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Landmark Prediction of Survival

Layla Parast and Tianxi Cai
lparast@hsph.harvard.edu tcai@hsph.harvard.edu
Department of Biostatistics, Harvard School of Public Health, 677 Huntington Avenue, Boston,
Massachusetts 02115, U.S.A.

Summary. Recent advancement in technology has lead to a wide range of genetic and biologi-
cal markers that hold great potential in improving the prediction of survival outcomes. Although
such new markers promise better disease prognosis, the accuracy in identifying short term and
long term survivors remains unsatisfactory for most complex diseases. It has often been ar-
gued that short term clinical outcomes may have potential in predicting long term outcomes. In
this paper, we propose to develop and evaluate conditional prognostic rules for the prediction
of long term outcomes based on baseline marker information along with short term outcome
status at an earlier landmark time. When there are multiple markers available, we construct an
optimal composite score by fitting a proportional hazards working model for the conditional sur-
vival distribution. We also provide inference procedures for evaluating the incremental value of
new markers in landmark prediction. The accuracy of the score is evaluated non-parametrically
based on inverse probability weighting. Resampling procedures are proposed to derive esti-
mation procedures for the accuracy measures. With a real example and numerical studies, we
demonstrate that the proposed procedures perform well in finite samples.
Keywords: biomarkers, disease prognosis, predictive accuracy, risk prediction, survival anal-
ysis.

1. Introduction

In studies designed to develop prognostic classifiers based on predictive markers, marker

measurements are often ascertained at baseline and patients are followed over time for the

occurrence of certain clinical conditions or death. Since the risk for the disease occurrence

may change over time, the time domain must be incorporated when developing prognostic

rules. When there are multiple markers available to assist in prediction, it is of clinical

interest to construct an optimal prognostic index based on available marker information.

In the standard diagnostic setting with binary outcomes, various procedures have been

proposed to combine multiple markers to improve diagnostic accuracy (Su and Liu, 1993;

Pepe and Thompson, 2000; McIntosh and Pepe, 2002; Pepe et al., 2005). For event time

outcomes, the most popular approach to combine markers for predicting time to disease

onset is to fit the Cox proportional hazards model,

λ(t | Z) = λ0(t) exp{β′Z},
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and use β̂
′
Z for prediction, where λ(t | Z) is the hazard function for a subject with marker

value Z, λ0(·) is some unknown baseline hazard function, and β̂ is the maximum partial

likelihood estimate of β (Kalbfleisch and Prentice, 2002). For example, the Framingham

Risk Score (Wilson et al., 1998) for predicting cardiovascular failure was constructed based

on such a method. Recently, Zheng et al. (2006) and Cai and Cheng (2008) showed that

when the Cox model fails to hold, the risk score β̂
′
Z may have poor accuracy in discrim-

inating subjects with T ≤ t from those with T > t for some t. To improve the prediction

accuracy, Zheng et al. (2006) and Uno et al. (2007) proposed the use of time-varying coef-

ficient models which allow for different composite scores for predicting short term and long

term survival.

In general, patient populations may be heterogenous and represent a mixture of different

subtypes of disease. As such, subjects with similar clinical symptoms may have drastically

different disease outcomes. For example, breast cancer patients sharing the same clinical

features, such as lymph node status and histological grade, may have significantly different

survival profiles. Recent advancement in technology has lead to a wide range of genetic

and biological markers that hold great potential in improving the prediction of survival

outcomes. In a recent breast cancer gene expression study, van’t Veer et al. (2002) and van

de Vijver et al. (2002) developed a gene score for prognosis based on a 70-gene profile. The

inclusion of the gene score was shown to have improved the prognostic accuracy over the

traditional clinical markers in predicting survival (Uno et al., 2007). Although such new

classifiers promise better disease prognosis, the accuracy in identifying short term vs. long

term survivors remains unsatisfactory for most complex diseases. It has been often argued

that short term clinical outcomes may have potential in predicting long term survival.

For example, van der Sluis et al. (1997) studied the extent to which short-term outcomes

can predict long-term outcomes for pediatric polytrauma patients. Weisner et al. (2003)

demonstrated a clear association between short-term and long-term treatment success for

alcohol addiction. To optimally select prevention and treatment strategy, it would be of

great interest to develop comprehensive prognostic systems for patients that could make

prediction about both the short term survival and the long term survival given the short

term outcome. Such evaluations provide a more complete picture of the long term trajectory

of disease progression and thus can be helpful for patients to make risk benefit decisions.

In this paper, we propose to develop conditional prognostic rules for the prediction of

long term outcomes based on baseline marker information along with short term outcome.

When the short term and long term outcomes are the same clinical event, Van Houwelingen
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(2007) proposed robust estimation procedures for regression coefficients under a propor-

tional hazards landmark prediction model. Here, we propose to extend the procedures

given in Van Houwelingen (2007) for the setting where the short term outcome is based on

an intermediate event that may be different from the event of interest for the long term

outcome. For example, when selecting treatment options for breast cancer patients, it may

be helpful to provide the chance of long term survival with and without conditioning on

information regarding the short term outcome of distant metastasis-free survival. On the

other hand, growing evidence suggests that complex gene and environment interactions un-

derlie a number of diseases (Hunter, 2005). While developing such prediction models, it

is crucial to realize that most simplistic statistical models are unlikely to capture the true

relationship between the event times and the predictors of interest. We propose robust in-

ference procedures for making inference about model parameters without requiring correct

specification of the model. In addition, we propose non-parametric model free procedures

to assess the prediction performance of the risk score obtained from the landmark models.

Procedures for evaluating the incremental value of new markers for landmark prediction are

also derived. Simulation studies suggest that the proposed inference procedures perform

well in finite sample and prediction rules obtained based on the robust landmark model out-

perform those derived from a global Cox model when the underlying patient populations

are heterogeneous. Our procedures are illustrated using a breast cancer gene expression

study.

