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A Bayesian Model Averaging Approach for
Observational Gene Expression Studies

Xi Kathy Zhou, Fei Liu, and Andrew J. Dannenberg

Abstract

Identifying differentially expressed (DE) genes associated with a sample char-
acteristic is the primary objective of many microarray studies. As more and more
studies are carried out with observational rather than well controlled experimen-
tal samples, it becomes important to evaluate and properly control the impact of
sample heterogeneity on DE gene finding. Typical methods for identifying DE
genes require ranking all the genes according to a pre-selected statistic based on
a single model for two or more group comparisons, with or without adjustment
for other covariates. Such single model approaches unavoidably result in model
misspecification, which can lead to increased error due to bias for some genes and
reduced efficiency for the others. We evaluated the impact of model misspeci-
fication from such approaches on detecting DE genes and identified parameters
that affect the magnitude of impact. To properly control for sample heterogeneity
and to provide a flexible and coherent framework for identifying simultaneously
DE genes associated with a single or multiple sample characteristics and/or their
interactions, we proposed a Bayesian model averaging approach which corrects
the model misspecification by averaging over model space formed by all relevant
covariates. An empirical approach is suggested for specifying prior model prob-
abilities. We demonstrated through simulated microarray data that this approach
resulted in improved performance in DE gene identification compared to the sin-
gle model approaches. The flexibility of this approach is demonstrated through
our analysis of data from two observational microarray studies.
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Abstract

Identifying differentially expressed (DE) genes associated with a sample characteristic is the pri-

mary objective of many microarray studies. As more and more studies are carried out with observational

rather than well controlled experimental samples, it becomes important to evaluate and properly control

the impact of sample heterogeneity on DE gene finding. Typical methods for identifying DE genes re-

quire ranking all the genes according to a pre-selected statistic based on a single model for two or more

group comparisons, with or without adjustment for other covariates. Such single model approaches un-

avoidably result in model misspecification, which can lead to increased error due to bias for some genes

and reduced efficiency for the others. We evaluated the impact of model misspecification from such

approaches on detecting DE genes and identified parameters that affect the magnitude of impact. To

properly control for sample heterogeneity and to provide a flexible and coherent framework for identi-

fying simultaneously DE genes associated with a single or multiple sample characteristics and/or their

interactions, we proposed a Bayesian model averaging approach which corrects the model misspeci-

fication by averaging over model space formed by all relevantcovariates. An empirical approach is

suggested for specifying prior model probabilities. We demonstrated through simulated microarray data

that this approach resulted in improved performance in DE gene identification compared to the single

model approaches. The flexibility of this approach is demonstrated through our analysis of data from

two observational microarray studies.
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1 Introduction

In recent years, as the rapid advances in biotechnology have markedlydriven down the cost of microarray

experiments, more and more large scale studies are carried out with heterogeneous samples conveniently

collected from subjects of different phenotypic characteristics and exposure histories. Such microarray

studies are considered observational rather than experimental in nature(Potter, 2003) because the effects

of confounding or correlation in covariates need to be properly handled. The sample complexity of such

studies presents both opportunities and challenges to the analysis. Considering the differential gene expres-

sion studies, with multifaceted sample characteristics, one may explore more complex questions that are

not possible with a more homogeneous sample. It should be possible, for example, to identify differentially

expressed (DE) genes associated with not just one sample characteristicbut multiple characteristics and/or

their interactions. However, the existing methodologies are not adequate to address those questions. For

example, in a recent study by Boyle et al. (2010) to evaluate the effects ofsmoking on the transcriptome of

human oral mucosa, besides the standard question of identifying genes affected by smoking among all sub-

jects, the investigators were also interested in identifying genes that may be affected by smoking differently

between males and females. In another study involving smokers and never smokers (Carolan et al., 2008),

micorarray data were obtained for an unbalanced lung airway epithelium sample involving different tissue

sites from subjects of different gender, age and ethnicity. An interestingquestion is to identify DE genes

associated with either a single or multiple sample characteristics. Direct application of current available

approaches to these questions does not provide a coherent solution and has clear limitations.

Methods for identifying DE genes are typically based on the ranking of statistics for between group

differences associated with one sample characteristic (also known as a factor or a covariate), such as the

t-, F- statistics, their non-parametric counterparts, their modified forms, or the Bayesian versions (see Jef-

fery et al. (2006) for a review of the various approaches). These methods are suited for well controlled

experiments. Their lack of control for confounding factors attracts increasing concern when applied to

observational microarray studies (Potter, 2003; Webb et al., 2007; Troester et al., 2009). Indeed, with ob-

servational samples, the results may be confounded by a variety of sample characteristics, such as age, sex,

genetic profile, exposure and treatment history, etc. This confounding effect can lead to an increased num-

ber of false discoveries. Recent studies by Scheid and Spang (2007)and Leek and Storey (2007) suggested

that hidden traces of unknown confounders may exist in DE gene studiesand that ranking statistics need

to be adjusted accordingly. To account for the effects of possible confounders, several approaches have

been adapted from traditional observational studies and applied to microarray data (Smyth, 2004; Hummel

et al., 2008). These approaches deal with possible confounding eitherthrough multiple regression analysis
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that adjusts for known confounders or unrecorded confounders represented by surrogate variables (Leek and

Storey, 2007) or through a matched study design (Heller et al., 2009).

Regardless of covariate adjustment, the aforementioned approaches rank the genes based on the effect

sizes estimated using the same model for all genes. Such a single model approach can be problematic for

high dimensional microarray data because different genes may be involved in different biological processes

and their expression may be affected by different sets of covariates. More specifically, such an approach

leads to model misspecification for a certain proportion of the genes and does not offer the same level of

accuracy and efficiency for the effect size estimation for genes underinvestigation.

To avoid model misspecification in microarray data analysis, an ideal solution could be to apply different

models to different sets of genes whereby each model contains only the set of covariates relevant to the genes

it is describing. Yet, identifying appropriate models for different sets of genes can be challenging since

model uncertainties make it difficult to identify a single best model. Bayesian model averaging (BMA)

approach offers an attractive alternative solution to this problem. Hoeting et al. (1999) provides a review of

this approach in more traditional settings. In recent years, BMA approaches have been developed to handle

various problems involving high throughput genetic data. For example, Yeung et al. (2005) developed a

BMA approach for improved sample classification using microarray data. Xuet al. (2011) and Wu et al.

