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Variable Selection for Estimating the Optimal
Treatment Regimes in the Presence of a Large

Number of Covariate

Baqun Zhang and Min Zhang

Abstract

Most of existing methods for optimal treatment regimes, with few exceptions,
focus on estimation and are not designed for variable selection with the objective
of optimizing treatment decisions. In clinical trials and observational studies, of-
ten numerous baseline variables are collected and variable selection is essential
for deriving reliable optimal treatment regimes. Although many variable selec-
tion methods exist, they mostly focus on selecting variables that are important for
prediction (predictive variables) instead of variables that have a qualitative inter-
action with treatment (prescriptive variables) and hence are important for making
treatment decisions. We propose a variable selection method within a general
classification framework to select prescriptive variables and estimate the optimal
treatment regime simultaneously. In this framework, an optimal treatment regime
is equivalently defined as the one that minimizes a weighted misclassification er-
ror rate and the proposed method forward sequentially select prescriptive vari-
ables by minimizing this weighted misclassification error. A main advantage of
this method is that it specifically targets selection of prescriptive variables and
in the meantime is able to exploit predictive variables to improve performance.
The method can be applied to both single- and multiple- decision point setting.
The performance of the proposed method is evaluated by simulation studies and
application to an clinical trial.
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Abstract

Most of existing methods for optimal treatment regimes, with few exceptions, fo-

cus on estimation and are not designed for variable selection with the objective of

optimizing treatment decisions. In clinical trials and observational studies, often nu-

merous baseline variables are collected and variable selection is essential for deriving

reliable optimal treatment regimes. Although many variable selection methods exist,

they mostly focus on selecting variables that are important for prediction (predic-

tive variables) instead of variables that have a qualitative interaction with treatment

(prescriptive variables) and hence are important for making treatment decisions. We

propose a variable selection method within a general classification framework to select

prescriptive variables and estimate the optimal treatment regime simultaneously. In

this framework, an optimal treatment regime is equivalently defined as the one that
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minimizes a weighted misclassification error rate and the proposed method forward

sequentially select prescriptive variables by minimizing this weighted misclassifica-

tion error. A main advantage of this method is that it specifically targets selection

of prescriptive variables and in the meantime is able to exploit predictive variables

to improve performance. The method can be applied to both single- and multiple-

decision point setting. The performance of the proposed method is evaluated by

simulation studies and application to an clinical trial.

1 Introduction

Personalized medicine that explicitly recognizes individual heterogeneity in response to

treatments and focuses on making treatment decisions for a patient based on his/her own

characteristics (eg., demographic, clinical, genetic information, etc.) has received much

attention recently. The idea of personalized medicine can be formalized using the con-

cept of treatment regimes, which are one or a sequence of decision rules that specify which

treatment (among available options) a given subject receives based on a subject’s character-

istics at the time of the decision. In the last decade, there has been increasing interest and

more vigorous research on developing methodologies for estimating the optimal treatment

regimes (Murphy, 2003; Robins, 2004; Moodie, et al., 2007; Robins, et al., 2008; Brinkley,

et al., 2009; Qian and Murphy, 2011; Chakraborty et al., 2010; Zhang et al., 2012ab, 2013;

Zhao et al., 2012 and 2015; Geng et al., 2015; Barrett et al., 2014; Young et al., 2011; Tian,

et al., 2014).

Most of existing methods, with few exceptions, focus on estimation and are not designed

for selecting important variables from among a large number of covariates for optimizing

treatment decisions. Clinical trials and observational studies (e.g., clinical registries), on
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which estimation of the optimal treatment regime is based, often collect a large amount of

potentially useful patient information. Although it is likely that many of those variables are

useful for predicting outcomes, realistically perhaps only a small number of patient charac-

teristics are useful in making treatment decisions since only those variables with a qualita-

tive interaction with treatment are useful in making treatment decisions. The importance

of variables that have qualitative interactions with treatments in medical decision-making

setting has been noted previously (Peto, 1982) and are referred to as prescriptive variables.

Therefore, variable selection from a high dimensional set of covariates targeted towards

optimal decision making is an essential step in constructing a meaningful and practically

useful treatment decision rule.

Variable selection has been an active research area in statistics; however, as pointed

out by Gunter, Zhu and Murphy (2011), current variable selection work has been focused

on prediction and their use in decision making has not been well developed and tested.

As a matter of fact, variable selection approaches focused on prediction may neglect vari-

ables vital for decision making since the effect of interactions is often weaker than that of

the main effect. Fairly recent literature started to see more research on variable selection

methods for making treatment decisions (Gunter, Zhu and Murphy, 2011; Qian and Mur-

phy, 2011; Lu, Zhang and Zeng, 2013; Fan, Lu and Song, 2015). Penalized least squares

methods were proposed in the framework of Q-learning by Qian and Murphy (2011) and in

the framework of A-learning by Lu, Zhang and Zeng (2013) to select important variables in

the corresponding outcome regression, leading to estimated regimes with fewer variables.

However, the variable selection in the two penalized methods are not directly targeted

towards selecting prescriptive variables. Gunter, Zhu and Murphy (2011) proposed a vari-

able selection ranking method for variable selection, where the ranking is based a measure

that specifically characterizes the qualitative interaction of a variable with treatment. As
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a result, the method of Gunter, Zhu and Murphy (2011) focuses specifically on selection

of prescriptive variables. As noted by Fan, Lu and Song (2015), since the ranking method

considers each variable separately and ignores correlations between covariates, they may

identify too many covariates as potential prescriptive variables or miss some variables im-

portant for decision making. Building upon the work of Gunter, Zhu and Murphy (2011),

Fan, Lu and Song (2015) proposed a sequential advantage selection method which takes

into account variables already selected in previous steps and assesses the additional value of

a new variable instead of considering variables individually. One advantage of this method

is that it avoids selecting variables that are marginally important for decision making but

are jointly unimportant. Although not directly focused on estimating optimal treatment

regimes, one other recent relevant work is that of Tian, et al, (2014), which considers

estimating interactions between treatment and a large number of covariates.