2. Evaluating Conditional Prognostic Rules

Let TL denote event time for the long term outcome and T ∗S denote the event time for

the short term outcome, which may or may not be the same as TL. For example, TL may

represent time to death and T ∗S may represent time to distant metastasis. Due to the

potential difference in the underlying disease process, patients who have a good short term

outcome may have very different clinical outcomes from the general patient population. It

is thus of interest to incorporate information on the short term outcome into the prediction

of long term outcomes. Here, we are particularly interested in the prediction of TL among

subjects with a good short term outcome, defined as Ωt0 = {T ∗S > t0, TL > t0} = {TS > t0},
where TS = min(T ∗S , TL). Such a rule could be used to distinguish subjects who will fail

within τ years since t0 from those who will survive τ + t0 years among Ωt0 , where pr(XL >

τ + t0, XS > t0) > 0. Note that the classification of TL > τ + t0 for subjects in Ωt0 is
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equivalent to the classification of whether the residual life Rt0L = TL − t0 is greater than τ .

Let Z denote the p× 1 vector of predictors measured at baseline and let Zη = η(Z) denote

the composite score based on Z for predicting the long term outcome: Dt0+τ
L = I(TL ≤

τ + t0) = I(Rt0L ≤ τ).

For any given score Zη, one may evaluate its potential in predicting Dτ
L by extending

various time-specific accuracy measures as suggested in the literature (Heagerty et al., 2000;

Cai et al., 2006; Uno et al., 2007; Cai and Cheng, 2008) to incorporate the conditional prog-

nosis given TS > t0. For example, the discrimination accuracy of Zη for classifying Dt0+τ
L

among Ωt0 can be summarized by the time-specific sensitivity and specificity functions:

Senst0,τ (c) = prΩt0
(Zη > c | Dt0+τ

L = 1), and Spect0,τ (c) = prΩt0
(Zη < c | Dt0+τ

L = 0)

where prΩt0
represents the probability taken over the sub-population in Ωt0 . To adequately

summarize the inherent discrimination accuracy for a score, Senst0,τ (·) and Spect0,τ (·)
must be considered simultaneously since higher values of Senst0,τ (·), obtained by low-

ering the threshold, are achieved at the expense of decreasing the Spect0,τ (·). A com-

monly used technique for summarizing the trade-offs between the sensitivity and speci-

ficity is the Receiver Operating Characteristic (ROC) curve (Swets and Pickett, 1982;

Hanley, 1989; Begg, 1991). The time-specific ROC curve can be defined as a plot of:

{1− Spect0,τ (c),Senst0,τ (c), c ∈ (−∞,∞)}, or, equivalently, the function {u,ROCt0,τ (u) =

Senst0,τ (Spec−1
t0,τ (1 − u)), u ∈ (0, 1)}. The overall accuracy of Zη is often summarized by

the area under the ROC curve (AUC), AUCt0,τ =
∫

ROCt0,τ (u)du.

These classification accuracy measures are useful for describing the inherent capacity a

score has in discriminating Dt
L and thus for identifying optimal scoring systems and devel-

oping rules for assigning subjects into good or poor prognostic groups based on a selected

threshold value c. After such a rule is identified, it would be important to examine the

survival probability for patients assigned into the good or poor prognosis groups. Such

probabilities are often summarized based on the positive predictive values (PPV) and neg-

ative predictive values (NPV), defined as

PPVt0,τ (c) = prΩt0
(Dt0+τ

L = 1 | Zη > c), and NPVt0,τ (c) = prΩt0
(Dt0+τ

L = 0 | Zη ≤ c).

3. Developing Conditional Prognostic Rules

3.1. Models for constructing a composite score

When TL = TS, various standard survival models could be used for constructing composite

scores to predict Dt0+τ
L among those with TS > t0. One simple approach is to employ a
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global proportional hazards (PH) model

pr(TL > t0 + τ, TS > t0 | Z) = pr(TL > t0 + τ | Z) = exp {−Λ0(t0 + τ) exp(βT

0Z)} (1)

where Λ0(·) is an unspecified baseline cumulative hazard function and β0 is the unknown

covariate effect. Under model (1), the conditional survival probability is

prΩt0
(TL > t0 + τ | Z) = prΩt0

(Rt0L > τ | Z) = exp {−Λt0(τ) exp(βT

0Z)}

where Λt0(τ) = Λ0(t0 + τ)− Λ0(t0). This, together with the arguments given in McIntosh

and Pepe (2002), implies that under the PH model, βT

0Z is the optimal composite score for

classifying Dt0+τ
L among Ωt0 , for any given t0 and τ . Here, the optimality is with respect

to the ROC curve ROCt0,τ (·). This, together with the consistency of the maximum partial

likelihood estimator of β0, β̂, the estimated risk score β̂
T

Z is the optimal score for predicting

Dt0+τ
L asymptotically.

In general, when TS and TL represent survival times for two different outcomes, various

bivariate survival models could be considered to construct an optimal score for the prediction

of the residual life Rt0L . Existing inference procedures for such conditional survival models

are often derived based on joint inference on bivariate survival via bivariate copula or frailty

modeling frameworks (Shih and Louis, 1995; Klaassen and Wellner, 1997; Oakes and Ritz,

2000; Pitt et al., 2006; Hougaard, 1995; Ha et al., 2001; Cai et al., 2002; Zeng and Lin,

2007). However, when the fitted model fails to hold, these procedures may not perform

well yielding unstable prediction rules with poor predictive accuracy. To overcome such

difficulties, we propose to construct time specific scores for any given t0 and τ of interest.