(2010) developed BMA approaches for the gene association studies. Sebastiani et al. (2006) developed a

BMA approach for differential gene expression analysis under two different distributional assumptions of

the data. Ishwaran and Rao (2003) and Conlon et al. (2006) developed Bayesian model selection/averaging

approaches for differential gene expression analysis under ANOVA-based models. All these approaches are

computationally expensive as MCMC simulation are needed to obtain estimates of model parameters. In this

study, we propose a BMA approach for observational microarray studies based on linear regression models.

It does not require MCMC simulations for estimating model parameters and offers a flexible and coherent

framework to identify simultaneously DE genes associated with a single factor,multiple factors and/or their

interactions.

In the next section, we discuss the limitations of the single model approaches.In particular, we evaluate

the impact of model misspecification from such approaches on DE gene finding. We also identify parameters

that affect the magnitude of impact. In Section 3, a BMA approach to DE genefinding is proposed. This

approach intends to properly control for sample heterogeneity and to account for model uncertainty. In

section 4, we compared the performances of ranking statistics based on a simple model, a complex model

and the BMA approach in simulated microarray studies. Finally, in section 5, theBMA approach was

applied to two existing microarray data sets. Our analysis supports the utility of the BMA method as a
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robust and general tool for detecting DE genes in observational microarray studies.

2 Limitation of the Single Model Approaches

In this section, we consider a general framework to describe gene expression variations in microarrays.

Under this framework, we argue that the single model approaches to DE gene detection, are overly simplified

and subjected to the impact of model misspecification. For example, they can result in the following two

forms of model misspecification: (a) the omission of relevant covariates when a simple model is used, and

(b) the inclusion of irrelevant covariates when a complex model is used. The consequences of these two

forms of model misspecification have been discussed extensively in the linear regression setting (Rao, 1971,

1973; Rosenberg and Levy, 1972). The implication of these results, however, has not been fully investigated

in DE gene studies. In this section, we evaluate the consequences of modelmisspecification from the single

model approaches on performance measures often used in DE gene studies, including the false discovery

rate (FDR) and sensitivity. We conclude this section with a summary of the main results.

2.1 Notation

We consider an observational microarray study which aims to identify DE genes associated with different

values of a factorX1, for example, cigarette smoking exposure. Expression profiles ofJ genes are obtained

for n subjects with different values ofX1. Without loss of generality, a typical model for identifyingX1

related DE genes can be written as:

yij = β0j + β1jx1i + · · · + βkjxki + ηij (2.1)

or

yij = α0j + α1jx1i + · · · + αkjxki + α(k+1)jx(k+1)i + ǫij (2.2)

whereyij is the normalized and typically log-transformed expression level of genej in subjecti, x1i is

the factor level forX1 in subjecti, x2i, . . . , xki are factor levels for other factors, denoted byX2, . . . , Xk,

that affect the expression of all the genes, for example, experimental parameters involved in the microarray

experiments, andx(k+1)i is the level of a potential confounding factor ,Xk+1, for example, gender, age,

race, alcohol exposure, etc. Andηij , ǫij denote normally distributed random errors.

To identify DE genes related toX1, p-values based on t-statistic of estimate of eitherβ1j or α1j can

be used as the ranking statistics. If model (2.1) is used, the relevant t-statistic for genej is tM1,1j =

β̂1j/sd(β̂1j), whereβ̂1j is the least square estimate ofβ1j . If model (2.2) is used, the t-statistic for genej is
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calculated astM2,1j = α̂1j/sd(α̂1j). It can be shown that the two statistics are related as follows

tM1,1j =
S1·23...k

S1·23...k+1
tM2,1j +

S−2
k+1·1...kbk+1,1e

T
k+1Yj

sd(β̂1j)
. (2.3)

whereS2
k+1·1...k, bk+1 andek+1 are the residual sum of squares, least square parameter estimates and resid-

ual, respectively, from the following auxiliary regression equation

Xk+1 = Xbk+1 + ek+1 (2.4)

whereX = (X1, . . . , Xk). And S2
1·23...k.k+1 is the residual sum of squares for the auxiliary regression with

X1 as the outcome andX2, . . . , Xk+1 as the covariates.

For an observational microarray study, such single model approach withor without covariate adjustment

has an intrinsic limitation which is that neither model can be the true model for all thegenes. For the above

discussed hypothetical microarray study, model (2.1) is the true model onlyfor genes not related toXk+1

(Xk+1 null genes, orM1 genes), and model (2.2) is the true model only for genes related toXk+1 (Xk+1

DE genes, orM2 genes). Based on these considerations, a multi-model approach that uses p-values oftM1,1·

to rank theM1 genes and p-values oftM2,1· to rank theM2 genes is preferable.

The performance difference between the single model and the multi-model approaches can be compared

by utilizing the relationship between the two t-statistics. LetF1(t) andF2(t) be the density distributions of

the ranking statisticstM1,1· andtM2,1·, respectively. Under the multi-model approach, the density distribu-

tion of the ranking statistics can be written as

F (t) = (1 − f)F1(t) + fF2(t)

wheref is the proportion ofM2 genes.F1(t) andF2(t) can further be written as

F1(t) = (1 − p1)F10(t) + p1F11(t)

F2(t) = (1 − p2)F20(t) + p2F21(t).

wherep1 andp2 are the proportions of DE genes inM1 andM2 genes,F·0(t) andF·1(t) are distributions of

the test statistic for the null and DE genes, respectively. For a given cut-off c > 0, the false discovery rate
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and sensitivity can be calculated as

FDR(c) = (1−f)(1−p1)[1−F10(c)]
(1−f)[1−F1(c)]+f [1−F2(c)] +

f(1−p2)[1−F20(c)]
(1−f)[1−F1(c)]+f [1−F2(c)] (2.5)

and

S(c) = 2(1 − f)p1[1 − F11(c)] + 2fp2[1 − F21(c)].

We discuss the impact of the two single model approaches on the FDR and sensitivity separately.

2.2 Single model without covariate adjustment

When Model (2.1) is used, the FDR can be written as

FDRM1(c) = (1−f)(1−p1)[1−F10(c)]

(1−f)[1−F1(c)]+f [1−F
M1

2
(c)]

+

f(1−p2)[1−F
M1

20
(c)]

(1−f)[1−F1(c)]+f [1−F
M1

2
(c)]

The sensitivity can be written as

SM1(c) = 2(1 − f)p1[1 − F11(c)] + 2fp2[1 − FM1

21 (c)].

The superscriptM1 is used to denote that the distribution of t-statistic is derived from model (2.1),which is

mis-specified for theM2 genes because of omitting relevant covariateXk+1.

