresponding to A.

This lemma guarantees that the regularized estimate asymptotically chooses the

correct model and has the optimal estimation rate. However, estimating the dis-

tribution of n
1
2 (θ̂θθ − θθθ0) in finite samples remains difficult. To estimate the stan-

dard errors of the SCAD estimates θ̂θθ = argminθ {L̃(θθθ) +
∑p

j=1 pλnj(|βj|)} when
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L̃(θθθ) = n−1
∑n

i=1 L(θθθ; Di) is smooth in θθθ, Fan and Li (2001) proposed a local

quadratic approximation (LQA) method. This gives a sandwich estimator for the

covariance matrix of the estimated nonzero parameters:

ĉov
(
θ̂θθ bA
)

= {∇2L̃(θ̂θθ bA) + Σλ(θ̂θθ bA)}−1ĉov{∇L̃(θ̂θθ bA)}{∇2L̃(θ̂θθ bA) + Σλ(θ̂θθ bA)}−1 (2)

where ∇L̃(θ̂θθ bA) = ∂L̃(θ̂θθ bA)/∂θθθ, ∇2L̃(θ̂θθ bA) = ∂2L̃(θ̂θθ bA)/∂θθθ∂θθθT , and Σλ(θ̂θθ bA) is a diagonal

matrix with the (j, j)th element being I(β̂j 6= 0)p′λn1(|β̂j|)/|β̂j|. The LQA approach

can also be used to construct a covariance estimate for the ALASSO estimates where

p′λnj(|β̃j|) = n−
1
2λn|β̃j|−1. Similar to covariance estimates in Tibshirani (1996) and

Fan and Li (2001) for penalized estimates, this procedure estimates the standard

errors for variables with β̂j = 0 as 0. Although this sandwich estimator has been

proven to be consistent (Fan and Peng 2004) under the linear regression model, it

tends to underestimate the standard errors, and normal confidence regions (CRs)

using this estimate often do not provide acceptable coverage in finite sample.

To approximate the covariance of θ̂θθ more accurately, we propose a perturbation

method to estimate the distribution of n
1
2 (θ̂θθ − θθθ0) for a general class of objective

functions and penalties. Let G = {Gi, i = 1, . . . , n} be a set of independent and

identically distributed (i.i.d) positive random variables with mean and variance equal

to one. We first perturb the initial objective function and obtain

L̃∗(θθθ) = n−1

n∑
i=1

L(θθθ,Di)Gi, and θ̃θθ
∗

= argmin
θθθ

L̃∗(θθθ).

Then with the same set G, we obtain the minimizer of a stochastically perturbed

version of the regularized objective function:

L̂∗(θθθ) = L̃∗(θθθ) +

p∑
j=1

p′λ∗nj(|β̃
∗
j |)|βj| (3)

6
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where λ∗n satisfies the same order constraints as λn as discussed in the Lemma 1. In

practice, one may select λn and λ∗n based on the BIC criterion with the corresponding

objective functions. In the appendix we first show that n
1
2 (θ̂θθ
∗
A − θθθ0A) converges

in distribution to N(0,A−1
11 B11A−1

11 ), the same limiting distribution of n
1
2 (θ̂θθ − θθθ0).

Furthermore, P∗(θ̂θθ
∗
Ac = 0) → 1, where P∗ is the probability measure generated by

both X and G. In addition, we show that the distribution of n
1
2 (θ̂θθ
∗
A− θ̂θθA) conditional

on the data can be used to approximate the unconditional distribution of n
1
2 (θ̂θθA−θθθA0)

and that P∗(θ̂θθ
∗
Ac = 0 | X) → 1. In practice, these results allows us to estimate the

distribution of n
1
2 (θ̂θθ − θθθ0) by generating a large number, M , say, of random samples

G. We obtain θ̂θθ
∗
m by minimizing the perturbed objective function for each sample

m = 1, . . .M , and then approximate the theoretical distribution of θ̂θθ by the empirical

distribution {θ̂θθ
∗
m,m = 1, . . .M}. Specifically, the covariance matrix of θ̂θθ can be

estimated by the sample covariance matrix constructed from {θ̂θθ
∗
m,m = 1, . . .M}.

Estimating the distribution of n
1
2 (θ̂θθ−θθθ0) based on the distribution of n

1
2 (θ̂θθ
∗
−θ̂θθ) | X

leads to the construction of three possible (1−α)100% confidence regions for θθθ0. For

the first, let σ̂2
j = M−1

∑M
m=1(β̂

∗
mj − β̂j)2. We construct a normal CR for β0j, CR*N

j ,

centered at β̂j with standard deviation σ̂∗j . This method is in contrast to CRAsym

obtained with standard deviations σ̂Asym

j estimated with the asymptotically consistent

LQA sandwich estimator in Fan and Li (2001) and Zou (2006). In contrast to setting

the standard error to 0 when β̂j = 0, we set CR*N
j = {0} if the proportion of β̂∗j being

0 is larger than a threshold p̂high, such that p̂high → phigh < 1. This method accounts

for the superefficiency due to the oracle property and results in a shorter interval

with valid coverage. Secondly, we simply take the (α/2)100th and (1 − α/2)100th

quantiles of β̂∗j as the upper and lower bounds of CR*Q

j . For the third, we estimate

the density of β̂∗j with a kernel density estimator and choose the (1−α)100% highest

density region, CR*HDR
j . We estimate the density of β̂∗j | X as a mixed density with
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distribution f ∗j (β) = P̂0jI(β = 0) + (1− P̂0j)f
∗
j (β),where P̂0j is the proportion of β̂∗j

set to 0, and f ∗j (β) is the unknown distribution of β̂∗j given that it is not set to 0.

Thus, our highest density confidence region CR*HDR
j is defined as

CR*HDR

j =



{0} if P̂0j ≥ p̂high

{β : f ∗j (β) ≥ ĉ1} ∪ {0} if p̂low ≤ P̂0j < p̂high

{β : f ∗j (β) ≥ ĉ2} ∪ {0} if α ≤ P̂0j < max(α, p̂low)

{β : f ∗j (β) ≥ ĉ3} if P̂0j < α

where ĉ1, ĉ2, and ĉ3 are chosen such that for H(c) =
∫
I{f ∗j (β) ≥ c}f ∗j (β)dβ, we have

H(ĉ1) = (1− α− P̂0j)/(1− P̂0j), H(ĉ2) = 1−α+α(P̂0j + p̂low), H(ĉ3) = 1−α, while

p̂low → 0 and p̂high → phigh < 1. The details of this method are relegated to the

Appendix. Note that {0} is included in our confidence region when P̂0 is sufficiently

large, or when f ∗j (β) is sufficiently large around a neighborhood of 0.