In particular, we propose to fit a conditional proportional hazards working model for the

residual life Rt0L among Ωt0 :

prΩt0
(Rt0L > τ | Z) = exp

{
−Λt00 (τ) exp(β̄T

t0Z)
}

(2)

where Λt00 (·) is the unspecified baseline cumulative hazard function among Ωt0 and β̄t0 is the

unknown covariate effect. When the model (2) holds, arguments as given above can be used

to show that the binary classification rule I(Zη > c) where Zη = exp
{
−Λt00 (τ) exp(β̄T

t0Z)
}

has the optimal limiting ROC curve for classifying Dt0+τ
L among Ωt0 . Note that model (2)

includes the global Cox model (1) as a special case when TL = TS.

3.2. Inference Procedures for Model Parameters and Accuracy Measures

Due to censoring and competing risks, one may not observe TL or T ∗S directly. In the

presence of competing risks, the short term outcome T ∗S such as distant metastasis may not
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be observable if TL corresponds to a terminal event such as death. However, we assume

that TL is only subject to non-informative censoring, i.e. TL will not be censored by T ∗S .

Under such assumptions, both TL and TS = min(T ∗S , TL) are only subject to independent

censoring. Thus for Tι, we observe Xι = min(Tι, C), δι = I(Tι ≤ C), for ι = S, L, where

C is time of censoring. We assume that C is independent of (TL, TS) and Z with a common

survival function G(t) = pr(C ≥ t). Suppose data for analysis consist of n independent and

identically distributed random vectors {(XLi, δLi, , XSi, δSi,Zi), i = 1, ..., n}.
To estimate β̄t0 , we use the subgroup with XS ≥ t0 as an unbiased random sample for

the subpopulation Ωt0 since pr(TL ≤ t0 + τ,Z ≤ z | XS ≥ t0) = prΩt0
(Rt0L ≤ τ,Z ≤ z).

It follows that β̄t0 can be estimated by maximizing the partial likelihood function using

subjects with XS ≥ t0. Specifically, we propose to obtain β̂t0 as the maximizer of

̂̀
t0(β) =

∑
i:XSi≥t0

∫ ∞
t0

βTZi − log

 ∑
j:XSj>t0

exp{βTZj}I(XLj ≥ s)


 dNi(s) (3)

where Ni(s) = I(XLi ≤ s)δLi. In Appendix A, we show that β̂t0 → βt0 in probability

as n → ∞ regardless of the adequacy of (2), where βt0 is the unique maximizer of the

limiting objective function, `t0(β). Furthermore, we show that
√
n(β̂t0 − βt0) converges in

distribution to a multivariate normal with mean zero.

To evaluate our prediction rule, we propose the following estimators for the aforemen-

tioned accuracy measures using inverse probability weighting. Specifically, let

Ŝenst0,τ (c) =

∑
i:XSi>t0

ŴiI(β̂
T

t0Zi ≥ c)I(XLi ≤ t0 + τ)∑
i:XSi>t0

ŴiI(XLi ≤ t0 + τ)

Ŝpect0,τ (c) =

∑
i:XSi>t0

ŴiI(β̂
T

t0Zi < c)I(XLi > t0 + τ)∑
i:XSi>t0

ŴiI(XLi > t0 + τ)

P̂PVt0,τ (c) =

∑
i:XSi>t0

ŴiI(β̂
T

t0Zi ≥ c)I(XLi ≤ t0 + τ)∑
i:XSi>t0

ŴiI(β̂
T

t0Zi ≥ c)

N̂PVt0,τ (c) =

∑
i:XSi>t0

ŴiI(β̂
T

t0Zi < c)I(XLi > t0 + τ)∑
i:XSi>t0

ŴiI(β̂
T

t0Zi < c)
.

where Ŵi = I(XLi>t0+τ)bG(t0+τ)
+ I(XLi≤t0+τ)δLibG(XLi)

and Ĝ(·) is the Kaplan-Meier estimator of G(·).

Subsequently, ROCt0,τ (u) can be estimated as R̂OCt0,τ (u) = Ŝenst0,τ{Ŝpec
−1

t0,τ (1−u). Sim-

ilarly, AUCt0,τ can be estimated by

ÂUCt0,τ =

∑
i:XSi>t0,XLi≤t0+τ

∑
j:XSj>t0,XLj>t0+τ I(β̂

T

t0Zi > β̂
T

t0Zj)ŴiŴj∑
i:XSi>t0,XLi≤t0+τ

∑
j:XSj>t0,XLj>t0+τ ŴiŴj
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In Appendix B we show that the accuracy functions are consistent for the theoretical coun-

terparts, uniformly in (c, t0, τ). Furthermore, we show that
√
n(Ŝenst0,τ (c) − Senst0,τ (c))

converges weakly to a zero-mean Gaussian processes. Similarly, this holds for the other

accuracy measures and it is not difficult to show that these convergences hold jointly. It

then follows from the stochastic equi-continuity of these processes that
√
n{R̂OCt0,τ (u) −

ROCt0,τ (u)} also converges weakly to a Gaussian process. Similar weak convergence re-

sults for other measures with cut-off values selected to achieve a sensitivity level of u, e.g.

P̂PVt0,τ{Sens−1
t0,τ (u)}.