Omission of relevant covariate leads to bias in the model parameter estimates (Rao, 1971). Specifically,

the bias can be written as

Bias(β̂1j) = E(S−2
k+1·1...kbk+1,1e

T
k+1Yj) = αk+1,j · bk+1,1, (2.6)

wherebk+1,1.23...k is the least square estimate of the parameter associated withX1 in the auxiliary regression

(2.4). Therefore, we have for theM2 genej

E(tM1,1j) ≈
S1·23...k

S1·23...k+1

[

E(tM2,1j) +
bk+1,1αk+1

σ2j/S1·23...k+1

]

.

It is also known thatS2
1·23...k.k+1 ≤ S2

1·23...k.

Therefore, for theM2 DE genes, becausetM1,1j can be greater or less thantM2,1j depending on the
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values ofα1 andBias(β̂1), FM1

21 (t) is unlikely to be systematically different fromF21(t) and results in

great changes in sensitivity.

However, for theM2 null genes, the above results indicateE|tM1,1j | ≥ E|tM2,1j |, i.e. the distribution

of tM2,1j for theM2 null genes moves away from zero. Hence,1 − FM1

20 (c) ≥ 1 − F20(c). Let a andb be

the denominator and numerator ofFDR(c) as written in (2.5), respectively. Letδ be the difference between

the numerators ofFDRM1(c) andFDR(c), i.e.,

δ = f(1 − p2){[1 − FM1

20 (c)] − [1 − F20(c)]},

andδ′ be the difference between the denominators of the two FDRs

δ′ = f(1 − p2){[1 − FM1

20 (c)] − [1 − F20(c)]}+

fp2{[1 − FM1

21 (c)] − [1 − F21(c)]}
.

As discussed above,[1 − FM1

21 (c)] is comparable to[1 − F21(c)] because the bias is unlikely to lead to

systematic difference betweenFM1

21 (t) andF21(t). Additionally, p2 generally is much smaller than1 − p2

in microarrays. Therefore,δ′ ≈ δ andFDRM1(c) can be approximated by(b + δ)/(a + δ). Since(b +

δ)/(a + δ) ≥ b/a for anya > b > 0 andδ ≥ 0, this indicatesFDRM1(c) ≥ FDR(c), i.e., increased FDR

with this single model approach.

2.3 Single model with covariate adjustment

When Model (2.2) is used, the false discovery rate and sensitivity at a given cut-off can be written as

FDRM2(c) =
(1−f)(1−p1)[1−F

M2

10
(c)]

(1−f)[1−F
M2

1
(c)]+f [1−F2(c)]

+

f(1−p2)[1−F20(c)]

(1−f)[1−F
M2

1
(c)]+f [1−F2(c)]

and

SM2(c) = 2(1 − f)p1[1 − FM2

11 (c)] + 2fp2[1 − F21(c)]

due to the potential change in the distributions of test statistic for theM1 genes. And the relationship of the

two t-statistics can be written as

tM2,1j =
S1·23...k+1

S1·23...k
tM1,1j +

S−2
k+1·1...kbk+1,1e

T
k+1Yj

sd(α̂1j)
.
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It is known that, with the inclusion of an irrelevant covariate, model 2.2 doesnot result in biased parameter

estimate for theM1 genes. However, sincesd(β̂1j) ≤ sd(α̂1j) in general,E(|tM1,1|) ≥ E(|tM2,1|) for M1

DE genes. Therefore the distributionFM2

11 (t) moves toward 0 and results inSM2(c) ≤ S(c), i.e., reduced

sensitivity in detecting DE genes inM1 genes. As|tM1,1| in general is likely to be greater than|tM2,1|,

FM2
10 also shrinks toward 0. It is likely thatFDRM2(c) will be comparable toFDRM1(c). Hence, reduced

sensitivity in detecting DE genes inM1 genes will be the main consequence resulted from applying the

complex model for all the genes.

2.4 Summary

The above results suggested that the single model approaches with or without covariate adjustment can lead

to inferior performance. It is expected that the impact on FDR and sensitivity could be greater if moreXk+1-

like covariates exist in the sample. These results will be further demonstratedin the simulation study. The

above discussion also suggested that the performance for DE gene detection can be improved by applying

the correct model for the right sets of genes. Yet, such knowledge is commonly not available beforehand. In

the following section, we propose a BMA approach as a practical substitutefor the multi-model approach

for DE gene detection that takes into account both sample heterogeneity andmodel uncertainty.

3 A Bayesian Model Averaging Approach

In this section, we discuss an efficient Bayesian model averaging approach to identifying DE genes asso-

ciated with a covariate of interest. We consider a series of possible models for describing the expression

pattern of each gene. Letγ = (γ1, . . . , γK), be a binary vector of lengthK, with each element indicating

the inclusion status of thekth covariate in the model,

γk =







0 ifβk = 0

1 ifβk 6= 0

Each model in the model space can then be labeled byγ, namelyMγ . For genej, j = 1, . . . , J , the model

can be written as

Mγj : Yj = αγj1n + Xγβγj + N(0, φ
−1

γj In),

whereαγj is the intercept term;Xγ is the sub-matrix ofX consisting of columns associated with non-zero

γk; βγj andφγj are parameters under this model.
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The marginal posterior inclusion probability for variableXk and genej, is then defined as

Pkj = P (γkj 6= 0|Yj) =
∑

γ

1γkj=1 × P (Mγj|Yj), (3.1)

which is the sum of posterior probabilities of all models that include the covariate of interest. It quantifies

strength of association between covariateXk and the expression level of thejth gene and can be used to

rank the DE genes.

The posterior model probability forMγj can be calculated based on Bayes factors of pairs of models,

for example,

P (Mγj|Yj) =
p(Mγj)BF (Mγj : M0j)

∑

γ
′ p(Mγ

′
j)BF (Mγ

′
j : M0j)

. (3.2)

wherep(Mγj) is the prior model probability for genes measured in the microarray experiment and the

Bayes factorBF (Mγj : M0j) is defined as

BF (Mγj : M0j) =
f(Yj |Mγj)

f(Yj |M0j)

i.e., the ratio of marginal likelihood underMγj and the base model,M0j . Here the null model (i.e., the

model with only the intercept term) is used as the base model. ForMγj , the marginal likelihood is obtained

by integrating out the model parameters from the joint posterior probability

f(Yj|Mγj) =

∫

f(Yj|Θγj)π(Θγj)dΘγj

whereΘγj = (αγj, βγj, φγj), andπ(Θγj) is the prior of model parameters.

There are various choices forπ(Θγj). To be able to determine the Bayes factor, proper priors are needed.

In our study, we utilized the Zellner-Siow prior for model parameters (Zellner and Siow, 1980). Liang et al.