In this paper, we propose a new method to select important prescriptive variables for

estimating the optimal treatment regimes in a classification framework. This method is

motivated by targeting the objective function of the optimal treatment regime, ie., the

expectation of potential outcomes under the optimal regime if it is followed by the entire

population. We show that optimizing the objective function is equivalent to minimizing

a weighted misclassification error rate for classifying patients to classes corresponding to

their optimal treatment. The weighted misclassfication error is defined in terms of contrast

between treatments given covariates and hence directly targets on selection of variables with

qualitative interaction with treatments. Our proposed algorithm is then based on forward

sequentially minimizing the weighted misclassification error rate and, as Fan, Lu and Song

(2015), in each step it takes into account previously selected variables. The performance

and merit of the proposed method relative to the sequential advantage selection method of

Fan, Lu and Song (2015) are evaluated by various simulation studies.
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The remainder of the paper is organized as follows. In Section 2, we describe the

framework and objective function for variable selection for optimal treatment regimes and

propose a forward minimal misclassification error selection algorithm that selects variables

important for decision making. We evaluate the performance of the proposed method by

simulations studies in Section 3 and illustrate the use of the proposed method using data

from the Nefazodone CBASP trial in Section 4, followed by a discussion in Section 5.

2 Method

2.1 Notation and Assumptions

We first focus on presenting the method in the simpler setting where only a single treatment

decision point is involved; Section 2.4 considers the extension to multiple decision point

setting. Consider a clinical trial or observational study involving n subjects, who receive

either treatment A = 0 or A = 1. Let X be a p-dimensional vector of subject character-

istics collected before the treatment. Let Y denote the observed outcome of interest and,

without loss of generality, assume that larger values of Y are preferred. The observed data

are then (Xi, Ai, Yi), i = 1, . . . , n, which are assumed to be independent and identically

distributed (i.i.d.) across i. The goal is to use the data to find the optimal treatment

decision rule which determines which treatment a patient should receive based on his/her

baseline characteristics.

Formally, a treatment regime or rule, g, is a function which maps the values of X to

the domain of A, eg, A = {0, 1}. Let Y ∗(0) and Y ∗(1) denote the potential outcomes for

a subject that would be observed had the subject received treatment 0 or 1, respectively.

Then for each treatment regime g, there is a corresponding potential outcome, which is
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defined as Y ∗(g) = Y ∗(1)g(X) + Y ∗(0){1 − g(X)}. The optimal treatment regime gopt is

the one that leads to the optimal expected potential outcomes if followed by the entire

population; ie., gopt = argmaxg E{Y ∗(g)}. We make the commonly assumed stable unit

treatment value assumption (SUTVA), which states that the observed outcome is the same

as the potential outcome under the treatment actually received; ie., Y = Y ∗(1)A+Y ∗(0)(1−

A). This assumption allows identification of the optimal treatment regime based on the

observed data. We also assume the standard no unmeasured confounders assumption, ie.,

{Y ∗(0), Y ∗(1)}⊥⊥A|X, where ⊥⊥ denotes statistical independence. This assumption holds

automatically for clinical trials and has to be evaluated for observational studies. See a

review paper by Schulte, et al. (2014) for more background on potential outcomes and

optimal treatment regimes.

2.2 Framework for Variable Selection for Optimal Treatment Regimes

By definition, one should target optimizing E{Y ∗(g)} for estimating the optimal treat-

ment regime and indeed all existing methods estimate and optimize E{Y ∗(g)} directly or

indirectly. Naturally, one should also aim to maximize E{Y ∗(g)} in selecting prescriptive

variables for constructing the optimal treatment regime. However, how to achieve this is

much more challenging and to the best of our knowledge none of the existing prescriptive

variable selection methods directly target this objective function. We present a framework

for estimating the optimal treatment regime and prescriptive variable selection by explicitly

optimizing E{Y ∗(g)}.

Intuitively, it is easy to see that we can view subjects as coming from two latent classes

corresponding to gopt(X) = 0 or 1; i.e., the class corresponding to gopt(X) = a includes

all subjects whose expected potential outcome under treatment a is greater than that

under treatment 1 − a. Equivalently, only the contrast between treatments is relevant in
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determining which class a subject belongs to as well as whether a variable is prescriptive

or not. Zhang, et al. (2012b) formalized these ideas and proposed to estimate the optimal

treatment regime using a classification framework. We refer to this general classification

framework as C-learning with “C” stands for “classification”. Denoting µ(a,X) = E(Y |A =

a,X), it can be shown that

E{Y ∗(g)} = EX{C(X)g(X) + µ(0, X)}, (1)

where C(X) = µ(1, X) − µ(0, X), denoting the contrast between treatment 1 and 0. Ac-

cording to (1), it is clear that the optimal treatment regime corresponds to I{C(X) > 0}.

It is also clear from (1) that gopt(X) maximizes EX{C(X)g(X)}. In the classification per-

spective of Zhang, et al. (2012b), it separates the information in C(X) to two components,

Z ≡ I(C(X) > 0) and |C(X)|, which are the sign and magnitude of C(X) respectively.

Zhang, et al. (2012b) show that C(X)g(X) = Z|C(X)| − |C(X)|I{Z 6= g(X)} and as a

result gopt(X) can be defined alternatively as

gopt(X) = argminE[|C(X)|I{Z 6= g(X)}]. (2)

This alternative definition corresponds exactly to the intuition described above. That is,

we can view each subject as belonging to one of two latent classes with the class label

denoted by Z = I{C(X) > 0}. We can then view E[|C(X)|I{Z 6= g(X)}] as a weighted

misclassification error rate corresponding to treatment regime (or classifier) g(X). That

is, if g(X) 6= Z, then an error is made since the treatment decision according to g(X) is

not optimal and the loss corresponding to this error is |C(X)|, the difference in expected

outcomes between g(X) and gopt(X). In this sense, the optimal treatment regime mini-

mizes a weighted misclassification error rate and the interpretation of the classification is

consistent with the goal of optimal treatment decisions. In practice, the class label Z as
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well as the weight |C(X)| is unknown and Zhang, et al. (2012b) discussed various ways to

estimate C(X) and then Z. Denoting an estimate of C(X) by Ĉ(X), then gopt(X) can be

estimated by argmin
∑n

i=1 |Ĉ(X)|I{Ẑ 6= g(X)}, where Ẑ = I{Ĉ(X) > 0}.