However, it is difficult to empirically estimate the variance associated with these pro-

cesses as they involve derivative functions that are difficult to estimate especially under

model mis-specification. To overcome such difficulties, we propose using a perturbation-

resampling method (Park and Wei, 2003; Cai et al., 2005; Tian et al., 2007) to approxi-

mate the distributions of the proposed estimators. In particular, let {V (b)
i , i = 1, ..., n, b =

1, ..., B} be nB independent realizations of a positive random variable V from a known

distribution with unit mean and unit variance. Let β̂
(b)

t0 be the minimizer of ̂̀(b)t0 (β) =∑
i:XSi>t0

[
∫
{βTZi−log

∑
j:XSj>t0

V
(b)
j exp{βTZj}I(XLj ≥ s)}V (b)

i dNi(s)]. For accuracy mea-

sures such as AUCt0,τ and Senst0,τ (c), let

ÂUC
(b)

t0,τ =

∑
i:XSi>t0,XLi≤t0+τ

∑
j:XSj>t0,XLj>t0+τ I(ZT

i β̂
(b)

> ZT
jβ̂

(b)
)Ŵ (b)

i Ŵ
(b)
j V

(b)
i V

(b)
j∑

i:XSi>t0,XLi≤t0+τ

∑
j:XSj>t0,XLj>t0+τ Ŵ

(b)
i Ŵ

(b)
j V

(b)
i V

(b)
j

Ŝens
(b)

t0,τ (c) =

∑
i:XSi>t0,XLi≤t0+τ Ŵ

(b)
i I(ZT

i β̂
(b)

t0 ≥ c)V
(b)
i∑

i:XSi>t0,XLi≤t0+τ Ŵ
(b)
i V

(b)
i

where Ŵ
(b)
i = I(XLi > t0 + τ)/Ĝ(b)(t0 + τ) + I(XLi ≤ t0 + τ)δLi/Ĝ

(b)(XLi) and Ĝ(b) is

the Kaplan-Meier estimator of G(·) with weights V (b)
i . The empirical distributions of these

realizations can be used to approximate the distribution of the corresponding estimators.

For example, the variance of ÂUCt0,τ can be estimated using

σ̂2
t0,τ = B−1

B∑
b=1

{ÂUC
(b)

t0,τ − ÂUCt0,τ}2.

A 100(1−2α)% confidence interval (CI) for AUCt0,τ could be obtained either using the nor-

mal CI or the empirical quantiles of the perturbed samples. The validity of the resampling

procedure can be justified based on the large sample theory given in Appendix B along with

similar arguments as given in Cai et al. (2005).

The aforementioned accuracy estimators, commonly referred to as apparent accuracy

estimates, tend to be overly optimistic, particularly when the dimension of Z is not small.
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To reduce this potential bias, we consider a general cross-validation where we randomly

split the data into a training set of size nt and a validation set of size nv = n− nt. For the

kth split, we estimate βt0 using the training set, denoted by β̂
(CV)k

t0 . Then for any accuracy

measure of interest, say AUCt0,τ , we estimate the AUC for the linear score β̂
(CV)kT

t0 Z based on

the validation set, denoted by ÂUC
(CV)k

t0,τ . Let ÂUC
(CV)

t0,τ be the average of all ÂUC
(CV)k

t0,τ over

K random splits. Using similar justification as given by Tian et al. (2007) and Uno et al.

(2007), it can be shown that ÂUC
(CV)

t0,τ and ÂUCt0,τ have the same limiting distribution at

the first order. Therefore, one may construct a 95% CI for AUCt0,τ as ÂUC
(CV)

t0,τ ± 1.96σ̂t0,τ .

It is important to note that our proposed method holds for any choice of t0 and τ . In

practice, one may consider the proposed estimator across a range of t0 and τ as a basis

for selecting an appropriate time point such that the prediction model is most accurate.

For example, suppose t0 is pre-selected by a clinician, such as a regularly scheduled 1-year

appointment. Information guiding the choice of τ would be a clinically meaningful as it

would shed light on what time point/period Z is most useful in prediction. To determine

the values of τ that offer high overall accuracy from classifying Dt0+τ
L for a fixed t0, one

may plot ÂUC
(CV)

t0,τj over a range of τj in some interval [τl, τr] ⊂ (t0,max(XLi)) and con-

struct both point-wise and simultaneous CIs using the perturbation-resampling method as

described above. A 100(1 − α)% simultaneous CI for {ÂUC
(CV)

t0,τj , τj ∈ [τl, τr]} can be ob-

tained as {ÂUC
(CV)

t0,τj ± ĉασ̂t0,τ , τj ∈ [τl, τr]}, where ĉα is the (1 − α) empirical quantile of

{supτj∈[τl,τr]|ÂUC
(b)

t0,τj−ÂUCt0,τj |/σ̂t0,τj , b = 1, ..., B}. The simultaneous CI will ensure the

control of family-wise type I error when selecting a set of τj ’s such that the overall accuracy

is above a certain threshold value.

3.3. Incremental Value of New Markers

Determining the incremental value (IV) of new markers in prediction is often of clinical

interest, particularly if measuring the markers is expensive or invasive. Several procedures

have been developed to quantify the overall IV from a new marker for the entire population

(Tian et al., 2007; Uno et al., 2007; Pepe et al., 2004, 2008; Pencina et al., 2008). Our pro-

posed method could potentially shed light on how the IV may vary across sub-populations.

For example, if the new marker is only useful for predicting TL among those with good

prognosis, one may expect that the IV is near zero for predicting TS ≥ t0, but is high for

predicting TL < t0 + τ among those with TS > t0. This may provide a useful tool for prac-

titioners to decide when the new marker is needed in addition to conventional risk factors.