In practice, when assessing the effects of multiple features, it is often important

to adjust for multiple comparisons. For interval estimation, we may construct a

(1− α)100% simultaneous confidence region to cover the entire parameter vector θθθ0.

We may then make statements about the importance of each of the covariates in the

presence of other covariates while maintaining a type I error of α. For the regularized

estimator, we define the simultaneous region as CR*Sim =
∏

j /∈ bA∗{0} ×
∏

j∈ bA∗(β̂j −

γασ̂
∗
j , β̂j + γασ̂

∗
j ) where Â∗ = {j : P̂0j < p̂high} and γα is the (1− α)100% quantile of{

max
{
|β̂∗jm − β̂j|/σ̂∗j

}
j∈ bA∗

}M
m=1

. We compare the performance of these confidence

regions with numerical examples in Sections 3 and 4.

3. SIMULATION STUDIES

To examine the validity of our procedures in finite samples, we performed simu-

lation studies to assess the performance of the corresponding confidence regions. For

8
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each setting, we simulated 1500 data sets with n observations generated under the

linear model, y = Xβ + ε, where xij ∼ N(0, 1), the pairwise correlation between xi

and xj was set to cor(xi,xj) = ρ, εi ∼ N(0, σ2), and β, ρ, and σ were varied between

settings. In each setting, β was sparse and included medium and high signals. We ob-

tained ALASSO estimators for each simulated data set with λ chosen by the BIC and

then M = 500 perturbed samples using our proposed method with G generated from a

mean 1 exponential distribution. The sample size n was set to 100, 200, 400, or 1000,

while ρ was 0, 0.2, or 0.5, and σ was 1 or 2. To compute the highest density regions

CR*HDR we utilized the hdrcde package in R with the “ndr” bandwidth estimator as

presented in Scott (1992) based on Silverman’s rule of thumb (Silverman 1986). We

chose p̂low = min{(log(n)/n)(1−p/n)/4, 0.49} and p̂high = min{1−n−(1+p/n)/4, 0.95}. We

substituted the σ used in the standard deviation estimate from Zou (2006) analogous

to equation (2) with the known σ from the simulations.

We present the results for simulations with n = 100, 200 and 400 when σ = 1 or

2 and p = 10 or 20. In these cases, the true β0 contains two large effects of β0j = 1,

two moderate effects of β0j = 0.5, and six (for p = 10) or sixteen (for p = 20) noise

parameters where β0j = 0. To examine the effect of regularization we compare our

CRs for the regularized estimators to CROLS, the normal CR based on the empirical

standard error of the perturbed ordinary least squares (OLS) estimates.

[Table 1 and 2 about here.]

In Tables 1 and 2 we see that CR*N usually has better coverage than CRAsym

and CROLS and sacrifices very little in length. The asymmetric CR*HDR has higher

coverage than CRAsym and CROLS for the moderate signal β0j = 0.5 and has the

shortest length when β0j = 0. The other perturbation based confidence region CR*Q

performs similarly to CROLS when β0j is nonzero. The standard deviation estimate

from Zou (2006), σ̂Asym (also see Table 3), is not large enough to cover β0j sufficiently,
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and while the coverage probability of the CROLS is not extremely low, it is notably

outperformed by the other confidence regions when β0j = 0. We omit the results from

the settings where n = 1000 because the results have similar patterns as those with

n = 400. For these large sample cases with n greater than or equal to 400 we saw

convergence to 95% coverage for the normal CRs, highest density regions, and OLS

CRs in all settings when the true parameter was nonzero. For true zero parameters,

the coverage probabilities of our confidence regions converged to 1, while the OLS CR

converged to 0.95. A tradeoff associated with our method is that while the coverage of

our perturbation confidence regions tends to be higher than CROLS and CRAsym, some

power is sacrificed for moderate signals of β0j = 0.5. This loss is minimal, however,

and only appears in difficult cases when sample size is low and ρ and σ are high. We

see that when σ = 1 all CRs except CROLS perform well, though CRAsym still tends

to have slightly lower coverage than perturbation based regions and often does not

reach 95% coverage. Also, when β0j = 0, CROLS has coverage lower than 95% for

small samples while our methods produce regions with coverage probability near 1

and very short lengths reflecting the oracle properties. Overall, the most disparity

between our methods and previous methods is seen when the SNR is low.

The coverage probabilities and lengths of our simultaneous confidence regions are

also displayed in Tables 1 and 2. We compared our method to CR*SimOLS, constructed

analogously to CR*Sim except Â∗ = {j|j = 1, . . . , p} and CR*SimOLS is centered at

the OLS estimates and the standard error is the sample standard deviation of the

perturbed OLS estimates. Our regularized CR*Sim has the advantage of shrinking the

dimension of the region by reducing some CRs to the point {0} when P̂0j is large.

We see that our CR*Sim outperforms CR*SimOLS in coverage and has shorter length for

σ = 1 and comparable length for σ = 2. For large sample settings when n = 1000,

CR*SimOLS converges further to 95% coverage with levels around 94% and CR*Sim has

10
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coverage almost always over 95%.

[Table 3 about here.]

In Table 3 we also present the standard error estimates when σ = 2. For notation,

let the empirical standard deviations of the estimators β̂j and β̃j be denoted as σ̃j and

σ̃OLS
j , respectively. We see that our estimate of the standard error from the perturbed

samples, σ̂∗j , does well in estimating σ̃j. However, the standard error proposed by Zou

(2006) underestimates the true standard error of the parameter estimates, especially

when σ = 2 and β0j = 0.5 or 0. When the SNR is higher, σ̃Asym

j estimates σ̃j well

except when β0j = 0 because σ̂Asym

j = 0 whereas σ̃j and σ̂∗j are clearly nonzero.

4. EXAMPLE: HIV DRUG RESISTANCE

We illustrate our methods in a real example using the HIV antiretroviral drug

susceptibility data described in Rhee et al. (2003). This dataset was refined from the

Stanford HIV Drug Resistance Database (available at http://hivdb.stanford.edu/ ),

and is used to study the association of protease mutations with susceptibility to

the protease inhibitor anti-retroviral (ARV) drug amprenavir. The data consist of

mutation information at 99 protease codons in the viral genome, of which 79 contain

mutations, and ARV drug resistance assays for n = 702 HIV infected patients. Drug

resistance was measured in units of IC50, the amount of drug needed to inhibit viral

replication by 50% in units of fold increase compared to drug-sensitive wildtype virus.

