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SUMMARY

The conventional approach to comparing a new treatment with a standard therapy is often

based on a summary measure for the treatment difference over the entire study population. A

positive trial with respect to such a global measure, however, does not mean that all individual

future patients would benefit from the new treatment. On the other hand, a negative finding

may not be sufficiently conclusive to claim that the new treatment is entirely futile. In

this article, we propose a systematic approach to identify future patients who would benefit

from the new treatment with respect to an event time outcome via a two-stage inference

procedure. We first develop a scoring index to stratify study patients based on parametric or

semiparametric survival models with the observed event times and covariates. We then use a

nonparametric method to estimate the average treatment difference for each stratum defined

by the score. Sampling variation of the resulting estimator is also provided across the entire

spectrum of the score by controlling certain local and global error rates. With a numerical

study, we show that the new proposal performs well under various practical settings. Our

method is illustrated with the data from a recent clinical trial to evaluate whether a specific

anti-hypertensive drug would prolong the lives for patients with stable coronary artery disease

and normal or slightly reduced left ventricular function.
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1. INTRODUCTION

In a typical randomized clinical trial comparing a new treatment with a standard therapy,

the study participants are generally quite heterogeneous and their responses can be drastically

different. However, the design and monitoring of the study are often guided by a summary

treatment difference measure for the entire study population. The determination of whether

the new treatment is superior to the control is usually based on the results from statistical

inferences about such a summary measure. This “one-size-fits-all” approach may not be

adequate for evaluating a new drug or device. A “positive” trial, which shows a treatment

benefit with respect to this global measure, does not imply that all future patients would

benefit from the new treatment. On the other hand, a “negative” study does not mean that all

future patients should take the standard therapy. As an example, consider a recent clinical trial

“Prevention of Events with Angiotensin Converting Enzyme Inhibition (PEACE)” to study

whether the ACE inhibitors (ACEi) are effective for reducing certain future cardiovascular-

related events for patients with stable coronary artery disease and normal or slightly reduced

left ventricular function (Braunwald et al., 2004). In this study, 4158 and 4132 patients were

randomly assigned to the ACEi treatment and placebo arms, respectively. One main endpoint

for the study was the patient’s survival time. The median follow-up time was 4.8 years. By the

end of the study, 334 and 299 deaths occurred in the control and treatment arms, respectively.

As shown in Figure 1, no differences between the Kaplan-Meier curves of the two groups are

apparent except for the “unstable” tail parts. The proportional hazards ratio estimate is 0.89

with a 0.95 confidence interval of (0.76, 1.04). Based on the results of this study, it is not clear

whether ACEi therapy would help the patient with respect to overall mortality. However, with

further analysis of the PEACE survival data, Solomon et al. (2006) reported that the ACEi

might significantly prolong survival for the patient whose kidney function at the study entry

time was not normal (for example, the estimated glomerular filtration rate, eGFR, < 60).

This finding can be quite useful in practice. On the other hand, such a subgroup analysis
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has to be executed properly and the results of such analysis have to be interpreted cautiously

(Rothwell, 2005; Pfeffer and Jarcho, 2006; Wang et al., 2007). Moreover, post ad hoc subgroup

analyses are often conducted by examining the interaction between the treatment indicator

variable and each covariate. Such a procedure can be quite inefficient.

When there is a single baseline covariate, novel methods for identifying a subgroup of pa-

tients who would benefit from the new treatment have been proposed by Song and Pepe (2004),

and Bonetti and Gelber (2000, 2005). In this article, we consider the case for censored survival

data with multiple covariates. In theory, one may use a nonparametric function estimation

procedure to make inferences about the subject-specific treatment differences. However, when

there is more than one covariate involved, such a procedure performs rather poorly. In this

paper, we first fit the data with a parametric or semi-parametric survival model for each treat-

ment group. If the models are correctly specified, one may make valid inferences about the

subject-specific treatment differences directly from such parametric analysis. Although these

working models are likely misspecified, they can be quite useful to group subjects with similar

treatment difference profiles. In this paper, we stratify subjects with a univariate scoring sys-

tem constructed from these parametric models. The score is the subject-specific parametric

treatment difference estimate. Subjects in each stratum would have the same score. Next, we

utilize a univariate nonparametric function estimation method to make inferences about the

stratum-specific treatment differences across the entire spectrum of the score, for example,

via pointwise and simultaneous confidence interval estimates. Conceptually, our approach is

similar to that taken by Cai et al. (2010b), which dealt with non-censored observations. The

derivation of the procedure in the presence of censoring, however, is complex and technically

involved. We illustrate the new proposal with the data from the PEACE study. Furthermore,

via a simulation study, we show that our procedure performs well under various practical

settings.
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2. STRATIFYING SUBJECTS WITH A PARAMETRIC SCORING SYSTEM

WITH RESPECT TO TREATMENT DIFFERENCE

In this section, we show how to construct the standard parametric or semi-parametric

estimates for the treatment differences with subject level data on the response and baseline

covariates. To this end, for a subject assigned to treatment k, let T̃k be its time to a specific

event and Uk be the corresponding baseline covariate vector, where k = 1, 2. The event time T̃k

may be censored by Ck, which is assumed to be independent of T̃k and Uk. Instead of observing