It may seem that the definition (2) and the resulting C-learning are unnecessarily com-

plicated since by (1) one can directly estimate gopt(X) by I{Ĉ(X) > 0}, whereas the

C-learning involves an additional step of optimization after obtaining Ĉ(X). As a matter

of fact, this alternative classification perspective has several advantages and is the key to

variable selection for prescriptive variables. Among then, one advantage is that it leads

to a direct optimization method, as opposed to outcome-regression based methods, that

optimizes E{Y ∗(g)} or E[|C(X)|I{Z 6= g(X)}] explicitly and as a result the performance

of the estimated treatment regimes is not completely determined by outcome regression

models used for estimating C(X) and is more robust to model misspecification. See Zhang,

et al., (2012a and b) for discussions on advantages of direct optimization methods and of

the classification perspective in (2). The advantage of direct optimization method is also

discussed in, for example, Kang et al.(2014) and discussion papers. Equally important, (2)

provides a natural objective function for prescriptive variable selection for estimating the

optimal treatment regime since it only depends on the contrast function, the part relevant

for determining whether a variable is prescriptive or not.

2.3 Forward Minimal Misclassification Error Rate (ForMMER)

Selection

In C-learning, the estimated weighted misclassification error rate corresponding to regime

g(X) is given by

1

n

n∑

i=1

[ŴiI{Ẑi 6= g(Xi)}], (3)
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where Ẑi = I{Ĉ(Xi) > 0}, Ŵi = |Ĉ(Xi)| and Ĉ(Xi) is an estimate of C(Xi). Various

methods can be used for estimating C(X); see Zhang, et al (2012b). For example, one

can postulate parametric models for µ(a,X) and estimate C(X) by Ĉreg(Xi) ≡ µ̂(1, Xi)−

µ̂(0, Xi), where µ̂(a,X) estimates µ(a,X) based on the fitted model. Alternatively, one

can estimate C(Xi) by the AIPWE estimator studied by Zhang, et al (2012b), ie,

ĈAIPWE(Xi) =
Ai

π̂i

Yi −
Ai − π̂i

π̂i

µ̂(1, Xi)−

{
1− Ai

1− π̂i

Yi −
π̂i − Ai

1− π̂i

µ̂(0, Xi)

}
, (4)

where π̂i estimates πi = P (A = 1|Xi) and is simply the sample proportion corresponding

to A = 1 for a randomized clinical trial. It can be shown that (3) coupled with ĈAIPWE(X)

consistently estimates E[|C(X)|I{Z 6= g(X)}] in (2) in a randomized study regardless of

whether the postulated model for µ(a,X) is correct or not. This robustness is due to the

double robustness property of the AIPWE and randomization.

This weighted misclassification error rate is for a given regime g(X) ≡ g(X1, . . . , Xp).

Now we use this to define a measure that is helpful for quantifying the importance of a

potential prescriptive variable given a set of already selected prescriptive variables. For

that, we define the weighted misclassification error rate corresponding to a set of variables

{Xj1 , ..., Xjm} as

err(Xj1 , ..., Xjm) = min
β={β0,...,βm}

n−1

n∑

i=1

ŴiI{Ẑi 6= I(β0 + β1Xj1 + ...+ βmXjm > 0)},

which can be interpreted as the minimum weighted misclassification error rate among a

subclass of regimes that are constructed by linear combinations of the set of variables

(Xj1 , ..., Xjm). Then naturally we can quantity the importance of a potential prescriptive

variable, sayXj, given a set of selected prescriptive variables {Xj1 , ..., Xjm} by the difference

in misclassification error, i.e., err(Xj1 , ..., Xjm)− err(Xj1 , ..., Xjm , Xj).

Based on the idea described above, we propose the following forward minimal misclas-

sification error rate (ForMMER) selection algorithm to sequentially select variables that

9
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are important for treatment decision making. Our algorithm starts with an empty set

corresponding to the case where there is no prescriptive variable and hence the optimal

treatment is a fixed treatment for everyone.

Step 1 (Initial Step). Let

err (0) ≡ err(null set) = min{n−1

n∑

i=1

ŴiI(Ẑi 6= 1), n−1

n∑

i=1

ŴiI(Ẑi 6= 0)},

where the equality is due to that there are only two treatment regimes (a = 0, 1) when the

set of covariates under consideration is null. Here err (0) is the weighted misclassification

error rate by assigning the treatment with better average treatment effect to all patients

regardless of their characteristics. We term this as the baseline weighted misclassification

error rate and use it as a reference in the criterion for the initial selection that selects the

first important prescriptive variable.

When the number of candidate variables is huge, it is preferable to initially screen vari-

ables for consideration in subsequent steps. For eachXj , let err(Xj) = minβ={β0,β1} n
−1

∑n

i=1

ŴiI{Ẑi 6= I(β0 + β1Xj > 0)} and calculate

err (0) − err(Xj), j = 1, . . . , p.

As explained above, this difference characterizes the degree of reduction in weighted mis-

classification error rate under the optimal treatment regime within a subclass of regimes

based on variable Xj, relative to the optimal treatment regime based on a null set of covari-

ates. Therefore, the ranking (from the largest to the lowest) of err (0)−err(Xj), j = 1, . . . p,

quantifies the relative importance of variables in treatment decision making. We propose

to use the ranking of err (0) − err(Xj) to initially select the set of covariates considered in

subsequent steps when the dimension of covariates is high. For example, one may consider

the first 30 or 40 variables based on the ranking of err (0) − err(Xj) and include them into
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a set F0, which include variables considered in subsequent steps. In addition, one may

add into F0 any variables that are thought to be potentially important in making treat-

ment decisions based on clinical/scientific reasons or on evidence from empirical data. The

purpose of this step is only to screen variables when the number of candidate variables is

very large to make it computationally easier; for example, in our simulations we considered

1000 covariates. When the dimension is not super large, for example, in our real data

analysis there are only 50 baseline covariates, then the screening step can be omitted, i.e.,

all candidate variables are included in F0.

We comment that, even with the screen, the proposed variable selection method is

still selecting prescriptive variables from the entire p-dimensional covariates instead of only

selecting among variables in F0. The reason is that in the first step in selecting Xj1 (as

is clear from the formula below), it is selecting among all (X1, . . . , Xp) using a principled

approach based on importance of variables. Our simulations demonstrate that it works

well in practice even with a large number of candidate variables.