Researchers are interested in determining which protease mutations are associated

with ARV resistance so that they may develop a genotype test for resistance that

looks for these mutations in the patient’s infecting HIV strain. Therefore, we aim

to examine the effect of the presence of any of the mutations at 79 codons on IC50,

where higher IC50 measurements indicate higher levels of drug resistance. We chose

to log-transform the non-negative IC50 outcome and represented the presence of each
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of the mutations as a binary predictor in our regression model. We removed the

fifteen mutations that occurred less than 0.5% in the data set. Recently, Wu (2009)

analyzed these data with a permutation test for regression coefficients of LASSO. In

this paper, we will analyze the data using ALASSO and gain inference by using our

perturbation methods to construct CRs and standard errors.

For this analysis, we fit an ALASSO linear model with λ chosen to minimize the

BIC. We generated M=500 perturbation variable sets G, consisting of n = 702 i.i.d.

variables from an exponential distribution with mean and variance equal to 1, and for

each G we minimized the perturbed objective function to obtain β̂
∗
m. We constructed

95% CRs using our perturbation method and compared inference gained from CR*N

and CR*HDR to the inference from CRAsym and CROLS. We estimated the σ used in

the standard deviation estimate from Zou (2006) analogous to equation (2) with the

known σ from the simulations.

[Figure 1 about here.]

We present a graphical summary of the analysis results in Figure 1. Previous stud-

ies by Prado et al. (2002) and results collected by Johnson et al. (2005) found that

mutations at codons 10, 32, 46, 47, 50, 54, 73, 82, 84 and 90 emerge in amprenavir

resistant viral genomes. Using a permutation based p-value adjusted for multiple

testing, Wu (2009) determined these mutations (except 73 and 82) as well as addi-

tional codon mutations to be significantly associated with amprenavir susceptibility

at the α = 0.05 level for a total of thirteen significant associations. The ALASSO

estimator estimated the same set of thirteen coefficients as nonzero. The confidence

region from nonregularized estimates CROLS was significant for all sixteen mutations

including these thirteen. However our perturbation based CR*N and CR*HDR for three

of these mutations did include zero. We see in Figure 2 that parameters for codons

48 and 50 have clearly nonsignificant CRs, suggesting that the parameters were esti-
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mated as zero in the perturbation samples too often to be deemed significant. The

parameter for codon 32 has marginally nonsignificant confidence regions and P̂0j is

marginally close to 0.05.

[Figure 2 about here.]

Our use of ALASSO provides estimates of the effects of each mutation while ad-

justing for the presence of other mutations. Several studies have shown that mutations

associated with resistance to protease inhibitors can have varying effects when com-

bined with other mutations (Schumi and DeGruttola 2008; Van Marck et al. 2009).

For instance, the mutation at codon 32 has been found to have no effect on resistance

of the protease inhibitor drug darunavir when a mutation at codon 84 is present

(Van Marck et al. 2009). Our method allows us to determine the size of associations

without orthogonalizing predictors and we adjust for multiple testing with the simul-

taneous confidence region CR*Sim. Results could be impacted by studies summarized

in Johnson et al. (2005) that may not have adjusted for other mutations, and the use

of LASSO estimators that do not have oracle properties in Wu (2009). Furthermore,

our methods produce CRs for the coefficients of mutations that were estimated as

zero. These CRs quantify the uncertainty in our estimation and can aid scientists

who wish to conduct future drug therapy studies involving the codons.

5. DISCUSSION

In this paper, we address the problem of constructing a covariance estimate for

parameter estimates obtained with a general objective function and concave penalty

functions including adaptive LASSO and SCAD. The proposed methods for covari-

ance estimates are simple to implement and possess the attractive property that

parameters estimated as zero have nonzero standard errors. We may then construct

confidence regions for each parameter estimate and obtain more meaningful inference.
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We have shown through extensive simulation studies using the ALASSO penalty

that our perturbation method results in confidence regions with accurate coverage

probability. The perturbation based normal CR does not sacrifice much in length

and has reasonable coverage for small sample sizes. We set the CR to {0} when the

proportion of perturbed estimates set to 0 is higher than a threshold, and therefore

shorten the length by utilizing the oracle property. The perturbation based highest

density region has even shorter length and good coverage probability, especially for

the moderate signal β0j = 0.5 in comparison to all other confidence regions. The

asymptotic based normal interval that uses the standard error estimate presented in

Zou (2006) fails to reach nominal coverage levels due to the underestimation of the

standard error, most notably when the standard error is estimated as 0 when β̂ =

0. However, our estimate of the standard error of the parameter estimates based on

our perturbation samples is close to the empirical standard error of the ALASSO

estimates, even for parameters estimated as 0. Additionally, we propose a simultane-

ous CR that adjusts for multiple comparisons. We again utilize the oracle property

and reduce the dimension of our region by setting intervals to {0} when the propor-

tion of zero perturbed parameter estimates is high. Therefore, the average length

of our region will often be shorter than the simultaneous OLS region. For instance,

when all covariates are independent, the OLS length is asymptotically proportional

to γOLS = max
{∣∣∣(β̃j − β0j)/σ

∣∣∣}p
j=1

whereas the perturbation region length is asymp-

totically proportional to (p 6=0/p)γ where γ = max
{∣∣∣(β̂j − β0j)/σ

∣∣∣}
β0j 6=0

. Note that

γ ≤ γOLS and so the length of the perturbation region will be shorter than the OLS

length when the true model is sparse. Similarly, when the covariates are not inde-

pendent,
{

(β̃j − β0j)/σ
}p
j=1
∼ N(0,Corr(β̂)) and the perturbation region generally

has shorter average length than the OLS region. Simple simulations show that when

p 6=0 parameters are estimated as nonzero, we expect the perturbation region length
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to be approximately 0.36 times the OLS region length when p = 10 and p 6=0 = 4 and

approximately 0.16 times the OLS region length when p = 20 and p 6=0 = 4 for both

the independent case and the compound symmetry case when ρ = 0.5 and σ = 1.