Let (M1) denote the model with routine markers only and (M2) denote the model with both
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routine markers and the new markers. One may quantify the IV of the new markers based

on ∆t0,τ = AUC(M2)
t0,τ −AUC(M1)

t0,τ , where AUC(Mk)

t0,τ denotes the AUC of (Mk), for k = 1, 2. To

make inference about ∆t0,τ , let ÂUC
(CV)(Mk)

t0,τ denote the cross-validated estimate of AUC(Mk)

t0,τ

and {ÂUC
(Mk)(b)

t0,τ , b = 1, ..., B} be the perturbed estimates of AUC(Mk)

t0,τ . Then one may make

inference about ∆t0,τ based on ∆̂(CV)
t0,τ = ÂUC

(CV)(M2)

t0,τ − ÂUC
(CV)(M1)

t0,τ and the empirical vari-

ance of {B−1
∑n
i=1{ÂUC

(M2)(b)

t0,τ −ÂUC
(M1)(b)

t0,τ , b = 1, ..., B}. To examine how the IV vary over

τ , one may assess ∆t0,τ as a function of τ and identify the range of τ such that M2 is better

than M1. To this end, one may construct a plot of ∆̂(CV)
t0,τj = ÂUC

(CV)(M2)

t0,τj − ÂUC
(CV)(M1)

t0,τj . Si-

multaneous confidence intervals for {∆t0,τj , τj ∈ [τl, τr]} could be constructed using similar

procedure as for {ÂUC
(CV)

t0,τj , τj ∈ [τl, τr]}.

3.4. Comprehensive Prognosis of Short Term and Long Term Outcomes

In practice, one may be interested in both the prognosis of the short term and the long term

outcomes. Our proposed procedures can easily be extended to make such joint predictions.

Let Dt0
S = I(TS ≤ t0) denote the status of the short term outcome. When the underlying

patient population consists of a mixture of short term survivors and long term survivors,

the optimal prediction score for short term outcomes may be different from that of long

term outcomes. Thus, to construct a robust prediction rule for Dt0
S , one may fit a separate

Cox model using survival information on TS up to t0 as in Cai et al. (2010). Let α̂t0 denote

the maximum partial likelihood estimator for the effect of Z on TS based on the truncated

data {(XSi ∧ t0, δSiI(XSi ≤ t0),Zi), i = 1, ..., n}. Such a fitting essentially corresponds to

assuming the Cox model holds up to t0. For future subjects with outcomes (T 0
S , T

0
L ) and

covariate level Z0, we will classify them as having a poor short term prognosis, denoted by

S+
t0 , if α̂T

t0Z
0 > ĉSt0

, and good short term prognosis, denoted by S−t0 , otherwise. Similarly, for

the long term conditional survival, we classify subjects as having a poor prognosis, denoted

by Lτ+
t0 , if β̂

T

t0Z
0 > ĉLτt0

, and good prognosis, denoted Lτ−t0 , otherwise. Here ĉSt0
and ĉLτt0

are the cut-off values selected to achieve certain desired sensitivity or specificity levels for

the classification of the corresponding events.

To illustrate how the proposed procedures may be useful in clinical practice, we next

describe how a clinician may provide a two-step prognosis for future subjects. For future

patients with Z0, the clinician will first classify them as either S+
t0 or S−t0 and provide their

chance of surviving to t0 given their prognosis based on pr(T 0
S > t0 | S−t0) and pr(T 0

S > t0 |
S+
t0). In the next step, the clinician will further classify subjects as having a good or poor

conditional prognosis and inform them regarding their chance of surviving an additional τ
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years after t0 provided that they do survive t0 years i.e. T 0
S > t0. This information would

be based on prΩt0
(T 0

L > τ + t0|St0 ,L
τ
t0 ), for  = + and −. These conditional probabilities

can be estimated non-parametrically via IPW similar to those given in section 3.2

4. Simulations

To examine finite-sample properties of the proposed estimation procedures, we conducted

simulation studies under various scenarios and focused on the case with TL = TS = T

for simplicity. Two types of models were used to generate T : a mixture of log-normal in

setting (i) and a Cox model in setting (ii). Two types of censoring patterns were consid-

ered in setting (i) to examine the effect of censoring. The covariate vector Z consists 5

components: (Z2, Z3, Z4) ∼ N(0,Σ) with unit variance and a weak correlation ranging

from -.03 and .05; Z1 ∼ a bernoulli distribution with success probability Φ(Z2 + Z3); and

Z5 ∼ Uniform[Φ(Z4), 1 + Φ(Z4)]. In each setting, we generated 1000 realizations of size n

for n=200, 500 and 1,000 and obtained β̂t0 as well as β̂, the standard maximum partial

likelihood estimator of β under a global Cox model. Accuracy measures were also calculated

for both β estimates. Here, in addition to assessing the overall accuracy based on the AUC,

we consider the specificity, PPV and NPV at a cut-off value corresponding to a sensitivity

level of 0.90. The standard error estimates were obtained based on 500 perturbations each.

In setting (i), the survival time was generated from T = exp{(βT

1Z + ε1)/6} with ε1 ∼
N(−3, 1) if B = 1 and T = exp{(βT

0Z + ε0)/6}+ 1 with ε0 ∼ N(10, 4) if B = 0, where B ∼
Bernoulli(.4), β1 = (3, 6, 1.5, 0, 0)T and β0 = c(0, 0, 1.5, 3, 1.5). This mimics a clinical setting

in which (Z1, Z2, Z3) are predictive of short term survival, (Z3, Z4, Z5) are predictive of long

term survival. For illustration, we chose t0 to be year 1 to reflect an early indication of

disease and τ to be year 5. Therefore, among patients surviving 1 year, we wish to estimate

their probability of survival past year 6, given baseline covariates. Under these conditions,

pr(T ≤ t0) = .23 and pr(T ≤ τ + t0 | T > t0) = .49. We first consider the case when C was

generated from exponential with rate .11, yielding a censoring rate of approximately 40%.

The results are shown in Tables ??. Since both the global and the conditional Cox model are

mis-specified in this case, β̂t0 and β̂ are converging to two different limits. β̂t0 assigns more

weights on (Z3, Z4, Z5), the covariates that are helpful for predicting long term survival.