T̃k directly, one observes Tk = min(T̃k, Ck) and ∆k = I(T̃k ≤ Ck), where I(·) is the indicator

function. For subjects with a given covariate vector U = u, let Sk(t;u) = pr(T̃k > t|Uk = u)

be its survival probability at time t if assigned to treatment k, k = 1, 2. To quantify the

treatment contrast for these subjects, one may use the difference of two survival rates at t,

D(t;u) = S2(t;u)−S1(t;u). Alternatively, one may consider an integrated or average survival

rate difference over a time interval [t0, t1] :

D(u) =
1

t1 − t0

∫ t1

t0

D(t;u)dt (2.1)

(Pepe and Fleming, 1989, 1991; Murray and Tsiatis, 1999; Zhao et al., 2010).

Suppose that the data from the kth treatment group consist of {(Tki,∆ki, Uki); i =

1, . . . , nk}, which are nk independent and identical copies of (Tk,∆k, Uk), for k = 1, 2. We

assume that πk = limn→∞ nk/n > 0 for k = 1, 2, where n = n1 + n2. In theory, one may

use a nonparametric function procedure to estimate D(u) consistently. However, when U is

not univariate, such a fully non-parametric approach is difficult, if not impossible, to estimate

(2.1) well in practice. A more feasible approach is to utilize a parametric or semi-parametric

model which approximates the relationship between the response variable and the covariate

vector. Here, for each treatment group, we fit the data with a standard Cox proportional
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hazards (Cox, 1972) working model:

Sk(t;Uk) = g {log Λk(t) + β′kZk} , k = 1, 2, (2.2)

where g(x) = e−e
x
, Zk, a p×1 vector, is a known function of Uk, Λk(·) is the unknown baseline

cumulative hazard function, and βk is an unknown p× 1 vector of regression parameters. To

estimate Sk(t;u), we first obtain an estimator β̂k for βk via the partial likelihood score equation

truncated at time t1 :

nk∑
i=1

∫ t1

0

{
Zki −

∑nk

j=1 Ykj(t)e
β′kZkjZkj∑nk

j=1 Ykj(t)e
β′kZkj

}
dNki(t) = 0, (2.3)

where Nki(t) = I(Tki ≤ t)∆ki and Yki(t) = I(Tki ≥ t), for i = 1, . . . , nk. We then estimate the

function Λk(t) in (2.2) by the standard Breslow’s estimator (Kalbfleisch and Prentice, 2002):

Λ̂k(t) =

nk∑
i=1

∫ t

0

dNki(s)∑nk

j=1 Ykj(s)e
β̂′kZkj

.

Note that β̂k and Λ̂k(t) consistently estimate their true counterparts when Model (2.2) is

correctly specified. When Model (2.2) is misspecified, under a rather mild regularity condition,

β̂k converges to a finite constant β0k and Λ̂k(t) to a deterministic function Λ0k(t), as nk →∞

(Hjort, 1992; Cai et al., 2010a). This stability property is critical for developing our inference

procedures. It follows that a model based estimator for D(u) is

D̂(u) =
1

t1 − t0

∫ t1

t0

[
g
{

log Λ̂2(t) + β̂′2z
}
− g

{
log Λ̂1(t) + β̂′1z

}]
dt.

Again, D̂(u) converges in probability to a deterministic function D̄(u), even when Model (2.2)

is misspecified. When Model (2.2) is correctly specified, D̂(u) is consistent for D(u).

Now, let U0 be the baseline covariate vector of a future subject from a population similar

to the study population. Suppose that the event time of this subject is T̃ 0
k if treated by
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treatment k, k = 1, 2. For a given U0, one may use D̂(U0) to decide which treatment should

be assigned to this specific subject. However, the adequacy of such a decision heavily depends

on the appropriateness of Model (2.2). On the other hand, even if D̂(u) does not approximate

D(u) well, D̂(·) can be quite useful as an index system for clustering future subjects with

potentially similar treatment differences. Thus, we propose to stratify future subjects based

on their values of D̂(U0) and non-parametrically estimate the mean value of D(U0) for each

stratum {U0 : D̂(U0) = v}, where v is any given possible value of the estimated score.

3. NONPARAMETRIC POINT AND INTERVAL ESTIMATION FOR THE

MEAN VALUE OF D(·) FOR FUTURE SUBJECTS WITH THE SAME

ESTIMATED PARAMETRIC SCORE

The average value of D(U0) for the aforementioned subgroup of subjects, whose estimated

index score is v, is

D(v) =
1

t1 − t0

∫ t1

t0

[
pr
{
T̃ 0

2 > t|D̄(U0) = v
}
− pr

{
T̃ 0

1 > t|D̄(U0) = v
}]

dt,

where the probabilities are with respect to (T̃ 0, U0) and {(Tki,∆ki, Uki); k = 1, 2, i = 1, . . . , nk}.