Additionally, it is well known that regularized estimators, while possessing asymp-

totic oracle properties, are prone to bias in finite samples. Bias correction for

the ALASSO estimator can be achieved based on our perturbation samples. We

present the technical details of the estimation of the bias in the appendix. We

find that this bias correction works well in practice, especially when the signal is

small or moderate, as when β0j = 0.5. For example, in our simulations when

p = 20, n = 100, ρ = 0.5, σ = 1, and β0j = 0.5, the bias of β̂j is -0.071 while the

bias of β̂BC
0j is -0.042. Similar gains are seen for most settings. The bias corrected esti-

mator has empirical standard error similar to that of the original ALASSO estimator

but with smaller bias. We could construct analogous bias-corrected estimators based

on other penalties and objective functions. The model size with the ALASSO and

bias-corrected ALASSO estimator in our simulations is very close to 4 when σ = 1,

except for the difficult cases when n = 100 and p = 20 for which the average model

size is closer to 4.5. For the settings where the SNR is low with σ = 2, the oracle

property is weak in finite samples and so the model size is between 5 and 6 when

p = 10 and between 7 and 10 when p = 20. We note that when p is large relative to

n, initial parameter estimates obtained with ridge regression can produce more stable

results. Also, our methods are robust to misspecification of the model and are valid

even when the true model is not sparse.

APPENDIX

A.1 Justification for the Resampling Method

To show that the distribution of n
1
2 (θ̂θθ− θθθ0) can be estimated by that of n

1
2 (θ̂θθ
∗
− θ̂θθ) |

X under conditions C1-C3, we first consider the distribution of n
1
2 (θ̂θθ
∗
− θθθ0) under
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the product probability measure P∗ generated by the data, X, and the perturbation

variables G = {Gi, i = 1, . . . , n}. Throughout, we assume that the parameter space

for θθθ, denoted by Ω, is a compact set and θθθ0 is an interior point of Ω. We let Pn denote

the empirical measure generated by X and Gn = n−
1
2 (Pn − P). We use notation →p

to denote convergence in probability.

We first show that θ̂θθ
∗
→p θθθ0. First note that

∑p
j=1 p

′
λ∗nj

(|β̃∗j |)|βj| → 0 in probabil-

ity. When the penalty is Lq, p
′
λ∗nj

(|β̃∗j |) = λn|βj|q, p′(|β̃∗j |)→p p
′(|β0j|) by the contin-

uous mapping theorem and λn → 0. For the SCAD penalty, p′λ∗nj(|β̃
∗
j |) = λnI(|β̃∗j | ≤

λn) + (aλn − |β̃∗j |)+I(|β̃∗j | > λn)/(a − 1). We consider two cases: (i) β0j 6= 0, and

(ii) β0j = 0. For case (i), λn → 0 and |β̃∗j | →p |β0j|. Thus, I(|β̃∗j | ≤ λn) →p 0 and

(aλn − |β̃∗j |)+ →p 0. For case (ii), λn → 0 and (aλn − |β̃∗j |)+ →p 0. Finally, for

the ALASSO penalty, p′λ∗nj(|β̃
∗
j |) = λn|n

1
2 β̃∗j |−1, |n 1

2 β̃∗j | = OP(1), and λn → 0. Now,

since the class of functions indexed by θθθ, {L(θθθ; D)G : θθθ ∈ Ω}, is Glivenko-Cantelli,

|L̂∗(θθθ) − P{L(θθθ; D)}| ≤ |(Pn − P){L(θθθ; D)G}| +
∑p

j=1 p
′
λ∗nj

(|β̃∗j |)|βj| uniformly con-

verges to zero. This implies the convergence of θ̂θθ
∗
→p θθθ0.

We next show that ‖θ̂θθ
∗
− θθθ0‖ = OP∗(n

− 1
2 ). It is sufficient to show that for any

ε > 0, there exits C > 0 such that

P∗
(

inf
‖θθθ−θθθ0‖≥Cn−

1
2

L̂∗(θθθ) > L̂∗(θθθ0)

)
> 1− ε (A.1)

Since Dn is Donsker, the class of functions

{
L(θθθ; D)G− L(θθθ0; D)G− U(θθθ0; D)G(θθθ − θθθ0)

‖θθθ − θθθ0‖
: ‖θθθ − θθθ0‖ ≤ δn

}
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is P∗-Donsker as well and

sup
‖θθθ−θθθ0‖≤δn

∣∣∣∣ Gn

{
L(θθθ; D)G− L(θθθ0; D)G− U(θθθ0; D)G(θθθ − θθθ0)

‖θθθ − θθθ0‖

} ∣∣∣∣= oP∗(1).

This implies uniformly for θθθ ∈ {θθθ : ‖θθθ − θθθ0‖ ≤ δn}

L̃∗(θθθ) = L̃∗(θθθ0) + Pn{U(θθθ0; D)G}(θθθ− θθθ0) +
1

2
(θθθ− θθθ0)

TA(θθθ− θθθ0) + oP∗(‖δ2
n + n−

1
2 δn‖).

(A.2)

Letting θθθ = θθθ0 + n−
1
2u, it follows from (A.2) that we may approximate n{L̂∗(θθθ0 +

n−
1
2u)−L̂∗(θθθ0)} with Gn{U(θθθ0; D)G}u+ 1

2
uTAu+n

∑p
j=1 p

′
λ∗nj

(|β̃∗j |)
(∣∣∣β0j + n−

1
2uj

∣∣∣−
|β0j|) + oP∗(‖u‖2 + ‖u‖). Therefore, 1

2
uTAu is the dominating term for the difference

and one may select sufficiently big C such that (A.1) holds.

Now we show the “consistency” of variable selection, i.e., P∗(θ̂θθ
∗
Ac = 0) → 1 as

n → ∞. It suffices to to show that for any constant C and given θ̃θθA such that

‖θ̃θθA − θθθ0A‖ = OP∗(n
− 1

2 )

P∗
[
argmin

‖θθθAc‖≤Cn−
1
2
L̂∗
{(
θ̃θθ

T

A, θθθ
T

Ac

)T}
= 0
]
→ 1. (A.3)

Let ũA and uAc denote n
1
2 (θ̃θθA − θθθ0A) and n

1
2 θθθAc , respectively. It follows from (A.2)

n
[
L̂∗
{(
θθθT

0A + n−
1
2 ũT

A, n
− 1

2uT

Ac

)T}
− L̂∗

{(
θθθT

0A + n−
1
2 ũT

A, 0
T

)T}]
= [Gn{U(θθθ0; D)T

AcG}+ ũT

AA12] uAc +
1

2
uT

AcA22uAc + n
∑
j∈Ac

p′λ∗nj(|β̃
∗
j |)|n−

1
2uj|

+ oP∗(‖uAc‖2 + ‖uAc‖) =
∑
j∈Ac

n
1
2p′λ∗nj(|β̃

∗
j |) |uj|+Rn(uAc).