On the contrary, β̂ assigns more similar weights to all covariates. The resulting linear score

has a higher overall accuracy with AUCt0,τ ∼ .74 for the landmark method compared to

AUCt0,τ ∼ .67 using the global Cox model. All point estimators have negligible bias. The
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standard errors estimated from the resampling method are close to the empirical standard

errors and the empirical coverage levels are close to their nominal level.

We also considered a different setting to asses how censoring patterns effect the estima-

tion. In this setting, T was generated from the same log-normal mixture distribution as

described above. However, the censoring time was generated from a mixture of exponen-

tial(rate=.30) with probability .40 and exponential(rate =.02) with probability .60. Under

this setting, about 10% are censored within the first year and 25% are censored within the

first 6 years. As shown in Tables 2, β̂t0 and β̂ have limits different from those for the

previous setting with exponential censoring. This is due to the fact that the maximizer of

the partial likelihood function is no longer free of the censoring distribution under model

mis-specification. The accuracy of the linear scores is also slightly different for these two

settings. However, the proposed procedures remain to perform well with negligible bias in

the point estimates and proper coverage level for the interval estimates.

In setting (ii), we are interested in examining the efficiency loss due to the use of the

more robust conditional landmark model when the global Cox model holds. To this end, we

generated T from a Cox model with 1.25 log(T ) = 2 +βT

0Z + ε, where ε is from an extreme

value distribution and β0 = (1, .5, .5, 1, .5)T. Under this configuration, pr(T ≤ t0) = .20,

pr(t0 < T < τ + t0) = .33 and pr(T < τ + t0 | T > t0) = .34. Censoring time was generated

from an exponential distribution with rate .05, yielding approximately 40% of censoring.

Results shown in Tables 3. Since β̂ is semi-parametric efficient and β̂t0 is obtained based on

the subset in Ωt0 , which consists of 83% of the entire sample, there is a significant efficiency

loss due to landmarking. However, the efficiency loss in estimating the accuracy measures

is negligible.

5. Example

In this section, we illustrate our proposed procedures using a dataset originally used in van

de Vijver et al. (2002) to evaluate a 70-gene risk score for breast cancer prognosis. More

recently, Carter et al. (2006) demonstrated that a chromosome instability genetic score,

denoted by CIN25, is predictive of survival for various types of cancer. Here we investigate

the predictive ability of CIN25 for breast cancer survival using the data from van de Vijver

et al. (2002). This dataset consists of 260 women, with individual information on time

to death, time to distant metastasis, CIN25 gene score, age, tumor grade, size of tumor,

baseline lymph node status, and estrogen receptor status.
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For illustration, we first consider the case with TL = T ∗S being metastasis free survival.

There were a total of 88 events and the 5-year event rate is about 0.24. To provide a

comprehensive prediction for these patients, we first aim to make a prediction for a short

term outcome, progression-free survival by t0=3, i.e. Dt0
S = I(TS ≤ 3). The 3-year event

rate was about 0.17. To construct a robust score for this prediction, we fit a Cox model

using survival information up to t0 and obtain a linear score based on such a truncated

model. For comparison, we also obtain the linear score from fitting a global Cox model.

After the prediction rule for Dt0
S is developed and evaluated, we next construct and evaluate

prediction rules for 5-year progression-free survival among among those who survived 3 years

without metastasis based on our proposed landmark procedures. In Table 4(a), we present

the regression coefficients estimates for the risk scores. For the short term prediction, the

global Cox model assigns the highest weight on the gene score whereas the truncated model

assigns more weight on the tumor grade. For the landmark prediction, the conditional Cox

model also assigns the most weight on the gene score. This suggests that the gene score

may be more useful for long term prediction than for short term prediction. As shown

in Table 4(b), the risk score has a reasonable accuracy in classifying TL ≤ 3 with AUC

0.733 (s.e. 0.035) for the truncated model and 0.728 for the global Cox model. To develop a

prognostic rule for the short term survival, we select the cut-off value to achieve a sensitivity

level of 0.90 and classify patients as having good prognosis if the predicted risk of failure

is lower than the cut-off value. The rule from the truncated model leads to 24% chance of

failure among those classified as poor prognosis and 96% of survival among those with good

prognosis. Now among those who do survive 3-years without metastasis, the risk score has

lower accuracy in predicting the long term outcome with AUC 0.64 for the landmark model

and 0.63 for the global Cox model. At sensitivity level of 0.90, the landmark model yields

a rule with specificity of 0.35 (s.e. 0.11). Based on the corresponding prognostic rule, the

chance of survival is 97% for those with good long term prognosis and 77% for those with

poor prognosis.

Now, to evaluate the incremental value of the gene score, we compared the aforemen-

tioned accuracy to those obtained by fitting the models with predictors without the gene

score. For the short term outcome based on the truncated Cox model, the cross-validated

estimates of AUC are 0.73 and 0.74 with and without the gene score, respectively. This

again suggests that the gene score may not be useful for predicting short term survival. For

the landmark prediction based on the conditional Cox model, the AUC estimate decreases

from 0.64 to 0.52 when the gene score is removed from the model. A 95% confidence interval
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for difference in the AUC is (0.02,0.22) suggesting that the gene score significantly improves

the accuracy for the landmark prediction. To evaluate the IV of gene score for various

values of τ , let M2 and M1 indicate models with and without the gene score, respectively.

As shown in Figure 2, the IV of gene score slightly increases for larger values of τ and is

significant for a few τj ’s. However, after adjusting for overall type I error based on the

simultaneous band, the improvement due to the gene is no longer statistically significant.