(2008) have shown that this prior resolves several consistency issues associated with fixedg-priors while

retaining several attractive properties such as adaptivity, good shrinkage properties, robustness and fast

marginal likelihood calculation. When comparing two nested models as in our case, the Zellner-Siow prior

places a flat prior on common coefficients, i.e., (αγj , φγj), whereπ(αγj , φγj) ∝ 1/φγj . And a Cauchy prior

on the remaining parameters, i.e.,βγj. The multivariate Cauchy prior can then be represented as a mixture

of g-priors with an Inv-gamma(1/2,n/2) prior ong, i.e.

π(βγj |φγj) ∝

∫

N

(

βγj |0,
g

φγj
(XT

γ Xγ)−1

)

π(g)dg,
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with

π(g) =

√

n/2

Γ(1/2)
g−3/2e−n/(2g).

And the Bayes factor in equation (3.2) can be written in closed form as

BF (Mγj : M0j) =

∫ ∞

0
(1 + g)(n−1−ργj)/2 ×

[1 + (1 − R2
γj)g]−(n−1)/2π(g)dg

whereργj denotes the number of covariates included inMγj andR2
γj is the ordinary coefficient of deter-

mination of this model. This quantity can be obtained through direct numerical integration or through the

Laplace approximation.

Another step for calculating the posterior model probability, as specified in equation (3.2), is to specify

appropriate prior model probabilities. Typically, these prior model probabilities reflect our prior belief about

the distribution of the models among the genes in the transcriptome. However, it isoften difficult to provide

reasonable quantification of the prior belief. One may be tempted to use a uniform prior with the underlying

assumption that each of the models is equally likely to be the true model when priorknowledge about the

particular gene or the transcriptome is lacking. Yet this assumption can be problematic when thousands of

genes are evaluated simultaneously because it puts an unrealistically low weight to the null model. When the

resulting posterior model probabilities are used to estimate the posterior expected FDR (peFDR) (Newton

et al., 2004), great underestimation can occur (Sartor et al., 2006; Caoet al., 2009). Correctly estimating

FDR under the Bayesian framework remains an active research field (Efron, 2008). Recent discussions and

attempts have largely been focused on statistics derived from single model approaches (M̈uller et al., 2007;

Cao and Zhang, 2010). In our case, proper control for multiplicity derived from multiple genes and multiple

models becomes even more challenging.

We believe that the prior should lead to reasonably well calibrated posteriormodel probability that

measures the model’s ability for describing the data. We propose an empiricalapproach to obtain estimates

for the prior model probabilities,p(Mγj), under the assumption that the prior probabilities of a given model

is the same across genes, i.e.,p(Mγj) = p(Mγ). We first estimate the proportion of DE genes described by

a non-null modelγ, ωγ , using Bayes factors. SinceBF (Mγ : M0) > c, c ≥ 1 suggests evidence against

the null model (Kass and Raftery, 1995), we can estimateωγ as follows

ωγ =
1

J

∑

j

1[BF (Mγj :M0j)=max(BFj)] · 1[BF (Mγj :M0j)>c],

10
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whereBFj is a vector of null based Bayes factors for genej. Therefore,ωγ represents the proportion of

genes for which modelγ is the best model in terms of Bayes factors. Given that Bayes factors based on

the Zellner-Siow prior is consistent for model selection whether or not the true model is null (Liang et al.,

2008), this estimator is a consistent estimator of the proportion of genes expressing in a pattern specified

by the model. In our simulation studies, we found that fixingc at 1 resulted inωγ being close to the truth

in most settings. Second, we argue that if the prior model probabilities,pγ , results in the equality between

the overallpeFDR underMγ and1−ωγ , reasonable calibration of the posterior model probabilities can be

achieved. Therefore, the prior model probabilities,p(Mγ), can be derived from the following relationship

ωγ =
1

J

∑

j

BF (Mγj : M0j)p(Mγ)
∑

γ′ BF (Mγ′j : M0j)p(Mγ′)
,

using an iterative procedure under the constraint
∑

γ p(Mγ) = 1. At present stage, theoretical justification

for this prior choice for multiplicity control is still lacking. We resort to the simulation study to show that

this prior choice led to improved performance in both the ranking of the genesand in direct FDR estimation

compared with the uniform prior.

4 Simulation Study

There were two reasons to carry out the simulation study. First, we intendedto demonstrate the performance

difference in DE gene detection between the single model approaches with or without covariate adjustment,

and the “gold standard” multi-model approach where covariate adjustments were applied to appropriate

genes. The interplay between the bias and efficiency as the source for the difference will be explored.

Secondly, the performance of the BMA approach as a practical substitutefor the multi-model approach will

be evaluated. Sensitivity to the choice of prior model probabilities will be discussed.

4.1 Simulation of microarray data

The microarray data were simulated to mimic an observational study for identifying genes associated with a

binomial factor, for example, the smoking status (s), in a sample with two confounders, for example, gender

(g) and heavy alcohol drinking (d). Each microarray data set consists of the expression of 10000 genesfrom

n subjects, in which half were heavy smokers and half were never-smokers. We limited our attention to

the imbalanced data where the model with adjustment tog andd could presumably help. We assumed that

there were 25% females and 75% heavy drinkers in smokers, and 75% females and 25% heavy drinkers in

nonsmokers. Additionally, in smoking males, 87% are assumed to be heavy drinkers, whereas in smoking
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females, 60% are assumed to be heavy drinkers; in non-smoking males, the proportions were 40% and

13%, respectively. Therefore, the data show a complex pattern of correlation, i.e., not only are gender and

drinking status correlated with smoking status individually, gender is also correlated with smoking status.

Gene expression for each subject was simulated based on the following model

yij = β1jsi + β2jgi + β3jdi + εij

whereβ.j takes either 0 or non-zero values generated from normal distributions withvariances generated

following procedures similar to that described by Smyth (2004). Detailed procedures for generating the

simulated microarray data are provided in the supplemental material. Each simulation setting was charac-

terized by values of the following parameters:fs, fg, andfd, the proportion of genes affected by smoking

(s), gender (g), or heavy drinking (d), respectively, andn, the sample size. Both moderate and relatively

large sample sizes were considered,n = 40 andn = 80. For each setting, we simulated10 microarray data

sets. The reported results were averaged over the results obtained foreach data set.