where sup‖uAc‖≤C Rn(uAc)/ (‖uAc‖2 + ‖uAc‖) = oP∗(1). Zou and Li (2008) consider

the limiting behavior of n
1
2p′λ∗nj(|β̃

∗
j |) for SCAD and Lq penalties in their proof of the
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oracle properties of the one-step LLA estimator. They show that for both cases, when

j ∈ Ac, n
1
2p′λ∗nj(|β̃

∗
j |) →p ∞. Additionally, for the ALASSO penalty, n

1
2p′λ∗nj(|β̃

∗
j |) =

n−
1
2λn|n

1
2 β̃∗j |−1, when j ∈ Ac, we have n−

1
2λn →∞ and |n 1

2 β̃∗j | = OP∗(1). Hence, for

all three types of penalties, n
1
2p′λ∗nj(|β̃

∗
j |)→p ∞. Thus, for any ε > 0, there exist C1 >

C0 > 0 and N0 such that P∗
{∑

j∈Ac n
1
2p′λ∗nj(|β̃

∗
j |) |uj| ≥ C1

∑
j∈Ac |uj|

}
≥ 1 − ε and

P∗
{
C0

∑
j∈Ac |uj| ≥ |Rn(uAc)|

}
≥ 1−ε for ‖uAc‖ ≤ C and n ≥ N0. This implies that

with probability greater than 1 − 2ε, n
[
L̂∗
{(
θ̃θθ

T

A, n
− 1

2uT
Ac

)T}
− L̂∗

{(
θ̃θθ

T

A, 0
T

)T}]
≥

(C1 − C0)
∑

j∈Ac |uj| ≥ 0, which implies (A.3).

Lastly, we will justify the oracle property of θ̂θθ
∗
A. Since P∗(θ̂θθ

∗
Ac = 0) → 1, θ̂θθ

∗
A can

be considered as the minimizer of L̂∗A(θθθA) = L̂∗{(θθθT

A, 0
T)T}. Following the approach

of Zou (2006), we consider the reparametrization

L̂∗A(θθθ0A+n−
1
2uA) = PnL

{(
θθθT

0A + n−
1
2uT

A, 0
T

)T

,Di

}
Gi+

∑
j∈A

p′λ∗nj(|β̃
∗
j |)
∣∣∣β0j + n−

1
2uj

∣∣∣ .
(A.4)

Let û
(n)
A = arg minuA

L̂∗A(θθθ0A + n−
1
2uA). Note û

(n)
A = n

1
2 (θ̂θθ
∗
A − θθθ0A) is also the

minimizer of V ∗n (uA) ≡ L̂∗A(θθθ0A + n−
1
2uA) − L̂∗(θθθ0), as L̂∗(θθθ0) is a constant. Again,

it follows from (A.2)

V ∗n (uA) = n
1
2uT

APn{UA(θθθ0,D)G}+
1

2
uT

AA11uA

+n
∑
j∈A

p′λ∗nj(|β̃
∗
j |)
(∣∣∣β0j + n−

1
2uj

∣∣∣− |β0j|
)

+ oP∗(‖uA‖2 + ‖uA‖)

To examine the limiting behavior of the third term of V ∗n (u), we have β0j 6= 0,

n
1
2 (|βj0 + n−

1
2uj| − |βj0|) →p uj sgn(β0j), since j ∈ A. Also, as Zou and Li

(2008) proved in their appendix, n
1
2p′λ∗nj(|β̃

∗
j |) →p 0 when j ∈ A for the SCAD

and Lq penalties. For the ALASSO penalty, n
1
2p′λ∗nj(|β̃

∗
j |) = λn|β̃j|−1, λn → 0,

and |β̃j|−1 →p |β0j|−1 for β0j 6= 0. Therefore, by Slutsky’s theorem, we have
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np′λ∗nj(|β̃
∗
j |)
(∣∣∣β0j + n−

1
2uj

∣∣∣− |β0j|
)

= oP∗(1) and

V ∗n (uA) = uT

AGn{UA(θθθ0,D)G}+
1

2
uT

AA11uA + oP∗(1 + ‖uA‖2 + ‖uA‖).

Thus, û
(n)
A = −A−1

11 Gn{UA(θθθ0,D)G} + oP∗(1). Since Gn{UA(θθθ0,D)G} converges to

N(0,B11) in distribution, n
1
2 (θ̂θθ
∗
A − θθθ0A)→d N(0,A−1

11 B11A−1
11 ) and P∗(θ̂θθ

∗
AC = 0)→ 1.

Then the perturbed regularized estimator θ̂θθ
∗

is asymptotically normal in the true

nonzero parameter set.

Similar arguments as given above can be used to justify that the distribution of

n
1
2 (θ̂θθ
∗
− θ̂θθ) | X approximates that of n

1
2 (θ̂θθ − θθθ0). Specifically, we can similarly obtain

n
1
2 (θ̂θθA − θθθ0A) = −A−1

11 Gn{UA(θθθ0,D)} + oP(1) and P∗(θ̂θθAC = 0) → 1. Therefore,

n
1
2 (θ̂θθ
∗
A− θ̂θθA) = −A−1

11 Gn{UA(θθθ0,D)(G− 1)}+ oP∗(1). Since −A−1
11 Gn{UA(θθθ0,D)(G−

1)} | X →d N(0,A−1
11 B̂11A−1

11 ) and B̂11 →P B11, n
1
2 (θ̂θθ
∗
A − θ̂θθA) | X and n

1
2 (θ̂θθA − θθθ0A)

converge in distribution to the same limit. Furthermore, P∗(θ̂θθ
∗
AC = 0|X)→ 1.

A.2 Justification of highest density region and bias estimate

For j ∈ AC , P∗(β̂∗j = 0) → 1 and thus for any α > 0, P∗(P̂0j > α) → 1,

and P(P̂0j < p̂high) + P(P̂0j < p̂low) → 0. Hence, P∗(0 ∈ CR*HDR

j ) → 1. For

j ∈ A, n
1
2 (β̂∗j − β̂j) | X →d N(0, σ2

j ) and P̂0j →p 0, where σ2
j is the asymptotic

variance of n
1
2 (β̂j − β0j). It follows that supx |n−

1
2f ∗j (β̂0j + n−

1
2x) − φσj(x)| →p 0

where φσ(x) = φ(x/σ)/σ and φ(·) is the density function of the standard normal.