To develop a comprehensive prognosis system, we then classify subjects as having a good

or poor prognosis for both the short term outcome and the conditional long term outcome

using all predictors. The cut-off values ĉLτt0
and ĉSt0

are selected to achieve 90% sensitivity

in classifying Dt0+τ
L among Ωt0 and Dt0

S , respectively. As shown in Table 4(c), the chance

of surviving 3 years without distant metastasis is 76% for those classified as S+
t0 , and 96%

for those classified as S−t0 . Now, if a patient does survive 3 years without metastasis, then

her chance of surviving another 5 years is 97.7% if she is classified as (S−t0 ,L
τ−
t0 ), 83.7% if

she is classified as (S−t0 ,L
τ+
t0 ), 95.8% if she is classified as (S+

t0 ,L
τ−
t0 ), 73.6% if she is classified

as (S+
t0 ,L

τ+
t0 ).

We also consider the case with T ∗S corresponding to distant metastasis and TL being

overall survival and the goal is now prediction of 5-year overall survival among subjects

with TS = min(T ∗S , TL) > 3 years. The results are summarized in Table 5. The prediction

with both clinical and gene score has an AUC of 0.68 (se 0.048) which is slightly higher

than that for the prediction of metastasis-free survival. The global Cox method yielded

similar accuracy. The inclusion of gene score resulted in an increase of 0.09 (se 0.07) which

is similar to that of metastasis-free survival.

6. Remarks

In this article we propose robust procedures for developing and evaluating conditional prog-

nostic rules for the prediction of long term outcomes based on baseline marker and short

term outcome information in order to improve prediction accuracy for long-term survivors.

The proposed procedures yield stable prediction rules regardless of model adequacy. Such

a robustness property is particularly important when TL and TS represent two different

outcomes as for such settings, it is difficult if not impossible to identify bivariate survival

models that capture the complex relationship between the correlated outcomes and the

predictors. Under model mis-specification, traditional procedures for making inference may

not be valid and thus lead to prediction rules that are either unstable or have unsatisfac-
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tory accuracy. Furthermore, our proposed non-parametric procedures for making inference

about the accuracy measures are valid regardless of model adequacy.

It is important to emphasize that we do not require the correct specification of the

working model. In addition, the proposed procedure provides a prediction rule at baseline

using only covariate information, Z, available at baseline. If time-varying covariates are

available, it would be of interest to provide an updated prediction rule at the landmark

time t0 using covariate information collected up to t0. Our proposal can be extended by

replacing βTZi in (3) with
∫ t0

0
β(u)Zi(u)dwi(u) and parametrizing β(u) via basis function

expansions, where wi(u) is a given weight function and Zi(u) is the covariate level at time

u. Note that only covariate information collected up to t0 would be used to predict the

residual life status Dt0+τ
L = I(TL ≤ τ + t0) = I(Rt0L ≤ τ). This differs from the standard

Cox model with time-varying covariates, as in Kalbfleisch and Prentice (2002) (Eq. 6.14)

in which covariate information collected up to time t is used to estimate the instantaneous

hazard at time t. Details on building prediction tools and evaluation model consistency in

this setting can be found in Jewell and Nielsen (1993).

When the underlying patient population consists of a mixture of short term survivors and

long term survivors, the optimal prediction score for short term outcomes may be different

from that of long term outcomes. To provide a comprehensive system for prediction, one

may develop prognostic rules for short term survival based on robust procedures such as

fitting a truncated Cox model as in Cai et al. (2010) or time-specific generalized linear

models as in Zheng et al. (2006); Uno et al. (2007). Subsequently, the conditional prognosis

rules can be developed by fitting the proposed landmark models. Such time-specific rules

are likely to yield linear scores with higher accuracy compared to those obtained by fitting

a global Cox model. For example, under the normal mixture configuration used in the

simulation study, the ROC curves for predicting t0 survival using the truncated Cox model

vs. the global Cox model and for predicting t0 + τ survival using the landmark model vs.

the global Cox model are shown in Figure 1. The results show that both the truncated

Cox model and the landmark model give better prediction rules for t0 and t0 + τ survival,

respectively.

When TL = TS = T and T follows a Cox model, our proposed procedure remains valid

but is less efficient in estimating the regression coefficients when compared to those based

on a global Cox model. However, the efficiency loss is minimal for the estimated accuracy

measures. In practice, it is important to assess the validity of the global model and determine

whether a common risk score should be used for the prediction of both short term and long

http://biostats.bepress.com/harvardbiostat/paper123



Landmark Prediction of Survival 15

term outcomes. When the number of markers available for combination is not small relative

to the number of observed events, we recommend to estimate the accuracy measures based

on the cross-validation and construct confidence intervals by centering at the cross-validated

point estimate but with width determined by the resampling procedure for the apparent

error.

Appendix

Throughout, we assume that the joint density of (TL, TS,Z) is twice continuously differen-

tiable, Z are bounded, and pr(XL > t0 + τ,XS > t0) > 0, C is independent of (TL, TS,Z)

with a survival function G(·).

Appendix A: Consistency and Large Sample Properties of β̂

To establish the convergence of β̂t0 under possible model mis-specification, let Ŝ(k)(t,β) =

n−1
∑n
i=1 exp{βTZi}Z⊗ki I(XLi ≥ t,XSi > t0), S(k)(t,β) = E{Ŝ(k)(t,β)} and

`t0(β) = E

∫ ∞
t0

[
I(XLi ≥ t0)

{
βTZi − logS(0)(t,β)

}
dNi(s)

]
,

where and for any vector a, a⊗0 = 1, a⊗1 = a and a⊗2 = aaT. It follows from similar

arguments as given by Hjort (1992) that `t0(β) is a concave function of β and thus `t0(β) has

a unique maximizer, denoted by βt0 . We assume that βt0 is an interior point of a compact

parameter space. Without censoring, it can be shown using a penalized quasi-likelihood

approximation (Breslow and Clayton, 1993) that in the neighborhood of βt0 , `t0(β) can

be approximated by the covariance between the linear score and the survival status. In

view of Theorem 2.1 of Newey et al. (1994), to show that β̂t0 is a consistent estimator of

βt0 , it suffices to show that ̂̀t0(β) converges to `t0(β) uniformly in β. It follows from a

uniform law of large numbers (ULLN) (Pollard, 1990) that supt,β |Ŝ(k)(t,β)−S(k)(t,β)| →
0, in probability. This, together with another application of a ULLN, implies that ̂̀t0(β)

converges to `t0(β) uniformly in β. Therefore, β̂t0 → βt0 in probability regardless the

adequacy of model (2).