4.2 Performance of the single model approaches

In this section, we show the performance difference between the single model approach and the gold stan-

dard multi-model approach. To identify DE genes associated withs, p-values for the effects ofs measured

through four approaches were used as ranking statistics. Specifically,we used the single model approach

without covariate adjustment (SM1), the single model approach with covariate adjustment (SM2), the

surrogate variable analysis (SV A) method developed by Leek and Storey (2007) and the gold standard

multi-model approach (MM ) where the expression data of the DE genes were fit with their respectivetrue

models. Under theSV A approach, we assumed that information regarding gender and drinking status was

not recorded and surrogate variables were generated in place of them.Under theMM approach, the ad-

justment forg and/ord is applied only to genes truly affected byg and/ord. Thus the results from the

MM approach can be viewed as the gold standard. The sensitivity and FDR corresponding to each ranking

statistic were obtained. To show the interplay of bias and efficiency on theseperformance measures, we

also quantified the contribution to these measures from genes not associated with g andd, denoted asg0d0

genes.

Table 1 shows the performance difference between the single and multi- model approaches among top

ranked genes identified with a p-value cut-off of 0.001. We can see that, as discussed in Section 2,SM1 led

to large increase in total FDR compared toMM . The magnitude of difference increased with the sample
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Table 1: False discovery rate (FDR) and sensitivity (S), in %, among the top smoking related genes iden-
tified with a p-value cut-off of 0.001 using ranking statistics based on the single model approach without
covariate adjustment (SM1), the single model approach with covariate adjustment (SM2), the surrogate
variable analysis approach (SV A), and the “gold standard” multi-model approach (MM ). FDR and sensi-
tivity arising fromg0d0 genes (i.e. genes not associated withd andg) were included. Microarray datasets
were simulated based on various settings defined by proportion of genes associated with each covariate:fs,
fg, fd, andn.
Methods FDRg0d0 FDRtotal Sg0d0 Stotal FDRg0d0 FDRtotal Sg0d0 Stotal

n=40 n=80
fs = 0.10, fg = 0.05, fd = 0

SM1 4.2 6.5 14.1 14.9 2.3 8.2 28.5 30.2
SM2 6.1 6.5 10.0 10.4 2.2 2.5 23.1 24.3
SV A 6.2 6.7 9.3 9.7 2.2 2.3 22.7 24.0
MM 4.4 4.8 14.1 14.5 2.4 2.6 28.5 29.7
fs = 0.05, fg = 0.10, fd = 0

SM1 8.5 18.0 12.9 14.5 3.6 22.9 26.6 29.8
SM2 10.5 11.7 9.4 10.6 5.1 5.7 21.0 23.4
SV A 10.3 11.6 9.0 10.2 5.4 6.2 20.7 23.1
MM 9.5 9.5 12.9 14.1 4.5 5.0 26.6 29.0
fs = 0.1, fg = 0.05, fd = 0.05

SM1 4.1 8.5 13.4 15.0 2.6 12.8 26.4 29.5
SM2 6.8 7.4 8.4 9.3 3.0 3.2 19.9 22.1
SV A 7.1 8.0 8.2 9.1 2.9 3.1 19.3 21.5
MM 4.4 4.9 13.4 14.3 3.0 3.1 26.4 28.8
fs = 0.05, fg = 0.10, fd = 0.10

SM1 4.7 19.4 12.6 15.7 3.4 36.9 25.1 31.3
SM2 9.9 12.6 7.9 9.6 4.5 6.1 18.4 22.6
SV A 10.7 13.1 7.7 9.4 4.6 6.0 18.0 22.4
MM 5.9 8.2 12.6 14.4 5.4 6.5 25.1 29.6

size, the proportion of the genes associated with the confounder and the number of the confounders. On

the other hand, the difference in FDR contributed from theg0d0 genes remained small. Hence, the results

suggested that bias in effect estimation among genes associated with the confounders was the main source

for the FDR increase.SM2 andSV A showed slightly greater FDR compared toMM . This increase came

mainly fromg0d0 genes and suggested that the effects of the efficiency loss could have anegative impact on

the total FDR, particularly in small sample size settings. A more notable limitation ofSM2 andSV A was

the loss of sensitivity. Compared toMM , the magnitude of sensitivity loss increased slightly with sample

size and the number of confounders.
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Table 2: Power of different methods for identifying genes differentially expressed between smokers and
non-smokers at 5% FDR under different simulation settings.
fs fg fd SM1 SM2 SV A BMA1 BMA2 BMA3 MM

n = 40
0.10 0.05 0 139 96 83 145 119 149 155
0.10 0.05 0.05 126 80 72 137 124 137 150
0.05 0.10 0 42 31 31 51 46 52 52
0.05 0.10 0.10 46 30 26 56 49 57 58
n = 80

0.10 0.05 0 286 294 290 346 335 344 356
0.10 0.05 0.05 239 250 248 317 308 318 334
0.05 0.10 0 94 113 110 147 135 146 152
0.05 0.10 0.10 82 108 106 145 138 142 147

4.3 Performance of the BMA approach

In this section, we examine the performance of the proposed BMA approach in comparison with the single

model and the gold standard multi-model approaches. To evaluate the effects of prior choice on the perfor-

mance of the BMA approach, we considered three prior model probability choices: the proposed empirical

prior obtained using the two step approach (BMA1), the uniform prior (BMA2), and the true proportion of

genes for each model (BMA3). The posterior inclusion probability ofs was used as the ranking statistics.

The number of genes identified by each methods at 5% FDR were compared inTable 2. We can see that the

BMA approaches had greater power in detecting DE genes compared to theSM approaches in general and

the performance came close to that of theMM approach. In fact, in all the simulated settings, theBMA

approaches, particularlyBMA1 andBMA3, showed sensitivity close to theMM approach for a given

FDR threshold and greater than the single model approaches. Fig 1 showed the magnitude of performance

difference in two representative settings. TheBMA approaches appeared to be relatively insensitive to the

choice of prior model probabilities for gene ranking. In the supplemental material, we showed additional

results that suggest that the ranking performance ofBMA1 is relatively robust to the choice ofc and to the

misspecification of the model space.

Besides providing proper ranking of the gene, it is often useful to estimatethe FDR of the finding

and quantifying the proportion of DE genes in the transcriptome. Therefore, we also evaluated how well

the FDR could be estimated based on the ranking statistics. For the p-value based approach, FDR and

the proportion of DE genes were estimated using the approach by Storey etal.(Storey, 2002; Storey and

Tibshirani, 2003). For the Bayesian model averaging approach, thepeFDR was directly estimated based on
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(a). fs = 0.1, fg = 0.05, fd = 0, n = 40. (b). fs = 0.05, fg = 0.1, fd = 0.1, n = 80.