Step 2 (Forward Selection). Let

Xj1 = arg min
Xj∈(X1,...,Xp)

err(Xj), and err (1) ≡ min
Xj∈(X1,...,Xp)

err(Xj).

Then Xj1 is the first selected variable and S(1) = {Xj1}, denoting the set of selected

variables from step (1). We note that the selected Xj1 is always included in F0 as F0

includes variables ranked high based on err (0) − err(Xj) and hence Xj1 .

In the m-th step (m > 1), we have S(m−1) = {Xj1 , ..., Xjm−1}, which denotes the set of

selected variables in steps prior to the m-th step. For every Xj ∈ F0\S(m−1), we compute

each err(S(m−1), Xj), which is the minimum weighted misclassification error rate for regimes

constructed using variables in S(m−1) and Xj. The m-th variable to be selected is the one
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with the smallest weighted misclassification error rate in this step, i.e.

Xjm = arg min
Xj∈F0\S(m−1)

err(S(m−1), Xj).

We update the set of selected variables, i.e., S(m) = S(m−1) ∪ {Xjm}. weighted misclas-

sification error rate corresponding to the optimal treatment regime among regimes that are

based on the m variables in S(m) is also updated accordingly as follows,

err (m) ≡ min
Xj∈F0\S(m−1)

err(S(m−1), Xj).

Step 3 (Stopping Criterion). Continue forward selection until prop(m) ≤ α, where α

is a pre-specified cut-off point and

prop(m) =
err(m−1) − err(m)

err(m−1)
.

In our simulations as well as the data analysis, the optimization is implemented using

a genetic algorithm discussed by Goldberg (1989), implemented in the rgenoud package

in R (Mebane and Sekhon, 2011). As well as the sequential advantage selection (SAS)

method of Fan, Lu and Song (2015), the proposed ForMMER algorithm sequentially select

potential prescriptive variables by assessing the added advantage of a new variable relative

to existing ones, in contrast to the S-score based method of Gunter, Zhu and Murphy

(2011) that considers each variable individually. Therefore, ForMMER enjoys the same

advantage as SAS, namely, it tends not to select those unnecessary variables that are only

marginally important but not important given other variables. One key difference between

ForMMER and SAS lies in the function used in quantifying the advantage. In SAS, the

sequential advantage of a variable, say Xj, given a set of selected prescriptive variables

Sm−1 = {Xj1 , ..., Xjm−1}, is given by

1

n

n∑

i=1

{max
a

Ê(Yi|S
m−1
i , Xij , Ai = a)− Ê(Yi|S

m−1
i , Xij , Ai = aopt(S

m−1
i ))},

(5)
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where aopt(S
m−1
i ) is the optimal decision based on variables in Sm−1

i . This sequential ad-

vantage extends the S-score of Gunter, Zhu and Murphy (2011) in that the second term

of the sequential advantage additionally conditions on Sk−1, whereas the second term of

S-score conditions on Xj only. Subject i contributes to the sequential advantage only if the

optimal decision based on (Sm−1
i , Xij) is different from the optimal decision based on Sm−1

i

and hence the sequential advantage quantifies the importance of Xj in addition to Sm−1

for decision making. At each step in the sequential advantage selection, it fits a model

conditional on potential prescriptive variables selected in previous steps and a new vari-

able. As a result of the SAS algorithm, variables with only main effect but no qualitative

interactive effect tend to be not selected, which of course is an intended property; however,

since at each step it builds conditional models conditional on only variables selected in

previous steps, those only predictive but not prescriptive variables will not be able to be

used in the outcome-regression models in subsequent steps, which is clearly not desirable

as it misses the chance of exploiting those predictive variables to improve performance. In

the proposed ForMMER method, the forward selection algorithm for selecting prescriptive

variables are separated from estimation of the contrast function. In principle any model

selection methods developed for prediction can be used to best model the outcome given

covariates including those predictive but not prescriptive variables in the estimation of the

contrast function. Therefore, ForMMER is able to exploit predictive variables for improving

efficiency in the outcome-regression step or equivalently the contrast function estimation

step. In the meantime, the variable selection step focuses on selecting prescriptive vari-

ables, aiming towards minimizing a weighted misclassification error rate or equivalently

maximizing the expected potential outcome of a regime. This difference explains the supe-

rior performance of ForMMER relative to SAS, especially when the number of predictive

variables is large, as illustrated by our simulation studies.
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2.4 Extension to Multiple Decision Point Setting

The ForMMER algorithm extends naturally to multi-stage treatment decision problems

where decisions are made at K decision points and at each stage there are two treatment

options (0 or 1). Suppose data are obtained from sequentially randomized clinical trials or

observational studies where the no unmeasured confounders assumption holds. We denote

the treatment received at stage k as Ak and the observed treatment history up to decision

k as Āk = (A1, . . . , Ak). Let Xk be the covariate information observed between decision

k − 1 and k and X̄k = (X1, . . . , Xk) be the observed covariate history up to k. The

overall outcome of interest is still denoted by Y . A dynamic treatment regime is a set of

sequential decision rules, g = (g1, . . . , gK), where gk is a function of x̄k and āk−1, denoted as

gk(x̄k, āk−1), that determines the treatment decision at stage k based on patient’s covariate

and treatment history available up to decision k. We denote Lk = (X̄k, Āk).

Similar to the single decision point setting, only the treatment contrast at each stage is

relevant for treatment decision. Analogously we define a contrast function at each stage,

ie., Ck(Lk) = Qk(Lk, ak = 1) − Qk(Lk, ak = 0), where ak is a treatment decision at stage

k and Qk(Lk, ak) is the so-called Q-functions with “Q” for “quality”. At the last stage

K, QK(LK , aK) = E(Y |LK , AK = aK). The Q-functions at stage k < K are defined

recursively and can be interpreted as the conditional expected outcomes given that the

optimal decisions are made in the future. Therefore, the contrast function Ck(Lk) represents

the contrast in the quality between treatment 1 or 0 at stage k assuming the optimal

decisions are made in the future. We refer readers to Schulte, et al. (2014) for more

details.