Therefore, supβ |n−
1
2f ∗j (β) − φσj{n

1
2 (β − β̂0j)}| →p 0 and n−

1
2 ĉ3 →p c30, where c30

is the solution to
∫
I{φσj(x) > c30}φσj(x)dx = 1 − α. It follows that with re-

spect to probability measure P∗, pr(β0j ∈ CR*HDR

j ) = pr
{
f ∗j (β0j) ≥ ĉ3

}
+ oP∗(1) =

pr
{
n−

1
2f ∗j (β0j) ≥ n−

1
2 ĉ3

}
+ oP∗(1) = pr

[
φσj{n

1
2 (β0j − β̂0j)} ≥ c30

]
+ oP∗(1)→ 1−α.

Here we define our bias corrected estimator for β0j, β̂
BC
j = β̂j + I(β̂j 6= 0)b̂iasj,

where b̂iasj =
(

1
M

∑M
m=1 β̂

∗
j,m

)
(−1)I[

PM
m=1{I(bβ∗j,m>0)−I(bβ∗j,m<0)}<0]

(
Â−1
λ

)
jj
/{nmax(|ξ̂7.5|,
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|ξ̂97.5|)}, Âλ = n−1

(
XTbAX bA + n−

1
2λndiag

{
1/β̃2

j

}p
j=1

)
and ξ̂r is the r percentile of

{β̃∗j,m,m = 1, . . .M}. We estimate A for ALASSO with Âλ following the methods of

Cai et al. (2009) where a stabilized estimate of the covariance of coefficients from an

accelerated failure time model is used.
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Table 1: Coverage probabilities (lengths) of confidence regions when σ = 1.

p β0
n = 100 n = 200 n = 400
ρ = 0 ρ = 0.2 ρ = 0.5 ρ = 0 ρ = 0.2 ρ = 0.5 ρ = 0 ρ = 0.2 ρ = 0.5

10 1 CR*N 92.7 (40) 93.5 (42) 93.7 (55) 95.3 (28) 94.9 (30) 95.6 (38) 94.9 (20) 94.6 (21) 95.3 (26)
CR*HDR 92.2 (39) 92.3 (42) 92.8 (54) 94.8 (28) 94.5 (29) 94.3 (37) 94.4 (20) 94.2 (21) 94.7 (26)
CR*Q 91.5 (39) 92.0 (42) 92.8 (54) 94.2 (28) 94.7 (29) 94.3 (37) 93.8 (19) 94.0 (21) 94.7 (26)
CRZou 93.3 (40) 94.5 (42) 92.3 (51) 95.3 (28) 95.1 (29) 94.8 (36) 94.9 (20) 94.6 (21) 94.6 (25)
CROLS 91.8 (38) 91.5 (40) 91.7 (51) 94.3 (27) 94.5 (29) 94.4 (36) 94.7 (19) 93.9 (21) 93.7 (26)

0.5 CR*N 95.3 (45) 95.1 (49) 92.2 (64) 93.3 (30) 96.1 (32) 96.5 (42) 94.3 (20) 95.7 (22) 95.3 (28)
CR*HDR 92.8 (41) 93.9 (43) 92.7 (53) 91.2 (29) 93.8 (31) 93.5 (39) 93.5 (20) 95.1 (21) 94.1 (27)
CR*Q 90.9 (44) 90.5 (47) 90.9 (60) 90.7 (29) 93.6 (31) 92.3 (41) 93.3 (20) 94.9 (21) 94.1 (27)
CRZou 90.9 (40) 89.7 (42) 88.3 (49) 90.6 (28) 93.7 (29) 90.5 (36) 93.4 (20) 94.4 (21) 92.7 (25)
CROLS 92.7 (38) 91.9 (40) 90.9 (51) 92.5 (27) 94.3 (29) 92.1 (36) 93.4 (19) 94.2 (21) 94.3 (26)

0 CR*N 99.7 (8) 99.9 (7) 99.9 (9) 99.8 (4) 99.9 (5) 100 (5) 99.9 (2) 100 (2) 100 (3)
CR*HDR 99.9 (4) 100 (4) 99.9 (5) 100 (2) 99.9 (2) 100 (2) 100 (1) 100 (1) 100 (1)
CR*Q 100 (19) 100 (20) 100 (25) 100 (12) 99.9 (12) 100 (16) 100 (7) 100 (7) 100 (9)
CROLS 92.4 (38) 90.9 (41) 92.8 (51) 94.3 (27) 93.3 (29) 93.3 (36) 94.5 (19) 94.7 (21) 93.9 (26)
CR*Sim 94.9 (29) 93.7 (30) 90.4 (39) 95.3 (19) 96.0 (20) 97.3 (26) 94.3 (13) 94.9 (13) 96.6 (17)
CR*SimOLS 87.7 (54) 85.8 (58) 85.7 (73) 90.7 (39) 91.9 (42) 90.5 (52) 92.5 (28) 93.2 (30) 93.3 (37)

20 1 CR*N 92.7 (40) 93.5 (43) 93.6 (57) 93.1 (28) 94.2 (30) 94.9 (38) 93.3 (20) 94.7 (21) 94.8 (27)
CR*HDR 91.2 (39) 92.6 (42) 92.5 (55) 91.8 (27) 93.5 (30) 93.9 (38) 92.5 (19) 94.6 (21) 94.0 (26)
CR*Q 90.7 (39) 92.1 (42) 92.1 (55) 91.7 (27) 92.9 (29) 94.0 (38) 92.3 (19) 94.5 (21) 94.0 (26)
CRZou 92.7 (40) 94.1 (42) 90.7 (52) 93.0 (28) 93.9 (29) 93.6 (36) 93.1 (20) 94.1 (21) 93.8 (25)
CROLS 90.3 (38) 90.3 (42) 90.3 (52) 91.6 (27) 92.1 (29) 90.9 (37) 93.0 (19) 93.3 (21) 92.7 (26)