To estimate D(v), let

Λk,v(t) = − log
[
pr
{
T̃ 0
k > t|D̂(U0) = v

}]
, 0 ≤ t ≤ t1,

be the cumulative hazard function for future subjects with estimated score D̂(U0) = v. As

in Cai et al. (2010a), we use a nonparametric kernel Nelson-Aalen estimator smoothed over

v for estimating Λk,v(t) based on the triplets {(Tki,∆ki, D̂(Uki)), i = 1, . . . , nk}. Specifically,

we consider the class of potential estimators which are step functions over t and only jump

at the observed event time points with jump sizes dΛk,v(t) = Λk,v(t) − Λk,v(t−). Then a
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nonparametric functional estimator for dΛk,v(t) can be obtained by minimizing

nk∑
i=1

Khk(Q̂ki,v) {dNki(t)− Yki(t)dΛk,v(t)}2 ,

where dNki(t) = Nki(t)−Nki(t−), K(·) is a smooth density function, Khk(x) = K(x/hk)/hk,

hk is a bandwidth such that hk → 0 and nh2
k →∞, as n→∞, Q̂ki,v = ψ{D̂(Uki)}−ψ(v), and

ψ(·) is a known increasing transformation function. In practice, a proper choice of ψ(·) can

be quite helpful for increasing precision of the nonparametric function estimation procedure

(Wand et al., 1991; Park et al., 1997; Cai et al., 2010a). The resulting estimator for Λk,v(t) is

Λ̂k,v(t) =

∫ t

0

∑nk

i=1 Khk(Q̂ki,v)dNki(s)∑nk

i=1Khk(Q̂ki,v)Yki(s)
. (3.1)

We can then estimate D(v) by

D̂(v) =
1

t1 − t0

∫ t1

t0

{
e−Λ̂2,v(t) − e−Λ̂1,v(t)

}
dt. (3.2)

In Appendix A, we show that under some mild regularity conditions, D̂(v) is uniformly

consistent for D(v), for v ∈ J , an interval properly contained in the support of the estimated

score D̂(·) when hk = O(n−ν) with 1/5 < ν < 1/2. For any fixed v ∈ J , using a similar

argument in Cai et al. (2010a), we show in Appendix A that

(n1h1 + n2h2)1/2
{
D̂(v)−D(v)

}
(3.3)

converges in distribution to a mean zero normal random variable as n→∞. To approximate

the distribution of (3.3), we utilize a perturbation-resampling procedure which is similar to the

so-called wild bootstrapping (Wu, 1986; Mammen, 1992), and has been successfully applied

to a number of estimation problems, especially in survival analysis (Lin et al., 1993; Park and

Wei, 2003; Cai et al., 2005). Specifically, let {Vki : k = 1, 2, i = 1, . . . , nk} be a random sample
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from the distribution of a positive random variable with mean and variance of one, which is

independent of the data. Let

D̂∗(v) =
1

t1 − t0

∫ t1

t0

{
e−Λ̂∗2,v(t) − e−Λ̂∗1,v(t)

}
dt, (3.4)

where, for the standard perturbation method, Λ̂∗k,v(t) is defined as

Λ̂∗k,v(t) =

∫ t

0

∑nk

i=1VkiKhk(Q̂∗ki,v)dNki(s)∑nk

i=1VkiKhk(Q̂∗ki,v)Yki(s)
, (3.5)

Q̂∗ki,v = ψ{D̂∗(Uki)} − ψ(v),

D̂∗(Uki) =
1

t1 − t0

∫ t1

t0

[
g
{

log Λ̂∗2(t) + β̂∗
′

2 Zki

}
− g

{
log Λ̂∗1(t) + β̂∗

′

1 Zki

}]
dt,

β̂∗k is the solution to

nk∑
i=1

∫ t1

0

Vki

{
Zki −

∑nk

j=1 VkjYkj(t)e
β′kZkjZkj∑nk

j=1 VkjYkj(t)e
β′kZkj

}
dNki(t) = 0,

and

Λ̂∗k(t) =

nk∑
i=1

∫ t

0

VkidNki(s)∑nk

j=1 VkjYkj(s)e
β̂∗
′

k Zkj

.

We show in Appendix B that conditional on the data, the limiting distribution of

(n1h1 + n2h2)1/2
{
D̂∗(v)− D̂(v)

}
(3.6)

is the same as the unconditional limiting distribution of (3.3). Note D̂(v) converges at a

rate slower than n−1/2 and thus the variation due to {β̂k, Λ̂k(·)} is asymptotically negligible.

However, we find in the literature that incorporating the variability due to β̂k and Λ̂k(·) in the

perturbation process can significantly improve the approximation to the distribution of (3.3)

for settings with practical sample sizes. Moreover, through our numerical study reported in
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section 5, when the study sample size is not large or the event rate is low, we find that the

above resampling method and the standard bootstrapping may result in conservative interval

estimates, that is, their coverage levels tend to be larger than the nominal counterparts. In

Appendix C, we present a simple modified perturbation-resampling version of Λ̂∗k,v(t). This

modification may substantially reduce the conservativeness of the resulting interval estimation

procedure for finite sample cases. Such a modification preserves all the large sample properties

for (3.4). For the rest of the paper, we utilize this modified version in our presentation and

analysis.