Intuitively, at each stage, subjects can be viewed as coming from two latent classes for

whom the optimal decision at stage k is 1 or 0 (or equivalently Zk ≡ I{Ck(Lk) > 0}),

assuming the optimal decisions are made in the future. Zhang and Zhang (2015) show that
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for multiple-stage decision problems, the optimal treatment regimes can be identified by

backward sequentially minimizes E[|Ck(Lk)|I{Zk 6= gk(Lk)}], which is the expected loss of

misclassifying a patient at stage k by decision rule gk. In practice, Zk and Ck(Lk) have to

be estimated and, as in the single-decision point setting, various methods (eg, parametric

regression method Ĉreg and the AIPWE ĈAIPWE) can be used to estimate the contrast

functions as well as Zk. Then the empirical analog of E[|Ck(Lk)|I{Zk 6= gk(Lk)}] can be

used as a objective function in estimating the optimal treatment regime at each stage.

We refer readers to Zhang and Zhang (2015) for details on the C-learning framework for

multiple-decision point setting. The proposed ForMMER can naturally be embedded in the

C-learning framework to select variables important for decision-making and estimate the

optimal treatment regime at each stage. Specifically, one only needs to modify the objective

function in (3) to 1
n

∑n

i=1[ŴkiI{Ẑki 6= gk(Li)}], where Ŵki = |Ck(Lki)|, and modify err(m)

accordingly. ForMMER can then be used to identify the linear decision rule that minimizes

the weighted misclassification error rate at each stage.

3 Simulations

We conducted simulation studies to evaluate the performance of the proposed methods. All

data generating scenarios except for one are adopted from Fan, Lu and Song (2015). We

consider both single-decision point and multiple-decision point settings. We compare our

methods with SAS developed by Fan, Lu and Song (2015) since in their simulations they

demonstrated that SAS has superior performance than the S-score method of Gunter, Zhu

and Murphy, 2011, and the method of Lu, Zhang and Zeng, 2013, with LASSO selection.

For the single decision point setting, data were generated according to five scenarios,

where scenarios I-IV are directly adopted from Fan, Lu and Song (2015). Specifically, Co-

15

Hosted by The Berkeley Electronic Press



variates X = (X1, . . . , Xp)
T , p = 1000, are generated from multivariate normal distribution

with mean zero, variance 1 and correlation corr(Xj, Xk) = ρ|j−k|, where ρ = 0.2 or 0.8.

Treatment A is generated from a Bernoulli distribution with probability 0.5 and the error

term ǫ is normally distributed with mean 0 and variance 0.25. Denoting X̃ = (1, XT )T ,

the outcomes are generated according to:

- Scenario I: Y = 1+γT
1 X+AβT X̃+ǫ with γ1 = (1,−1,0p−2)

T , β = (0.1, 1,07,−0.9, 0.8,0p−10);

- Scenario II: Y = 1+ 0.5 sin(πγT
1 X) + 0.25(1 + γT

2 X)2 +AβT X̃ + ǫ with γ1 and β the

same as in scenario I and γ2 = (1, 02,−1,05, 1,0p−10)
T ;

- scenario III: Y = 1 + γT
1 X + AβT X̃ + ǫ with γ1 the same as in scenario I, and

β = (0.1, 1,07,−0.9, 0.8,010, 1, 0.8,−1,05, 1,−0.8,0p−30);

- Scenario IV: Y = 1 + 0.5 sin(πγT
1 X) + 0.25(1 + γT

2 X)2 + AβT X̃ + ǫ with γ1, and γ2

the same as in scenario II, and β the same as in scenario III.

- Scenario V: Y = 1+γT
1 X+AβT X̃+ǫ with γ1 = (1,−0.8, 1, 0.9, 0.8, 1, 0.9, 0.8,0p−8)

T ,

β = (0.1,08, 1, 0.8,0p−10).

Scenarios I and II have three prescriptive variables and scenarios III and IV have eight

prescriptive variables. In scenarios I and III, the relationship between outcome and covari-

ates are linear, whereas in scenarios II and IV, the relationship is nonlinear. In scenarios

I-IV, the number of prescriptive variables is more than the number of predictive variables.

However, in reality, it is perhaps more plausible or often believed that many covariates

have an main effect but not a qualitative interaction effect with treatment. Considering

this, we also generated data from scenario V, which is modified based on scenario I but

more variables have an main effect and less variables have a qualitative interaction with
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treatment. The sample size we considered in the single-decision point setting is n = 200

and 400.

As for the multiple-decision point setting, again we adopted the same data generating

process as in Fan, Lu and Song (2015). Specifically, data are generated to mimic a two-stage

decision problem, where the outcome Y is generated according to

Y = A1A2 + A2(a+ βT
12X1 + βT

21X2) + A1(a+ βT
11X1) + ǫ,

where treatment A1 and A2 follow Bernoulli (0.5), baseline covariats X1 = (X1,1, . . . , X1,p1)

follow multivariate normal distribution with mean 0, variance 1 and corr(X1,j , X1,k) =

0.2|j−k|, j 6= k, and ǫ follows normal distribution with mean 0 and variance 0.25. The

intermediate covariate X2 is generated according to X2 = c0+ c1X1,1+ c2A2+C3A1X1,1+e

with e generated from normal with mean 0 and variance 0.25. The parameter values are

chosen as: β12 = (0, 0, 1,−1,0p1−4), β11 = (04, 1,−1,0p1−6)
T , a = 0, and c = (0, 1, 0, 0)T .

Also we chose p1 = 500.

We implemented the proposed methods using two ways. In ForMMER-reg, parametric

regression models are used to model µ(a,X) and the contrast functions are estimated by

Ĉreg. Specifically, forward selection based on BIC is used to build models for µ(0, X) and

µ(1, X) where the maximum number of steps is set to be 10. In ForMMER-AIPWE, the

contrast functions are estimated using ĈAIPWE, where the same parametric models as in

ForMMER-reg are used in the augmentation terms of the AIPWEs. We used the union

of the variables selected in the model for µ(1, X) and the first 10 variables based on the

ranking of err (0) − err(Xj) as the initially selected set to be considered in the ForMMER

procedure. We set α = 0.05 in the ForMMER algorithm.