Figure 1: Sensitivity vs. FDR curves in two simulation settings.

the posterior inclusion probability (Newton et al., 2004), i.e.

peFDRk(p) =
∑

j

(1 − Pkj) · 1[Pkj≤p]/
∑

j

1[Pkj≤p],

where0 < p ≤ 1 andPkj is the posterior inclusion probability of variablek for genej. Fig 2 shows the

estimated FDR vs. the true FDR in two representative settings. We can see thatusing p-values fromSM1 in

studies with confounder associated genes, the estimated FDR was smaller thanthe true FDR. The magnitude

of underestimation increased with the sample size and the proportion of the confounder associated genes.

On the other hand, the FDR estimated using p-values fromSM2 or MM was very close to the true FDR.

The accuracy of thepeFDR, as observed by other researchers, appeared to be sensitive tothe prior choice.

peFDR obtained based onBMA3, the Bayesian model averaging approach with uniform prior can greatly

underestimate the FDR.peFDR obtained based onBMA1 showed improved accuracy in FDR estimation.

The results from our simulation also suggest that thepeFDR based onBMA1 are close to true FDR in

all simulated settings.BMA3 appeared to result inpeFDR that slightly overestimated the FDR. Level of

sensitivity of theBMA1 approach to the choice ofc and model space misspecification can be found in the

supplemental material.

5 Application to the Observational Micorarray Datasets

We applied the BMA approach to two observational microarray studies involving healthy current smokers

and never smokers. Through the application, we intended to demonstrate thecomplex relationship between
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(a). fs = 0.1, fg = 0.05, fd = 0, n = 40. (b). fs = 0.05, fg = 0.1, fd = 0.1, n = 80.

Figure 2: Estimated FDR vs. true FDR in two simulation settings.

the gene expression pattern and sample characteristics and the flexibility of the Bayesian model averaging

approach in capturing and quantifying such relation in a unified and coherent framework.

5.1 Microarray study of airway epithelium samples

The first dataset we used came from a microarray study (GSE10006) ofa total of 87 current and never

smokers (Carolan et al., 2008). The microarray analyses were carriedout on airway epithelium samples

obtained from these subjects. The data were preprocessed with Affymetrix MAS method. After excluding

genes whose expression was deemed absent or marginal among all subjects, the data we used consisted

of expression profiles of 44085 genes from the Affymetrix HGU133plus2 chip for each subject. Besides

smoking status, information on age, gender, race and site of the tissue was available. We limited our analyses

to the data from 60 healthy subjects. Individuals with known lung disease were excluded. The samples were

heavily unbalanced, the proportion of smokers was greater in female participants than in males (86% vs.

57%), the proportion of large airway samples was slightly larger in females than in males (57% vs. 46%),

and the proportion of caucasian participants was larger in females compared to males (43% vs. 37%).

Since the subject characteristics were captured in five covariates, a totalof 25 models were included in

the model space. Interaction terms were ignored. The BMA approach allowed for simultaneous assessment

of the association between the gene expression and each of the sample characteristics. And it allows for

straightforward estimation of both the total proportion of the DE genes in the transcriptome and the propor-

tion of DE genes associated with each covariate based on Bayes factors.The application showed a complex

picture of the expression pattern in the epithelium microarray study. A total of52% of the genes were esti-

mated to be differentially expressed. The estimated proportions of DE genesfor association withsmoking,
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site, gender, race, andage were 15%, 24%, 5%, 5% and 3%, respectively. By controlling thepeFDR at

5%, we identified a number of DE genes associated withsmoking (1742),site (5019),gender (49), race

(33) andage (5). The complex expression patterns were illustrated in Fig 3 where we show the expression

pattern of the top 20 genes associated withsmoking, gender, site andrace, respectively.
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Figure 3: Gene expression intensities for the top 20 genes associated with each of the four covariates
(smoking, gender, site, andrace) identified by usingBMA1. Labels along the x-axis show the char-
acteristics of a sample subgroup. From top to bottom, the label represents categories ofrace (Others vs.
White; O vs. W),site (Large airway vs. Small airway; L vs. S),gender (Male vs. Female; M vs. F), and
smoking status (Non-Smoker vs. Smoker; NS vs. S). For example “O L M NS” indicates the subgroup
with the following characteristics: Other races (i.e., non-white), Large airway sample, Male, Non-Smoker.

The results also revealed complex roles of some of these DE genes which showed strong association with

multiple sample characteristics. For example, among the top 1742smoking related DE genes, 790, 40 and 9

probesets of genes were also identified as hits for association with tissuesite, gender andrace, respectively.

Additionally, there were 26 genes identified as hits for association with three or more sample characteristics,

mostlysmoking, site andgender. The BMA approach allows for assessing jointly genes’ association with

multiple sample characteristics. For example, the joint posterior inclusion probability of smoking, site,

andgender can be obtained by summing over the posterior probabilities of models containingall three

covariates.peFDR can then be derived similarly using this posterior inclusion probability. The analysis

identified 4 genes, IRX2, TMEM17, UGT1A3, and NRARP as hits for joint association with the three

characteristics at 5%peFDR. The existence of such genes suggested a connection between tobacco smoking
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and the functions of these genes which were partly revealed through theirassociation with the phenotype

of the subjects from whom samples were obtained. Results from such analysis offers additional important

information that is useful for generating new hypotheses and insights into the effects of tobacco smoke on

the transcriptome.

As discussed in the previous sections, given the existence of genes associated with various sample char-

acteristics, single model approaches were subjected to the effects of increased bias or reduced power in

unbalanced study design. For the epithelium microarray data, we saw largedifferences in gene rankings

derived from the Bayesian model averaging approach and the single model approaches, including the single

model approach withsmoking status as the only covariate (SM1), the single model approach that included

all recorded covariates (SM2), and the surrogate variable approach (SV A). Among the top 1000 smok-

ing related DE genes identified by each method, the agreement was merely 17%among all four methods.

Specifically, theSV A approach produced gene lists that were vastly different from the genelists produced

by the other approaches, where more than half of the top 1000 genes hadranks beyond 1000 by the other

three methods (see the Venn diagram in supplemental material). Careful examination of the gene lists pro-

duced by theSV A approach suggested possible effects of over-fitting as the SVA approach adjusted for

a total of 12 surrogate variables for each gene. The agreement was about 62% for theSM1, SM2, and

BMA1 approaches, i.e., 62% were ranked within top 1000 by all three methods. Andthe agreement be-

tween BMA1 and each of the single model approaches was less than 80%. These differences were driven

by the genes whose expression patterns were not adequately capturedby the single model.