With the above large sample approximation, for any fixed v ∈ J , one may obtain a

variance estimate of the distribution of (3.3), denoted by σ̂2(v), based on the empirical variance

of, say, M perturbation samples. It follows that for any given α ∈ (0, 1), a two-sided 1 − α

confidence interval for D(v) is

(
D̂(v)− z(1−α/2)(n1h1 + n2h2)−1/2σ̂(v), D̂(v) + z(1−α/2)(n1h1 + n2h2)−1/2σ̂(v)

)
, (3.7)

where z(1−α/2) is the (1− α/2) quantile of the standard normal distribution.

To make inference about the subject-specific treatment differences over a range of risk

scores v’s, one may construct simultaneous confidence intervals for {D(v), v ∈ J }. However,

for the present case, we cannot use the conventional method based on a sup-type statistic:

W = sup
v∈J

∣∣∣∣∣∣
(n1h1 + n2h2)1/2

{
D̂(v)−D(v)

}
σ̂(v)

∣∣∣∣∣∣ , (3.8)

due to the fact that as a process in v, the limiting distribution of (3.3) does not exist (Cai

et al., 2010a). On the other hand, by a strong approximation theory (Bickel and Rosenblatt,

1973), in Appendix B, we show that a standardized version of W converges in distribution to

a proper random variable. Thus in practice, for large n, one may approximate the distribution

of W by its empirical counterpart W ∗, based on the same set of aforementioned perturbation

9



variables {Vki; k = 1, 2, i = 1, . . . , nk} simultaneously for all v ∈ J . It follows that a 1 − α

simultaneous confidence interval for D(v) is

(
D̂(v)− cα(n1h1 + n2h2)−1/2σ̂(v), D̂(v) + cα(n1h1 + n2h2)−1/2σ̂(v)

)
, (3.9)

where cα is chosen such that P (W ∗ ≤ cα) ≥ 1− α.

As for any nonparametric functional estimation problem, the choice of the smoothing

parameters h1 and h2 are crucial for making inference about D(v). Here, via a standard K-

fold cross-validation, we obtain the smooth parameters by minimizing the sum of integrated

squared martingale residuals (Tian et al., 2005; Cai et al., 2010a). Specifically, to choose h1,

we randomly split the data into K disjoint subsets of about equal sizes, denote the subjects

that are assigned to treatment group k and also in the rth subset by Ikr, k = 1, 2; r = 1, . . . , K.

For each r, we use all the data except the rth subset to build the score and estimate Λ1,v(t)

with a given h1. Let the resulting estimator be Λ̂
(r)
1,v(t). We then use the observations from

I1r to obtain the sum of integrated squared martingale residuals

∫ t1

0

∑
j∈I1r

{
N1j(t)−

∫ t

0

Y1j(s)dΛ̂
(r)
1,v̂1j

(s)

}2

d

{∑
i∈I1r

N1i(t)

}
, (3.10)

where v̂1j = D̂(u1j) is the score for a subject with covariate vector u1j estimated using all

the data except the rth subset. Lastly, we sum (3.10) over r from 1 to K, and choose ĥ1,

which minimizes the summation. The smooth parameter ĥ2 is chosen similarly. Note that the

above empirically selected bandwidths are of order n−1/5 (Fan and Gijbels, 1995). To ensure

the validity of the aforementioned large sample properties for D̂(v), in practice we choose the

smooth parameters values h’s for the nonparametric function estimates by multiplying ĥ’s

with n−ξ, where ξ is a small positive number such that ξ < 3/10.
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4. ILLUSTRATION OF THE PROPOSAL WITH THE DATA FROM PEACE

STUDY

We illustrate the new proposal with data from the PEACE study discussed in the Intro-

duction section. Here, patients received placebo in group 1 and ACEi in group 2. For illustra-

tion, we let the time interval for the integrated difference of survival rates be [t0, t1] = [60, 72]

(months) and let U = Z, which consists of seven baseline covariates previously identified as

statistically and clinically important predictors of the overall mortality (Solomon et al., 2006).

These covariates are eGFR, age, gender, left ventricular ejection fraction (lveejf), history of

hypertension (yes or no), diabetes (yes or no), and history of myocardial infarction (yes or

no). To construct the parametric scoring system, we fitted a Cox model to the mortality data

from each treatment group with the above seven covariates. In our analysis, we included all

patients (n = 7865) who had complete information of these seven covariates. Table 1 gives

us the estimated regression coefficients and their standard error estimates. The empirical

distribution function of the parametric score D(·) is given in Figure 2(a). Note that the scores

for the majority of the study subjects are between -0.02 and 0.06. If the Cox models are

correctly specified, future patients whose scores are greater than zero would benefit from the

new treatment.