0.5 CR*N 93.3 (46) 93.4 (50) 90.5 (66) 93.9 (30) 94.7 (33) 96.2 (44) 93.5 (21) 93.2 (22) 95.3 (29)
CR*HDR 89.5 (42) 92.1 (45) 91.8 (55) 92.1 (30) 90.4 (32) 93.3 (41) 91.8 (20) 91.1 (22) 92.6 (28)
CR*Q 86.1 (44) 86.9 (48) 88.5 (61) 91.1 (30) 89.7 (32) 91.8 (43) 91.3 (20) 90.9 (22) 92.6 (28)
CRZou 85.3 (40) 85.9 (42) 84.9 (48) 91.3 (28) 90.2 (29) 88.1 (36) 91.9 (20) 91.4 (21) 91.8 (25)
CROLS 90.9 (38) 89.5 (41) 90.6 (52) 92.5 (27) 92.3 (29) 92.0 (37) 93.7 (19) 93.2 (21) 93.5 (26)

0 CR*N 100 (6) 100 (5) 99.9 (7) 99.7 (3) 100 (3) 99.9 (4) 100 (2) 99.9 (2) 99.8 (2)
CR*HDR 100 (3) 100 (3) 100 (4) 99.9 (1) 100 (1) 100 (2) 100 (1) 100 (1) 100 (1)
CR*Q 100 (13) 100 (14) 100 (18) 99.9 (8) 100 (9) 100 (11) 100 (5) 100 (5) 100 (7)
CROLS 90.4 (38) 90.9 (41) 89.9 (52) 93.6 (27) 93.6 (29) 91.7 (37) 93.7 (19) 94.0 (21) 92.4 (26)
CR*Sim 93.0 (19) 93.6 (19) 88.3 (25) 95.3 (11) 96.6 (12) 97.2 (16) 95.3 (7) 95.7 (8) 96.5 (10)
CR*SimOLS 78.3 (58) 78.5 (64) 77.6 (80) 86.9 (41) 85.2 (45) 86.6 (57) 90.9 (29) 90.1 (32) 91.3 (41)

NOTE: We multiply values by 100. The lengths of the simultaneous confidence regions are averaged over the number of parameters.http://biostats.bepress.com/harvardbiostat/paper119



Table 2: Coverage probabilities (lengths) of confidence regions when σ = 2.

p β0
n = 100 n = 200 n = 400
ρ = 0 ρ = 0.2 ρ = 0.5 ρ = 0 ρ = 0.2 ρ = 0.5 ρ = 0 ρ = 0.2 ρ = 0.5

10 1 CR*N 93.5 (78) 92.7 (84) 91.4 (109) 93.2 (55) 94.0 (59) 94.2 (75) 93.5 (39) 94.4 (42) 94.9 (53)
CR*HDR 92.7 (76) 91.3 (82) 93.9 (103) 93.2 (54) 93.2 (58) 93.0 (74) 92.9 (39) 94.0 (42) 94.5 (52)
CR*Q 92.8 (77) 91.0 (83) 90.9 (106) 93.2 (54) 93.1 (58) 93.2 (74) 93.1 (39) 93.7 (41) 94.4 (52)
CRZou 82.3 (58) 80.2 (61) 78.7 (74) 81.6 (40) 82.5 (42) 79.3 (52) 82.7 (28) 82.1 (30) 82.7 (36)
CROLS 92.0 (75) 91.7 (81) 91.2 (102) 93.2 (54) 93.8 (58) 93.1 (73) 92.8 (39) 94.0 (42) 94.5 (52)

0.5 CR*N 88.2 (81) 87.7 (86) 85.9 (107) 93.2 (58) 93.0 (63) 90.3 (79) 94.5 (40) 94.1 (44) 95.4 (56)
CR*HDR 92.3 (74) 91.4 (78) 91.7 (97) 95.3 (54) 94.6 (58) 92.4 (70) 93.7 (39) 92.7 (42) 95.9 (52)
CR*Q 91.1 (76) 90.7 (80) 91.8 (98) 92.5 (57) 92.3 (61) 92.8 (75) 93.8 (40) 93.0 (43) 94.4 (55)
CRZou 79.1 (53) 76.3 (55) 70.7 (60) 79.3 (39) 78.7 (41) 76.1 (49) 81.5 (28) 79.8 (29) 79.9 (36)
CROLS 91.3 (75) 91.5 (81) 91.6 (102) 93.0 (54) 92.6 (58) 93.2 (73) 94.1 (39) 93.1 (42) 94.3 (52)

0 CR*N 96.3 (69) 97.0 (72) 96.7 (92) 97.9 (51) 98.0 (54) 97.8 (66) 98.3 (36) 98.2 (39) 98.7 (49)
CR*HDR 98.1 (60) 98.3 (61) 98.5 (79) 99.3 (38) 98.9 (40) 99.1 (50) 99.1 (25) 99.1 (26) 99.6 (33)
CR*Q 99.0 (66) 98.7 (70) 99.1 (88) 99.7 (46) 99.7 (50) 99.6 (62) 99.9 (33) 99.8 (35) 99.7 (44)
CROLS 91.5 (75) 90.9 (81) 91.2 (102) 93.7 (54) 92.7 (58) 93.4 (73) 94.0 (39) 94.3 (41) 93.9 (52)
CR*Sim 91.7 (110) 91.7 (116) 91.2 (148) 96.0 (82) 95.9 (87) 95.3 (109) 98.5 (59) 98.9 (64) 98.2 (80)
CR*SimOLS 85.6 (108) 86.2 (116) 87.1 (146) 90.7 (77) 91.3 (83) 92.2 (104) 91.5 (55) 93.1 (59) 93.1 (74)

20 1 CR*N 91.0 (79) 91.7 (87) 91.7 (111) 92.6 (54) 92.7 (60) 93.9 (77) 93.3 (39) 94.3 (42) 93.3 (54)
CR*HDR 90.3 (77) 90.0 (84) 93.5 (106) 92.4 (54) 92.4 (59) 92.6 (75) 93.4 (38) 93.6 (42) 92.5 (53)
CR*Q 90.3 (77) 89.5 (85) 91.2 (108) 91.9 (54) 92.1 (59) 92.0 (75) 93.2 (38) 93.4 (42) 92.5 (53)
CRZou 79.5 (59) 80.0 (63) 79.5 (78) 82.0 (40) 81.9 (43) 81.2 (53) 81.5 (28) 81.5 (30) 80.9 (37)
CROLS 89.6 (76) 90.3 (83) 90.5 (104) 92.3 (53) 92.2 (59) 92.0 (74) 93.5 (38) 93.4 (42) 92.5 (53)