5.2 Microarray study of oral mucosa samples

The second dataset we used included a total of 79 age and gender matched healthy smokers and never

smokers. The microarray analyses were carried out on oral mucosa samples obtained from these subjects

through buccal biopsies. The preprocessed microarray data consisted of 24103 probesets of genes from the

Affymetrix HGU133plus2 chip for each subject. Information regarding age, gender, smoking status were

available. Details of the original study were provided in Boyle et al. (2010).

The study samples were balanced in terms of gender between smokers and non-smokers. Therefore,

single model approaches with or without adjustment for gender would provide similar results. However, one

interesting biological question was whether there were genes affected bysmoking differently between the

males and females. In this context, direct application of the single model approach could lead to confusing

results. For example, at 5% estimated FDR, the single model without adjustment for the interaction term

resulted in 1254 hits for association withsmoking, while the model adjusted for bothgender andgender×
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smoking interaction led to the identification of only 2 genes as hits for association withsmoking and no

genes were identified as hits forsmoking×gender interaction. Such large difference in DE gene assessment

between different models is difficult to reconcile and interpret under the single model framework. Yet, such

difference can be expected if there are genes associated with the interaction because the two variables,

smoking andsmoking × gender interaction, are correlated. Joint testing of the effects ofsmoking and

smoking × gender interaction led to the identification of 345 DE genes with the likelihood ratio test.

However, this method can not quantify the relative contribution from the two variables. We therefore applied

the BMA approach to these data to illustrate the flexibility and usefulness of this approach to handle possible

interaction effects.

In this application, the model space consists of a total of 16 models including thenull model, three

models withsmoking and/orgender as main effects only and 12 models for different patterns that could

arise from interaction betweensmoking andgender. For the oral mucosa data, our analysis estimated that

about 21% of the probesets are differentially expressed, in which, about 11%, 1.6%, and 9% were associated

with smoking, gender andsmoking×gender interaction, respectively. Controlling thepeFDR at 5%, our

approach identified a total of 595 probesets as hits associated with smoking through either the main effect,

the interaction effect or both. Specifically, 291 of these genes were associated withsmoking primarily

through the main effect, 10 were associated withsmoking primarily through the interaction effect, while

for the rest of these genes various degrees of association were contributed from the interaction term.

By comparing thesmoking related DE genes identified by the single model approaches and the BMA

approach, we noted that the difference was mainly from genes that wereover/under expressed in only one

subgroup of the subjects, female smokers. Neither the model withsmoking status as the only covariate nor

the full model adjusted for both thegender and thesmoking × gender interaction were able to adequately

capture the strength of association for this group of genes and properlyrank them due to either increased

bias or decreased power. Table 3 showed the posterior inclusion probabilities and ranks based on different

approach for a few of these genes. Large difference in the rankingsby different methods can be seen.

6 Discussion

In the past decade, microarray technology has greatly increased our ability to simultaneously interrogate

the expression of tens of thousands of genes. Use of this technology has contributed to an improved under-

standing of the molecular basis of various diseases. As one of the primary tools for such studies, methods

for finding DE genes have also been refined over time. Various approaches have been proposed to deal

with multiple issues in microarray data. Yet, from the modeling perspective, manyapproaches have ignored
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Table 3: Posterior covariate inclusion probabilities of genes identified as hitsfor association withs, g,
ands × g interaction separately, ands or s × g interaction jointly (denoted asPs,Pg, Ps×g, andPs|s×g,
respectively) obtained usingBMA1. Ranks of these genes based on strength of association with these
covariates separately or jointly under different methods (Rmethod

covariate/s) were also shown.
GSymbol ProbeSet Ps Pg Ps×g Ps|s×g R

SM1
s R

SM2
s R

BMA1
s R

SM2

s×g
R

BMA1

s×g
R

SM2

s|s×g
R

BMA1

s|s×g

PAFAH2 205233s at 0.009 0.001 0.986 0.991 2301 23739 24103 23 1 326 122
CEACAM7 211848s at 0.030 0.003 0.974 0.997 518 7436 16401 220 2 169 72
CEACAM7 206199at 0.042 0.003 0.966 0.998 271 5485 11556 151 3 85 51
COPS7B 225696at 0.009 0.009 0.963 0.968 4648 23892 24102 164 4 1316 241
PRKX 204060s at 0.019 0.040 0.961 0.977 2345 10494 24059 911 5 840 206
CEACAM7 206198s at 0.062 0.003 0.944 0.996 336 6082 8367 194 6 111 76
THYN1 218491s at 0.012 0.014 0.938 0.946 5113 23484 24096 270 7 1678 335
CD177 219669at 0.034 0.006 0.931 0.960 1907 12463 14423 583 8 814 271
BACE2 222446s at 0.044 0.003 0.929 0.973 1234 15980 11127 83 9 307 218
MARK1 221047s at 0.030 0.002 0.927 0.956 2013 23223 16058 11 10 279 287

sample heterogeneity, its impact on the analysis results, and the great opportunity it presents. Since Potter

(2003) discussed the need for controlling bias and confounding in observational microarray studies, it has

been increasingly recognized that the lack of control for sample heterogeneity could be a barrier to the re-

producibility of the study findings. In two editorials (Webb et al., 2007; Troester et al., 2009), improved data

analysis methods and better study design have been considered crucial for advancing the field of cancer epi-

demiology with microarray technology. In particular, Troester et al. (2009) discussed the potential of model

selection strategies in the process. Nevertheless, there remain obstacles tofully appreciate the effect of

complex sample characteristics on DE gene detection and the value of improvingupon current approaches.

In this paper, we proposed a novel concept for high throughput dataanalysis involving a heterogeneous

sample, i.e. a multi-model handling is intrinsically needed. We presented the theoretical framework that

explains why basing inferences on a single model could be problematic in observational microarray studies.

The problem arises from the inadequacy of using a single model to describe the complex expression pattern

of genes among a heterogeneous sample, which can result in increased number of false discoveries due to

bias when a simple model is used or increased random error due to reduced efficiency when a complex model

is used. Such effects of model misspecification are hard to avoid becauseof the existence of genes being

affected by different sets of sample characteristics and/or their interactions. We showed through simulation

that the single model approaches have inferior performance in DE gene finding in comparison with a multi-

model approach should we know the right model for the right set of genes. The magnitude of effects on false

discovery depends on the study design, specific biological system and the mechanism underlying expression

variation.