To obtain a nonparametric estimate for D(v), we let K(·) be the Epanechnikov kernel, and

ψ(v) be the identity function. The smoothing parameters were chosen by minimizing (3.10)

with a 10-fold cross validation procedure. We then multiplied the above minimizers by n−0.05

as the final smoothing parameter values. Furthermore, we chose the 5th and 95th percentiles

of the empirical distribution based on {D̂(Uki), k = 1, 2; i = 1, . . . , nk} as the boundary points

for interval J . To approximate the distributions of (3.3) and W, we used the perturbation-

resampling method with M = 1000 independent realizations of the random sample from the

standard exponential distribution. In Figure 2 (b), we report the point estimate for each

treatment group with respect to the group-specific integrated survival rate over [60, 72]. The
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estimated integrated difference is reported in Figure 2 (c) (solid curve). Note that if the

parametric models fit the data well, one expect that these point estimates would be close the

45◦ line. The dotted curves in the figure are the boundaries of the pointwise 0.95 confidence

intervals and the shaded area is the 0.95 simultaneous confidence band. From a conservative

view (using the simultaneous confidence band), patients whose scores are beyond 0.02 would

benefit from ACEi with respect to overall mortality. If the drug is safe and not costly, one may

recommend the treatment for patients whose scores are larger than zero, since the confidence

band is relatively tight in that neighborhood and its lower bound is quite close to 0.

5. A SIMULATION STUDY FOR EVALUATING THE PERFORMANCE OF

THE NEW INTERVAL ESTIMATION PROCEDURE

We conducted a simulation study to examine the performance of the proposed inference

procedures. We found that the proposed pointwise and simultaneous interval estimators be-

have well under various practical settings. That is, the empirical coverage probabilities for

the interval estimators preserve their nominal levels. For example, in one of our simulation

setups, we mimicked the PEACE study and generated survival data for each treatment group

based on a Weibull model. The parameters of this Weibull model are obtained by fitting the

PEACE data with a Weibull using the aforementioned seven covariates via the maximum like-

lihood method. To generate covariate vector U, first we simulated the discrete variables from

their empirical distribution observed in the PEACE data set. Conditional on these discrete

covariates, we generated the continuous covariates from a multivariate normal whose mean

and covariance matrix were estimated empirically using PEACE data. For each treatment

group, we used the above Weibull survival model to generate the survival time T̃ for a patient

with a given realization of U . Furthermore, the censoring is generated based on the observed

Kaplan-Meier curve for each treatment group.

For ease of computation, the bandwidth for constructing the nonparametric estimate was

fixed and chosen as the average of the bandwidths selected based on (3.10) with ξ = 0.05
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from the first 10 simulated datasets. We computed the empirical coverage probabilities of

the pointwise and simultaneous confidence interval estimators for the integrated survival rate

difference over [60,72]. The results from 1000 replicates for cases with sample sizes of n1 =

n2 = 4000 and n1 = n2 = 8000 are summarized in Figure 3. The pointwise empirical coverage

levels tend to be slightly higher than their nominal levels for n1 = n2 = 4000. The degree of

conservativeness of our interval estimators appears to be decreasing with larger sample sizes

(see, for example, n1 = n2 = 8000). The coverage levels of the 0.95 simultaneous confidence

interval estimators are 0.977 with n1 = n2 = 4000 and 0.961 with n1 = n2 = 8000 for the

average survival rate difference over [60, 72].

6. REMARKS

In this article, we used an integrated (or average) difference of survival rates over a specific

time interval to quantify the treatment contrast. This measure is purely nonparametric and

has an intuitive interpretation even when the differences of two survival rates are not constant

over time. Moreover, this average quantity provides an overall difference of two survival

curves when our interest is not restricted to the survival rate difference at a specific time point.

Alternatively, one may use the conventional two-sample Cox’s proportional hazards estimate to

quantify the treatment difference. Unfortunately, it is not clear how to interpret this estimate

when the proportional hazards model assumption is violated (Prentice and Kalbfleisch, 1981;

Lin and Wei, 1989, Xu and O’Quigley, 2000).

In this paper, we assume that the set of baseline covariates is given and we stratify future

patients with such covariates without involving a variable selection process. If the dimension

of the baseline covariate vector is large, the usual variable selection procedure to identify the

treatment and covariate interactions for constructing a scoring system can be rather inefficient

or unstable. In his unpublished Ph.D. thesis, Signorovitch (2007) proposed a novel method for

modeling a treatment contrast measure directly with covariates. Heuristically his approach

is more efficient for locating important treatment and covariate interactions than the above
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conventional variable selection procedure. Further research is needed along this line with

censored event time data.

For evaluating different prediction models in a typical one-sample problem, there are var-

ious novel criteria available in the literature (Pepe, 2003; Tian et al., 2007). However, for the

present problem with two treatment groups involved, it is rather difficult, if not impossible, to

utilize these conventional methods for evaluating the scoring systems for treatment selections.

The problem is that for each patient in the validation sample, she/he can only receive a single

treatment, not both. Therefore, one cannot compare the observed treatment difference and

its predicted counterpart at the individual patient level. On the other hand, heuristically for

a good system, the distribution of its score would spread out over a large support. Moreover,

this system would produce tight interval estimates like those presented in Figure 2 (c). We

plan to pursue this challenging research problem in the future.