Results are shown in Tables 1-3. Following Fan, Lu and Song (2015), we evaluate

the performance of each methods using three metrics. TP (true positive) is the number
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of correctly identified prescriptive variables. VR (value ratio) is the value ratio of the

estimated regime relative to the true optimal regime, i.e., VR=E{Y ∗(ĝopt)}/E{Y ∗(gopt)},

where the value of a regime E{Y ∗(g)} is calculated by the average of outcomes generated

from the true model with treatment determined by the regime using 100,000 Monte Carlo

Replicates. ER (error rate) is the rate of incorrect treatment decision of the estimated

regime, ie, an incorrect decision is made if the treatment decision determined by a regime

is different from the correct optimal decision. Reported results are averages across 500

Monte Carlo simulations and the standard deviation are reported in parenthesis. Although

all three metrics are useful in evaluating the performance of a method, from the perspective

of optimizing expected potential outcomes, VR is in our view the most relevant one as it

takes into account whether or not an correct decision is made and the magnitude of the

consequence of an incorrect decision, whereas ER only accounts for whether the optimal

decision is made ignoring the magnitude of loss associated with an incorrect decision. In

addition, the number (size) of prescriptive variables in the estimated regime is also reported,

which is important for interpreting TP.

Results on scenarios I-IV for sample size n=200 are summarized in Table 1; results

for n=400 are similar and are not reported. Table 1 shows that under scenarios II and

IV, and scenario III( ρ = 0.2), the proposed methods (both implementations) have better

performances than SAS and ForMMER-reg has the best performance. Under scenario III

(ρ = 0.8), the proposed methods and SAS have comparable performance with ForMMER-

reg being slightly better. Under scenario I the proposed methods and SAS have comparable

performance with SAS being slightly better.

Table 2 shows results under scenario V, which is similar to scenario I except for that

there are more predictive variables and less prescriptive variables. Under this scenario, the

proposed ForMMER (both implementations) has considerably better performances than
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SAS. This difference in performance is expected to be even larger under other scenarios

(e.g., scenarios similar to II and IV ) since scenario V is modified based on scenario 1

where SAS has relatively the best performance compared with other scenarios in Table 1.

This result is consistent with and supports our conjecture that SAS may not perform well

when many covariates are predictive but not prescriptive as explained at the end of Section

2.2. This is because in SAS predictive but not prescriptive variables will not be selected in

previous steps and as a result cannot be used in the conditional models in subsequent steps

to improve performance, even though predictive variables (regardless of being prescriptive

or not) are useful for improving the performance of the models and estimation of optimal

regimes. Our methods do not suffer from this issue and is able to take advantages of

predictive variables to improve efficiency while still targeting selection of only prescriptive

variables in the forward selection algorithm. This is achieved by decoupling the step for

estimating the contrast function and the step for variable selection in the optimization step.

This difference also explains the better performance of ForMMER in Table 1.

Results on the two-stage setting are shown in Table 3. We report on the size of selected

prescriptive varaibles, true positive (TP), and error rate (ER) of treatment decisions for

each stage separately. The value ratio (VR) of the final estimated dynamic two-stage

treatment regime is reported as overall VR. Table 3 shows that the proposed methods and

SAS have comparable performance at the last stage (stage 2) with SAS selects a slightly

larger number of variables and hence slightly larger number of true prescriptive variables.

At the stage 1, SAS tends to select considerably larger number of variables with true positive

only slightly different from the proposed methods. ForMMER (both implementations) have

considerably better error rate than SAS at stage 1. Overall, for both sample size n = 200

and 400, the proposed methods have better value than SAS; for example, for n=200, the

value ratio using SAS is 79.1% and 91.6% using the proposed ForMMER-reg. As the value
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of a regime takes into account the magnitude of incorrect decisions and the overall and

long-term effect of decisions at multiple stages, it is the most relevant metric in evaluating

the overall performance of an estimated dynamic treatment regime.

4 Application to Nefazodone CBASP trial

We applied the proposed method to the Nefazodone CBASP trial, where 681 patients

with nonpsychotic chronic major depressive disorder (MDD) were randomized to receive

either Nefazodone, cognitive behavioral analysis system of psychotherapy (CBASP) or the

combination of the two treatments (Keller, et al, 2000). Subjects were followed for 12

weeks with various assessments taken throughout the study. We consider the score on the

24-item Hamilton Rating Scale for Depression (HRSD) at 12 weeks after treatment as our

outcome of interest and our analysis includes 577 subjects for whom the HRSD score at 12

weeks are available. We considered a total of 50 baseline variables in constructing optimal

treatment regimes. Baseline variables considered in this analysis are listed in Table 5. Lower

HRSD indicates low depression and better outcome. Previous analyses have found that the

combination treatment leads to lower HRSD score than the other two single treatments,

whereas there is no significance difference between the two single treatments. Based on this

results, in our analysis, we firstly combined the two single treatment arms into one arm

and the treatment decision to be made is either combination treatment or single treatment.

Then, we limit our analysis to patients who were randomized to receive single treatment

(Nefazodone or CBASP) and consider the treatment decision being either Nefazodone or

CBASP. Also in our analysis, we consider −HRSD as our outcome such that larger value

means better outcome.

We analyzed the data using the proposed ForMMER-reg and SAS. For ForMMER, we
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first build parametric linear regression model for each treatment group and the final models

were chosen using forward selection based on BIC information number. Then the contrast

for each subjects were used in the ForMMER algorithm to estimate the optimal treatment

regime. Since the number of candidate variables in our data is only 50 and far less than

the number of covariates (1000) in our simulations, we chose to use a less stringent cutoff

value α = 0.02. For combination (A = 1) versus single treatment (A = 0), the estimated

optimal regimes by ForMMER and SAS are, respectively,

ĝoptForMMER = I(55−X6 > 0),

ĝoptSAS = I(4.55− 1.97X14 + 0.16X18 − 5.88X35 > 0).

The estimated values of the two regimes using the inverse probability weighted method

are almost the same: -9.8 (95% CI: -10.9,-8.7) and -9.8 (95% CI: -10.9, -8.6). They are

very close to the value (-9.9) of a regime that assigns everyone to the combined treatment

(A = 1) and much better than a regime that assigns everyone to single treatment (Table

4). These results are consistent with the previously published results, which indicate that

the combined treatment is superior to single treatment.