0.5 CR*N 86.0 (80) 84.7 (87) 81.3 (106) 92.5 (58) 91.1 (64) 88.5 (80) 93.7 (40) 94.1 (44) 93.3 (57)
CR*HDR 90.7 (75) 89.5 (81) 88.0 (100) 94.4 (55) 94.5 (59) 92.4 (73) 92.3 (39) 92.2 (43) 94.8 (54)
CR*Q 89.8 (75) 89.3 (80) 87.1 (96) 91.9 (57) 91.5 (61) 92.7 (75) 92.5 (40) 92.4 (44) 92.9 (56)
CRZou 75.5 (53) 73.5 (55) 68.1 (62) 79.0 (40) 77.7 (42) 74.5 (49) 78.7 (28) 79.7 (30) 75.9 (37)
CROLS 89.9 (76) 89.0 (83) 87.9 (104) 92.5 (54) 91.9 (59) 92.8 (74) 92.9 (38) 92.7 (42) 93.4 (53)

0 CR*N 96.7 (65) 96.4 (71) 97.3 (90) 98.1 (47) 98.2 (52) 98.3 (66) 98.3 (34) 98.8 (37) 98.3 (47)
CR*HDR 97.6 (61) 97.9 (66) 98.1 (83) 98.9 (41) 98.7 (45) 99.1 (58) 98.9 (27) 99.3 (30) 98.8 (38)
CR*Q 98.8 (61) 98.6 (66) 99.1 (84) 99.5 (44) 99.2 (47) 99.7 (60) 99.4 (31) 99.6 (33) 99.5 (42)
CROLS 88.7 (76) 89.4 (83) 89.5 (104) 91.9 (54) 92.9 (59) 93.1 (74) 93.4 (38) 95.3 (42) 92.7 (53)
CR*Sim 93.9 (122) 93.4 (133) 91.9 (167) 97.9 (90) 97.7 (98) 97.1 (125) 99.7 (66) 99.6 (72) 99.3 (91)
CR*SimOLS 79.3 (117) 80.0 (128) 76.9 (161) 86.9 (82) 84.9 (90) 89.1 (114) 89.7 (59) 90.8 (64) 89.9 (81)

NOTE: We multiply values by 100. The lengths of the simultaneous confidence regions are averaged over the number of parameters.
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Table 3: Empirical s.d. of the parameter estimates (σ̃) and average s.e. estimates (σ̂).

p β0
n = 100 n = 200 n = 400
ρ = 0 ρ = 0.2 ρ = 0.5 ρ = 0 ρ = 0.2 ρ = 0.5 ρ = 0 ρ = 0.2 ρ = 0.5

10 1 σ̃ 21.2 24.0 30.1 14.8 15.6 19.9 10.4 11.0 13.5
σ̃OLS 20.9 23.8 28.8 14.7 15.4 19.6 10.4 11.0 13.5
σ̂∗ 19.9 21.5 27.7 14.0 15.1 19.2 10.0 10.7 13.5
σ̂OLS 19.2 20.6 25.9 13.8 14.8 18.5 9.9 10.6 13.3
σ̂Zou 14.8 15.5 19.0 10.2 10.8 13.2 7.1 7.5 9.2

0.5 σ̃ 23.3 25.1 31.1 15.5 16.9 21.9 10.5 11.5 14.3
σ̃OLS 21.6 23.2 29.2 14.6 15.9 19.9 10.2 11.1 13.7
σ̂∗ 20.6 22.1 27.8 14.8 16.0 20.2 10.3 11.1 14.3
σ̂OLS 19.1 20.5 26.1 13.8 14.8 18.6 9.8 10.6 13.3
σ̂Zou 13.6 14.0 15.4 10.1 10.6 12.4 7.1 7.5 9.2

0 σ̃ 17.3 18.0 22.8 10.7 11.3 14.3 7.2 7.5 9.4
σ̃OLS 21.9 23.1 29.5 14.3 15.7 19.5 10.3 10.8 13.7
σ̂∗ 18.6 19.8 25.2 13.2 14.3 17.7 9.4 10.0 12.7
σ̂OLS 19.2 20.6 26.0 13.8 14.8 18.5 9.9 10.6 13.3
σ̂Zou 5.7 5.5 6.8 3.1 3.2 3.9 1.9 1.8 2.4

20 1 σ̃ 22.9 25.0 31.9 14.9 16.1 20.4 10.4 11.3 14.2
σ̃OLS 22.9 24.8 31.3 14.9 16.2 20.6 10.5 11.5 14.5
σ̂∗ 20.1 22.1 28.4 13.9 15.3 19.6 9.9 10.8 13.7
σ̂OLS 19.3 21.2 26.5 13.6 14.9 18.8 9.8 10.7 13.4
σ̂Zou 15.0 16.1 19.9 10.3 11.0 13.6 7.1 7.6 9.5

0.5 σ̃ 24.0 26.5 33.1 16.0 17.7 22.9 11.0 11.8 15.4
σ̃OLS 22.5 24.9 32.8 14.9 16.5 20.5 10.5 11.5 14.3
σ̂∗ 20.6 22.4 27.4 14.8 16.2 20.5 10.3 11.3 14.6
σ̂OLS 19.3 21.1 26.6 13.7 14.9 18.8 9.8 10.7 13.5
σ̂Zou 13.5 14.1 15.9 10.2 10.8 12.6 7.2 7.6 9.4

0 σ̃ 17.1 17.8 22.5 10.0 10.8 13.2 6.4 6.5 8.7
σ̃OLS 23.6 24.9 32.1 14.8 16.1 20.5 10.3 10.8 14.3
σ̂∗ 17.4 18.9 24.0 12.2 13.4 17.2 8.8 9.6 12.2
σ̂OLS 19.3 21.1 26.6 13.7 14.9 18.9 9.8 10.7 13.5
σ̂Zou 5.9 5.8 7.8 3.1 3.3 4.2 1.7 1.7 2.2

NOTE: We present results for settings when σ, the standard deviation of ε, is 2. All
values are multiplied by 100. Note that σ̂Zou

j = 0 when β̂j = 0, but β̂j and β̂∗j are not
always 0 in the simulations, and therefore the average σ̂Zou

j is nonzero.
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Figure 1: Perturbation methods results denoting significant associations between genetic mutations and drug susceptibility.
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Figure 2: 95% perturbation CRs (CR*N and CR*HDR) for the association between genetic mutations and antiretroviral drug

susceptibility. Estimated coefficients β̂j are represented with a circle on each CR line and a star at zero signifies that the
CR includes the point mass at zero. The shaded region denotes the simultaneous confidence region CR*Sim. Note that even
coefficients estimated as zero may have CRs around their estimates and that CR*HDR may be asymmetrical and noncontiguous.
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