Although our method is valid when dealing with a given set of covariates, generally we

must undertake a nontrivial variable selection process before considering the final parametric

models to construct the scoring system. Therefore, it would be ideal to have a clearly defined

proposal for implementing a systematic procedure including model building and selection for

stratified medicine at the design stage of the clinical study.

APPENDIX A: ASYMPTOTIC PROPERTIES OF D̂(V )

We assume that πk = limn→∞ nk/n > 0 for k = 1, 2. Without loss of generality, we let ψ

be the identity function. Assume that both h1 and h2 are of order O(n−ν) with 1/5 < ν < 1/2.

For the ease of presentation and without loss of generality, we assume that h1 = h2, which

is denoted by h. Let D̄(·) be the limit of D̂(·), ζk(·) be the density function of D̄(Uk) and

Hk,v(s) = pr(Tk ≥ s|D̄(Uk) = v), k = 1, 2. Let K(·) be a symmetric smooth kernel function

with a bounded support [−1, 1]. Let m2 =
∫ 1

−1
K2(x)dx. In addition, assume that the covariate

vector Uk is bounded, k = 1, 2.

We first show that D̂(v) is uniformly consistent for D(v), for v ∈ J = [ρ1, ρ2], an interval
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which is properly contained in the support of the estimated score D̂(·). To this end, let

Λ̃k,v(t) =

∫ t

0

∑nk

i=1Kh(D̄(Uki)− v)dNki(s)∑nk

i=1Kh(D̄(Uki)− v)Yki(s)
,

Then it follows from an integration by part and similar arguments given in Cai et al. (2010a)

that

sup
v∈J ,t∈[t0,t1]

(nkh)
1
2

∣∣∣Λ̂k,v(t)− Λ̃k,v(t)
∣∣∣ = op(n

− 1
4

k h−
1
2 log(nk)), k = 1, 2. (A.1)

On the other hand, the arguments given in Li and Doss (1995) can be used to show that

supv∈J ,t∈[t0,t1]

∣∣∣Λ̃k,v(t)− Λk,v(t)
∣∣∣ = Op{(nkhk)−1/2 log(nk)}. Thus it follows that

sup
v∈J ,t∈[t0,t1]

∣∣∣Λ̂k,v(t)− Λk,v(t)
∣∣∣ = Op{(nkhk)−1/2 log(nk) + (nkhk)

−1/2n
−1/4
k h−1/2 log(nk)}

in probability as nk →∞. In view of (3.2), we have supv∈J

∣∣∣D̂(v)−D(v)
∣∣∣→ 0, in probability

as n→∞, which concludes the uniformly consistency of D̂(v).

We next derive the asymptotic distribution of (nh)1/2
{
D̂(v)−D(v)

}
. From (A.1), we

have

(nkh)
1
2

{
Λ̂k,v(t)− Λk,v(t)

}
= (nkh)

1
2

{
Λ̃k,v(t)− Λk,v(t)

}
+ op(1).

On the other hand, by decomposition and a Taylor series expansion,

(nkh)
1
2

{
Λ̃k,v(t)− Λk,v(t)

}
= (nkh)

1
2

∫ t

0

∑nk

i=1Kh(D̄(Uki)− v)dMki(s)∑nk

i=1 Kh(D̄(Uki)− v)Yki(s)
+Op(n

1
2
k h

5
2 ),

where Mki(t) = Nki(t)−
∫ t

0
Yki(s)dΛk,D̄(Uki)(s). Then, by a martingale central limit theorem,

Var
[
(nkh)

1
2

{
Λ̃k,v(t)− Λk,v(t)

}]
= nkh

∫ t

0

∑nk

i=1Kh(D̄(Uki)− v)2Yki(s)dΛk,D̄(Uki)(s){∑nk

i=1 Kh(D̄(Uki)− v)Yki(s)
}2 + op(1),

which, by change of variable and the uniform law of large numbers (Pollard, 1990), converges
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in probability to

m2

∫ t

0

dΛk,v(s)

ζk(v)Hk,v(s)
. (A.2)

Furthermore, by the functional central limit theorem (Pollard, 1990), it can be shown that for

each fixed v,
{

(nkh)
1
2{Λ̂k,v(t)− Λk,v(t)} : t ∈ [t0, t1]

}
converges weakly to a Gaussian process

with independent increment and variance function given in (A.2). Let Sk,v(t) = e−Λk,v(t). By

the functional delta-method followed with integration by parts and Gill (1983),

(nkh)
1
2

t1 − t0

∫ t1

t0

{
Ŝk,v(t)− Sk,v(t)

}
dt =

(nkh)
1
2

t1 − t0

∫ t1

t0

Sk,v(t)
{

Λ̂k,v(t)− Λk,v(t)
}
dt+ op(1)

=
(nkh)

1
2

t1 − t0

∫ t1

0

{∫ t1

s∨t0
Sk,v(u)du

}∑nk

i=1 Kh(D̄(Uki)− v)dMki(s)

ζk(v)Hk,v(s)
+ op(1), (A.3)

for any fixed v ∈ J . It then follows from a martingale central limit theorem that (A.3)

converges in distribution to a mean zero normal random variable with variance

m2

(t1 − t0)2

∫ t1

0

{∫ t1

s∨t0
Sk,v(u)du

}2
dΛk,v(s)

ζk(v)Hk,v(s)
.