For Nefazodone (A = 1) versus CBASP (A = 0), the estimated optimal regimes by

ForMMER and SAS are, respectively,

ĝoptForMMER = I(−0.55− 0.30X1 − 0.17X8 + 0.20X12 − 0.12X13 − 0.60X15

+0.33X16 + 0.71X40 − 0.88X50 > 0),

ĝoptSAS = I(−15.03− 5.15X1 − 2.71X8 + 1.01X12 + 6.60X14 + 4.17X16 +

0.09X22 − 2.49X28 + 6.16X31 − 14.69X33 − 7.69X36 − 12.53X37 − 4.56X38

+5.37X40 − 17.87X42 − 5.87X46 − 7.59X48 + 7.98X49 − 6.71X50 > 0).
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The estimated value of ĝoptForMMER and ĝoptSASare -11.0 (95% CI: -12.6, -9.4) and -12.1 (95%

CI: -13.8, -10.4) respectively, with ĝoptForMMER having larger estimated value while selecting

less variables. The value of both regimes perform much better than the two regimes that

assign everyone to Nefazodone or CBASP. More results are reported in Table 4.

5 Discussion

Within the classification framework (C-learning) for estimating the optimal treatment

regimes, in this article we further developed a variable selection algorithm for selecting vari-

ables that have qualitative interactions with treatment and hence are important for making

treatment decisions, namely, prescriptive variables. This variable selection algorithm di-

rectly targets prescriptive variables with the objective of optimizing treatment rules, in

contrast to methods focusing on selecting predictive variables and prediction. Within the

C-learning framework, the optimal treatment regime can be equivalently defined as the

classifier that minimizes a weighted misclassification error, where the objective of the clas-

sifier is to, based on patient’s characteristics, classify patients to the treatment option that

leads to larger expected potential outcomes. A major advantage of this framework is that

it naturally accommodates a strategy for variable selection targeting prescriptive variables,

since only prescriptive variables are relevant in determining the contrast functions and the

weighted misclassification error. In the proposed ForMMER algorithm, it forward sequen-

tially selects important prescriptive variables and estimates the optimal treatment regimes

simultaneously.

The ForMMER algorithm selects prescriptive variables sequentially and at each step

it assesses the additional merit of a new variable given variables that have already been

selected. As a result, similar to SAS, it tends not to select those variables that are only
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marginally important for decision making but are not important jointly. Therefore, as SAS,

it tends to select fewer variables overall but more true prescriptive variables than methods

that consider each variables individually. Furthermore, the proposed ForMMER algorithm

decouples the step for estimating the contrast functions from the step for optimization and

prescriptive variable selection and, as a result, it is able to target directly on prescriptive

variables while still taking advantage of predictive variables in the outcome-regression step

to improve performance. This is one of the main differences between ForMMER and SAS

and in SAS variables that are only predictive but not prescriptive tend not to be selected

and hence will not be able to be exploited in subsequent steps to improve performance.

This point is discussed in detail at the end of Section 2.3 and illustrated in simulations,

especially in Table 2. To summarize, the flexibility of modeling the contrast functions us-

ing various ways, the sequential selection strategy, and the separation of the optimization

step for variable selection and optimizing decision rules from the estimation of the con-

trast functions together contribute to the superior performance of the proposed ForMMER

method. Overall, ForMMER selects less variables yet with better value than SAS and the

same statement can be made for its performance relative to other methods evaluated in

Fan, Lu and Song (2015) (i.e., the S-score method of Gunter, Zhu and Murphy, 2011, and

the method of Lu, Zhang and Zeng, 2013, with LASSO selection) as our simulation settings

are adopted from Fan, Lu and Song (2015). Finally, we note the measure (weighted mis-

classification error) used in the forward sequential variable selection in our method has a

very intuitive interpretation and is directly related to the definition of an optimal treatment

regime.
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Table 1: Simulation results for single-decision point setting based on 500 replications based

on sample size n=200 (Scenarios adopted from Fan, Lu and Song, 2015). Size: number

of selected prescriptive variables; TP: number of true positive (important) prescriptive

variables; ER: error rate of the treatment decision; VR: ratio of the value of the estimated

regime relative to that of the true optimal regime. Numbers in parenthesis are Monte Carlo

standard deviation.

Method ρ Size TP ER VR

Scenario I

SAS 0.2 6.81 (1.65) 2.98 (0.25) 6.2 (4.8) 99.0 (3.4)

ForMMER-AIPWE 4.93 (1.05) 2.93 (0.26) 10.7 (5.1) 97.6 (2.6)

ForMMER-reg 5.78 (1.47) 2.93 (0.26) 10.3 (6.3) 97.6 (3.3)

SAS 0.8 8.03 (2.12) 1.79 (0.97) 19.0 (7.3) 94.3 (3.6)

ForMMER-AIPWE 4.20 (1.29) 1.31 (0.57) 21.6 (4.4) 93.3 (2.4)

ForMMER-reg 5.64 (1.59) 1.41 (0.64) 21.4 (4.8) 93.3 (2.6)

Scenario II

SAS 0.2 11.90 (2.87) 2.09 (1.12) 32.7 (10.3) 88.7 (6.2)

ForMMER-AIPWE 4.82 (1.23) 2.49 (0.69) 22.6 (9.2) 94.0 (4.4)

ForMMER-reg 6.37 (1.58) 2.76 (0.48) 20.7 (7.5) 95.0 (3.4)

SAS 0.8 11.32 (2.44) 1.30 (0.73) 33.4 (5.7) 89.7 (3.1)

ForMMER-AIPWE 4.15 (1.27) 1.43 (0.75) 24.2 (6.2) 94.2 (2.7)

ForMMER-reg 5.78 (1.64) 1.66 (0.83) 23.7 (6.0) 94.4 (2.6)

Scenario III

SAS 0.2 11.06 (2.92) 5.08 (2.56) 23.0 (15.0) 84.2 (15.5)

ForMMER-AIPWE 7.50 (1.28) 6.79 (1.39) 14.2 (7.2) 94.3 (5.6)

ForMMER-reg 8.58 (1.13) 7.17 (1.14) 12.0 (7.5) 95.5 (5.4)

SAS 0.8 7.63 (2.02) 3.21 (1.35) 22.0 (4.7) 90.5 (3.6)

ForMMER-AIPWE 4.99 (1.34) 3.00 (1.15) 21.4 (3.8) 91.1 (3.0)

ForMMER-reg 6.56 (1.62) 3.49 (1.35) 20.4 (3.9) 91.8 (2.9)

Scenario IV
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Table 2: Simulation results for single-decision point setting based on 500 replications.