We proposed to use BMA approach to improve our ability to identify DE genes.This approach uti-

lizes the Zellner-Siow prior for model parameters. The consistency property of this prior is important as it

allows for obtaining a consistent estimate of the distribution of the genes in the model space using Bayes

factors. Another choice could be the hyper-g/n prior proposed in Liang et al. (2008). We proposed to use
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an iterative procedure to obtain the prior model probabilities so that the estimated distribution of the genes

among the model space based on posterior model probabilities matches the estimate based on the Bayes

factors. These prior choices allow the efficient computation of the Bayes factors and the posterior inclu-

sion probabilities that does not rely on a MCMC simulation. Our simulation study demonstrated that this

approach performed almost as well as the gold standard multi-model approach with true models and better

than the single model approaches in gene ranking. The ranking performance was relatively insensitive to a

wide range of choice for prior model probabilities. However, accuracyof the FDR directly estimated from

the posterior model/inclusion probabilities were sensitive to the prior choice. Our simulation study showed

that the proposed empirical prior model probability allowed for reasonablygood calibration of posterior

model/inclusion probabilities for multiplicity and the estimated FDR was close to the true FDR in settings

with moderate to large sample size. In the rare case of a small study with a heterogeneous sample, care

needs to be taken when using the empirical prior because the small sample sizeproperty of the Zellner-Siow

prior is less certain. Nevertheless, it should be pointed out that, multiplicity control in the Bayesian mod-

eling framework remains a challenging and active research area. Further studies on the theoretical aspects

of the prior choice for multiplicity control across the multiple genes and multiple models are needed. The

current BMA approach is developed under the assumption that relevantcovariates are recorded. Should un-

known confounders exist, it is possible to extend this method by including the surrogate variables (Leek and

Storey, 2007) into the model space. However, we would suggest care indirectly incorporating the surrogate

variables because these variables were constructed based on residuals from a single model fit of the data.

Finally, through the application of the BMA approach to an observational mircoarray study with unbal-

anced study design and one with balanced study design, we showed that complex expression patterns did

exist when study samples were complex. Previous research has demonstrated the complexities of underlying

biological mechanisms for gene expression variation. Genes affected byseveral common factors, such as

age (Tan et al., 2008), gender (Tan et al., 2008; Yang et al., 2006; Delongchamp et al., 2005), smoking (Spira

et al., 2004), and drinking alcohol (Lewohl et al., 2001), have been found in different tissue samples. Our

study showed that such complexity interfered with the DE gene detection. Notably, the BMA approach was

able to avoid missing important genes whose expression patterns were not adequately captured by a single

model approach. As an added value, the BMA approach is found to be a flexible tool that allows for more

comprehensive characterization of the association between gene expression and the characteristics of the

subjects from whom the samples were obtained. And all these can be done within a unified and coherent

framework.

21

Hosted by The Berkeley Electronic Press



Funding

This work was supported by a pilot award to X.K.Z. from the Clinical and Translation Science Center at

Weill Cornell Medical College through National Institute of Health (UL1-RR024996), the University of

Missouri Research Board Award to F.L., and the funding to A.J.D. from theFlight Attendants Medical

Research Institute.

Acknowledgments

The authors thank Drs. Jaya Satagopan and Li-Xuan Qin at Memorial Sloan-Kettering Cancer Center for

helpful discussions.Conflict of Interest:None declared.

References

BOYLE, J. O., GUMUS, Z. H., KACKER, A., CHOKSI, V. L., JENNIFER, M. B., ZHOU, X. K., ANTE’ S,

R. K., HUGHES, D., DU, B., JUDSON, B. L., SUBBARAMAIAH , K., AND DANNENBERG, A. J. (2010).

Effects of cigarette smoke on the human oral mucosal transcritpome.Cancer Prevention Reseach, 3(3),

266–278.

CAO, J., XIE, X., ZHANG, S., WHITEHURST, A., WHITE, M. A. (2009). Bayesian optimal discovery

procedure for simultaneous significance testing.BMC bioinformatics, 10, 5.

CAO, J., ZHANG, S. (2010). Measuring statistical significance for full Bayesian methods inmicroarray

analyses.Bayesian Analysis, 2, 413-428.

CAROLAN , B. J., HARVEY, B.-G., DE, BISHNU P., VANNI , H., AND CRYSTAL, R. G. (2008). Decreased

expression of Intelectin 1 in the human airway epithelium of smokers comparedto nonsmokers.Journal of

Immunology, 181, 5760–67.

CONLON, E. M., SONG, J. J.,AND L IU , J. S. (2006). Bayesian models for pooling microarray studies

with multiple sources of replications.BMC Bioinformatics, 7, 247.

DELONGCHAMP, R. R., VELASCO, C., DIAL , S., AND HARRIS, A. J. (2005). Genome-wide estima-

tion of gender differences in the gene expression of human livers: statistical design and analysis.BMC

bioinformatics, 6 Suppl 2, S13.

22

http://biostats.bepress.com/cobra/art81



EFRON, B. (2008). Microarrays, empirical Bayes and the two-groups model.Statistical Science. 23(1):1–

22.

HELLER, R., MANDUCHI , E., & SMALL , D. S. (2009). Matching methods for observational microarray

studies.Bioinformatics, 25(7), 904–909.

HOETING, J. A., MADIGAN , D., RAFTERY, A. E., AND VOLINSKY, C. T. (1999). Bayesian model

averaging: a tutorial.Statistical Science, 14(4), 382–401.

HUMMEL , M., MEISTER, R., & MANSMANN , U. (2008). GlobalANCOVA: exploration and assessment

of gene group effects.Bioinformatics, 24, 78–85.

ISHWARAN, H., AND RAO, J. S. (2003). Detecting Differentially Expressed Genes in Microarrays Using

Bayesian Model Selection.Journal of the American Statistical Association. 98(462), 438–455

JEFFERY, I., HIGGINS, D., AND CULHANE , A. (2006). Comparison and evaluation of methods for gener-

ating differentially expressed gene lists from microarray data.BMC Bioinformatics, 7, 359.

KASS, R. E., RAFTERY, A. E. (1995). Bayes factors.Journal of the American Statistical Association,

90(430):773–795.

LEEK, J. T., STOREY, J. D. (2007). Capturing heterogeneity in gene expression studies by surrogate

variable analysis.PLoS Genetics, 3(9):1724–1735.

LEWOHL, J. M., DODD, P. R., MAYFIELD , R. D., AND HARRIS, R. A. (2001). Application of DNA

microarrays to study human alcoholism.Journal of biomedical science, 8, 28–36.

L IANG , F., PAULO , R., MOLINA , G., CLYDE , M. A., AND BERGER, J. O. (2008). Mixtures of g priors

for Bayesian variable selection.Journal of the American Statistical Association, 103, 410–423.
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