It follows that for any fixed v ∈ J , (nh)1/2
{
D̂(v)−D(v)

}
converges in distribution to a mean

zero normal random variable with variance

2∑
k=1

m2

πk(t1 − t0)2ζk(v)

∫ t1

0

{∫ t1

s∨t0
Sk,v(u)du

}2
dΛk,v(s)

Hk,v(s)
,

which we denote by σ2(v).

APPENDIX B: JUSTIFICATION FOR THE

PERTURBATION-RESAMPLING METHODS

In view of the resampling procedure, we first note that |β̂∗k − β̂k|+ supt |Λ̂∗k(t)− Λ̂k(t)| =

Op(n
−1/2
k ). Let

Λ̃∗k,v(t) =

∫ t

0

∑nk

i=1 VkiKh(D̄(Uki)− v)dNki(s)∑nk

i=1 VkiKh(D̄(Uki)− v)Yki(s)
.
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It follows from the arguments given in Cai et al. (2010a) that,

(nkh)
1
2

{
Λ̂∗k,v(t)− Λ̂k,v(t)

}
= (nkh)

1
2

{
Λ̃∗k,v(t)− Λ̂k,v(t)

}
+ Ek1(t, v),

where pr(supt,v n
δ|Ek1(t, v)| ≥ ε|data) → 0 in probability as nk → ∞ for some δ > 0. Noting

that

(nkh)
1
2

{
Λ̃∗k,v(t)− Λ̂k,v(t)

}
= (nkh)

1
2

∫ t

0

∑nk

i=1 VkiKh(D̄(Uki)− v)
{
dNki(s)− Yki(s)dΛ̂k,v(s)

}
∑nk

i=1 VkiKh(D̄(Uki)− v)Yki(s)
,

it follows from the similar arguments for deriving (A.3) and the convergence rate of Λ̂k,v(s)

give in Appendix A that (nh)1/2
{
D̂∗(v)− D̂(v)

}
can be written as

(nkh)
1
2

t1 − t0

∫ t1

0

{∫ t1

s∨t0
Ŝk,v(u)du

}∑nk

i=1(Vki − 1)Kh(D̄(Uki)− v)dMki(s)∑nk

i=1Kh(D̄(Uki)− v)Yki(s)
+ Ek2(v),

where pr(supv n
δ|Ek2(v)| ≥ ε|data) → 0 in probability for some δ > 0. Thus by a Lindeberg

central limit theorem, conditional on the data, (nh)1/2{D̂∗(v) − D̂(v)} is approximately a

normal random variable with mean zero and variance

h
∑nk

i=1

nk(t1 − t0)2

∫ t1

0

{∫ t1

s∨t0
Ŝk,v(u)du

}2 [
Kh(D̄(Uki)− v)dMki(s)

]2
{ζk(v)Hk,v(s)}2

+ op(1),

which converges to the limiting variance of (nh)1/2
{
D̂(v)−D(v)

}
.

We now show that after proper standardization, the supermum type statistics

W = sup
v∈J

∣∣∣∣∣∣
(nh)1/2

{
D̂(v)−D(v)

}
σ̂(v)

∣∣∣∣∣∣ ,
defined in (3.8), converges weakly. It follows from (A.3) and the uniform consistency of σ̂(v)
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for σ(v) that

W = sup
v∈J

∣∣∣∣∣
2∑

k=1

(−1)k
(nh)

1
2

t1 − t0

∫ t1

0

{∫ t1

s∨t0
Sk,v(u)du

}∑nk

i=1Kh(D̄(Uki)− v)dMki(s)

ζk(v)Hk,v(s)σ(v)

∣∣∣∣∣+ op(n
−δ),

for some δ > 0. To apply the strong approximation arguments and extreme value limit theo-

rem given in Bickel and Rosenblatt (1973), we represent the observed data {(Tki,∆ki, Uki), k =

1, 2, i = 1, . . . , nk} as {(Tj,∆j, Uj, Gj), j = 1, . . . , n}, where Gj is the treatment group indica-

tor for subject j (Gj = 1 if subject j is in group 2, and Gj = 0 otherwise). We can rewrite W

as

sup
v∈J

∣∣∣∣∣
n∑
j=1

(nh)
1
2Kh(D̄(Uj)− v)ξj

∣∣∣∣∣+ op(n
−δ),

where

ξj =
1

t1 − t0

∫ t1

0

{ ∫ t1
s∨t0 {GjS2,v(u)− (1−Gj)S1,v(u)} du

{Gjζ2(v)H2,v(s) + (1−Gj)ζ1(v)H1,v(s)}σ(v)

}
dMj(s).

Using similar arguments as in Bickel and Rosenblatt (1973) and Cai et al. (2010a), we have

pr{an(W − dn} < x} → e−2e−x

,

where

an =

[
2 log

{
ψ(ρ2)− ψ(ρ1)

h

}] 1
2

and dn = an + a−1
n log

{
1

4m2π

∫
K ′(t)2dt

}
,

where K ′(·) is the derivative of K(·).