Size: number of selected prescriptive variables; TP: number of true positive (important)

prescriptive variables; ER: error rate of the treatment decision; VR (value ratio): ratio of

the value of the estimated regime relative to that of the true optimal regime. Numbers in

parenthesis are Monte Carlo standard deviations).

Method ρ Size TP ER VR

Scenario V

n=200

SAS 0.2 14.49 (2.07) 0.72 (0.60) 43.9 (5.3) 71.8 (5.6)

ForMMER-AIPWE 3.99 (0.95) 1.97 (0.16) 11.8 (5.1) 97.3 (2.5)

ForMMER-reg 4.39 (1.04) 1.98 (0.15) 12.5 (6.3) 96.7 (2.9)

SAS 0.8 8.55 (2.03) 0.96 (0.35) 21.3 (6.3) 90.9 (5.1)

ForMMER-AIPWE 3.57 (1.00) 1.81 (0.39) 7.7 (2.9) 98.7 (0.9)

ForMMER-reg 3.84 (1.00) 1.99 (0.11) 4.4 (1.8) 99.6 (0.4)

n=400

SAS 0.2 24.96 (3.18) 1.56 (0.54) 35.6 (7.0) 80.0 (6.3)

ForMMER-AIPWE 3.25 (0.78) 2.00 (0.04) 7.3 (2.9) 99.0 (0.8)

ForMMER-reg 4.15 (0.98) 2.00 (0.00) 8.2 (6.1) 98.3 (1.9)

SAS 0.8 9.59 (2.07) 1.47 (0.50) 13.5 (4.1) 96.3 (2.2)

ForMMER-AIPWE 3.14 (0.80) 1.92 (0.27) 5.7 (2.3) 99.3 (0.5)

ForMMER-reg 3.87 (1.05) 2.00 (0.00) 2.7 (1.0) 99.9 (0.1)
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Table 3: Simulation results for two-stage setting based on 500 replications (scenario adopted

from Fan, Lu and Song, 2015). Size: number of selected prescriptive variables; TP: number

of true positive (important) prescriptive variables; ER: error rate of the treatment decision

at the stage; overall VR (value ratio): ratio of the value of the estimated regime relative

to that of the true optimal regime. Numbers in parenthesis are Monte Carlo standard

deviations.

stage 2 stage 1

Method Size TP ER Size TP ER Overall VR

n=200

SAS 6.59 3.53 14.0 11.70 2.19 30.2 79.1

(2.16) (0.59) (5.5) (2.68) (0.93) (7.0) (8.7)

ForMMER-AIPWE 4.59 3.14 14.0 4.07 2.19 13.4 87.3

(1.05) (0.61) (4.1) (1.23) (0.82) (4.4) (6.4)

ForMMER-reg 5.12 3.34 11.8 4.75 2.61 11.3 91.6

(1.21) (0.54) (3.6) (1.35) (0.82) (3.8) (4.2)

n=400

SAS 5.77 3.93 7.6 13.00 3.95 16.2 93.3

(1.80) (0.26) (3.6) (3.75) (1.13) (5.3) (3.9)

ForMMER-AIPWE 3.88 3.27 10.8 3.00 2.20 10.5 94.1

(0.81) (0.48) (3.0) (0.78) (0.51) (3.3) (2.7)

ForMMER-reg 4.36 3.37 9.1 3.55 2.45 8.7 96.0

(0.96) (0.49) (3.4) (1.01) (0.62) (3.5) (1.6)

30

http://biostats.bepress.com/umichbiostat/paper120



Table 4: Data analysis results: estimated value of the estimated optimal treatment. The

values are estimated using inverse probability weighted method. g = 1 is a regime that

assigns everyone to treatment 1 and g = 0 is a regime that assign everyone to treatment 0.

Numbers in parenthesis are 95% confidence intervals.

Combination (A = 1) Nefazodone (A = 1)

vs. Single (A = 0) vs. CBASP (A = 0)

ForMMER -9.8 (-10.9,-8.7) -11.0 (-12.6,-9.4)

SAS -9.8 (10.9,-8.6) -12.1 (-13.8,-10.4)

g = 1 -9.9 (-11.0,-8.8) -14.9 (-16.4,-14.9)

g = 0 -14.9 (-15.8,-13.9) -14.8 (-16.2,-13.4)
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Table 5: List of covariates used in the analysis of Nefazodone CBASP trial

1 Female

2 White

3-4 Marital Status (single, widowed/divorced/separated)

5 Body mass index

6 Age of MDD onset 7 Age at screening

8 Live alone 9 IDSSR Anxiety/Arousal Score

10 IDSSR General/Mood Cognition Score 11 IDSSR total score

12 IDSSR sleep score 1 13 IDSSR sleep score 2

14 HAMD Anxiety/Somatic Symptoms 15 HAMD Cognitive Disturbance

16 HAMD Retardation Score 17 HAMD Sleep Disturbance factor score

18 Total HAMD-17 score 19 Total HAMD-24 score

20 MOS36 Cognitive Functioning Factor Score 21 MOS36 General Health Factor Score

22 MOS36 Mental Health Factor Score 23 MOS36 Social Functioning

24 Total HAMA score 25 HAMA Psychic Anxiety Score

26 HAMA Somatic Anxiety Score

27-28 MDD type (neither melancholic or atypical, melancholic)

29-30 Main study diagnosis (no antecedent, continuous)

31-32 MDD current severity (mild, moderate)

33 Anxiety disorder NOS

34-35 Alcohol ( abuse, dependence)

36-37 Anxiety(sub-threshold, threshold)

38 Other psychological problems

39 Body dysmorphic current

40 Drug abuse

41 Anorexia or bulimia nervosa

42 Obsessive compulsive

43-44 Specific phobia (sub-threshold, threshold)

45-46 Social phobia (sub-threshold, threshold)

47-48 Post traumatic stress(sub-threshold, threshold)

49-50 Panic (sub-threshold, threshold)
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