To justify the resampling procedure for constructing the simultaneous confidence intervals,

we note that

(nh)1/2
{
D∗(v)− D̂(v)

}
σ̂(v)

=
n∑
j=1

(nh)
1
2Kh(D̄(Uj)− v)ξ̂jVj + E3(v)
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where ξ̂j is obtained by replacing all the unknown quantities in ξj by their empirical counter-

parts, {Vki, k = 1, 2; i = 1, · · · , nk} = {Vj, j = 1, · · · , n} and pr(supv n
δ|E3(v)| ≥ ε | data)→ 0

in probability for some δ > 0. Therefore,

W ∗ = sup
v∈J

∣∣∣∣∣
n∑
j=1

(nh)
1
2Kh(D̄(Uj)− v)ξ̂jVj

∣∣∣∣∣+ E4,

where pr(|nδE4| ≥ ε|data)→ 0 in probability. It follows from similar arguments in Tian et al.

(2005) and Li et al. (2010) that

sup
x

∣∣∣pr{an(W ∗ − dn} < x|(Tki,∆ki, Uki), k = 1, 2, i = 1, . . . , nk} − e−2e−x
∣∣∣→ 0,

in probability as n → ∞. Thus the conditional distribution of an(W ∗ − dn} can be used

to approximate the unconditional distribution of an(W − dn). When h1 6= h2, in general,

the standardized W does not converge to the extreme value distribution. However, when

h1/h2 = k ∈ (0,∞), the distribution of the suitable standardized version of W still can be

approximated by that of the standardized W ∗ conditional on the data (Gilbert et al. 2002).

APPENDIX C: A MODIFIED PERTURBATION PROCEDURE

When the study sample size is not large or the event rate is low, the resulting interval

estimates tend to be conservative. Here we propose a modified perturbation-resampling version

for Λ̂∗k,v(t) in (3.5), which may substantially improve the precision of the resulting inference

procedure for finite sample cases. Specifically, we replace Λ̂∗k,v(t) in (3.5) by

∫ t

0

∑nk

i=1VkiKhk(Q̂ki,v)dNki(s)∑nk

i=1VkiKhk(Q̂ki,v)Yki(s)
+

∫ t

0

{∑nk

i=1K~k(Q̂∗ki,v)dNki(s)∑nk

i=1K~k(Q̂∗ki,v)Yki(s)
−
∑nk

i=1K~k(Q̂ki,v)dNki(s)∑nk

i=1K~k(Q̂ki,v)Yki(s)

}
.

(A.4)

Note that we use two potentially different sets of smoothing parameters in (A.4). When

~k = hk, (A.4) reduces to (3.4). Also note that the second term is a difference function with
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respect to Q̂∗ and Q̂, which can be approximated by a product of a derivative-like function

and a function of differences β̂∗− β̂ and Λ̂∗(·)− Λ̂(·). To make this term more stable for finite

sample cases, one may use a larger bandwidth ~k. Since this resembles estimating a derivative

function in the nonparametric function estimation literature, we recommend choosing smooth

parameters ~k’s in the second term of (A.4) with order of O(n
−1/7
k ), which is an optimal choice

in estimating a derivative function (Fan et al., 1997). It follows that we let ~k = hk×n1/5−1/7
k

in our analysis.

Since |β̂∗k − β̂k| + supt |Λ̂∗k(t)− Λ̂k(t)| = Op(n
−1/2
k ), it is straightforward to show that the

standardized (A.4) is asymptotically equivalent to the standardized (3.5).
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Table 1: Estimated (Est) regression coefficients, their standard errors (SE) and p-values by
fitting the Cox model to the PEACE data based on all the mortality information up to study
month 72

Covariates Placebo ACEi
Est SE p-value Est SE p-value

eGFR -0.006 0.003 0.05 0.000 0.003 0.96
Age 0.072 0.008 <0.01 0.063 0.008 <0.01
Gender1 -0.179 0.155 0.25 -0.577 0.178 <0.01
lveejf -0.026 0.007 <0.01 -0.009 0.007 0.17

Medical histories (0: no, 1: yes)
Hypertension 0.330 0.117 <0.01 0.245 0.120 0.04
Diabetes 0.515 0.135 <0.01 0.647 0.133 <0.01
Myocardial infarction 0.016 0.119 0.89 0.244 0.124 0.05
1 0: Male, 1: Female
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Figure 1: The Kaplan-Meier estimates for the survival functions of patients in the PEACE
study
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Figure 2: Calibrated parametric estimates for the integrated difference of survival rates for
the time interval [60, 72] with the data from PEACE study; (a). The empirical distribution
function of the parametric score; (b). The calibrated estimates for the average of survival
rates for the time interval [60, 72]; (c). The calibrated estimates for the integrated differ-
ence of survival rates (solid curve), 0.95 pointwise confidence interval (dashed lines) and 0.95
simultaneous confidence region (shaded area)
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Figure 3: Empirical coverage probabilities of pointwise confidence interval estimators. Left
panel: n1 = n2 = 4000, Right panel: n1 = n2 = 8000
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