To derive the limiting distribution of n
1
2 (β̂t0 − βt0), we take a Taylor series expansion

of the score function

Û(β) =
∂ ̂̀t0(β)
∂β

= n−1
n∑
i=1

∫ ∞
t0

{
Zi −

Ŝ(1)(t,β)

Ŝ(0)(t,β)

}
dNi(t)I(XSi > t0)

Hosted by The Berkeley Electronic Press



16 Layla Parast and Tianxi Cai lparast@hsph.harvard.edu tcai@hsph.harvard.edu

and obtain

0 = n
1
2 Û(βt0) + Â(β̂

∗
t0)n

1
2 (β̂t0 − βt0),

where Â(β) = ∂Û(β)/∂βT and β̂
∗
t0 satisfies ‖β̂

∗
t0 − βt0‖ ≤ ‖β̂t0 − βt0‖. First, it follows

from the uniform convergence of Ŝ(k)(t,β) and a ULLN that Â(β) → A(β) in probability

uniformly in β, where A(β) = ∂2`t0(β)/∂β∂βT. This, together with the consistency of β̂t0
implies that Â(β̂

∗
t0)→ A(βt0) in probability.

We next derive an asymptotic expansion for n
1
2 Û(βt0). To this end, we let ξ̂(t) =

n−1
∑n
i=1Ni(t)I(XSi > t0) and ξ(t) = E{ξ̂(t)} and write

n
1
2 Û(β) = n−

1
2

∑
XSi>t0

[∫ ∞
t0

{
Zi −

S(1)(t,β)
S(0)(t,β)

}
dNi(t)

]
+ n

1
2

∫ ∞
t0

{
S(1)(t,β)
S(0)(t,β)

− Ŝ(1)(t,β)
Ŝ(0)(t,β)

}
dξ̂(t).

By a Functional Central Limit Theorem (FCLT) (Pollard, 1990) and the uniform consistency

of Ŝ(k)(t,β),

n
1
2

{
S(1)(t,β)
S(0)(t,β)

− Ŝ(1)(t,β)
Ŝ(0)(t,β)

}
≈ −n− 1

2

n∑
j=1

I(XLj ≥ t,XSj > t0) exp{βTZj}
S(0)(t,β)

{
Zj −

S(1)(t,β)
S(0)(t,β)

}
(4)

Moreover, by a ULLN, supt |ξ̂(t)−ξ(t)| → 0 in probability. This, together with (4), a strong

representation theorem (Pollard (1990)) and Lemma A.3 of Bilias et al. (1997), implies that

n
1
2

∫ ∞
t0

{
S(1)(t,β)
S(0)(t,β)

− Ŝ(1)(t,β)
Ŝ(0)(t,β)

}
dξ̂(t) = n

1
2

∫ ∞
t0

{
S(1)(t,β)
S(0)(t,β)

− Ŝ(1)(t,β)
Ŝ(0)(t,β)

}
dξ(t) + op(1).

This, together with the convergence of Â, implies that

n
1
2 (β̂t0 − βt0) ≈ n− 1

2

n∑
i=1

Ui(βt0). (5)

where

Ui(β) = −A(βt0)−1

∫ ∞
t0

I(XSi > t0)
{

Zi −
S(1)(t,β)
S(0)(t,β)

}{
dNi(t)−

I(XLi ≥ t) exp{βTZi}
S(0)(t,β)

dξ(t)
}
.

By a central limit theorem, n
1
2 (β̂t0−βt0) converges in distribution to a multivariate normal

with mean 0 and covariance matrix E{Ui(βt0)Ui(βt0)T}.

Appendix B: Consistency and Large Sample Properties of accuracy measures

In this section, we derive large sample properties for the estimated accuracy measures.

We only provide details for the estimated sensitivity function, but note that the same
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arguments can be used for the estimated specificity, PPV and NPV functions. To this end,

we let H(β, c) = prΩt0
(βTZ > c | Dt

L = 1), Wi = I(XLi > t0 + τ)/G(t0 + τ) + I(XLi ≤
t0 + τ)ı/G(XLi),

Ĥ(β, c) =
∑n
i=1 ŴiI(βTZi ≥ c)I(XLi ≤ t0 + τ,XSi > t0)∑n

i=1 ŴiI(XLi ≤ t0 + τ,XSi > t0)

and H̃(β, c) =
∑n
i=1WiI(βTZi ≥ c)I(XLi ≤ t0 + τ,XSi > t0)∑n

i=1WiI(XLi ≤ t0 + τ,XSi > t0)

To establish the uniform consistency of the estimated sensitivity function, i.e. supc∈[cl,cr] |Ĥ(β̂t0 , c)−
H(βt0 , c)| → 0 in probability, we first show that supβ,c |Ĥ(β, c)− H̃(β, c)| → 0 in probabil-

ity, where 1 > H(βt0 , cl) > H(βt0 , cr) > 0. Here and in the sequel, the sup or inf is taken

over Ω(n)
βt0

= {β : β = βt0 + Op(n−
1
2 )} for β and over [cl, cr] for c. It is straightforward to

see that

|Ĥ(β, c)− H̃(β, c)| ≤ |N̂ (β, c)− Ñ (β, c)|
D̂(β, c)

+
|D̂(β, c)− D̃(β, c)|

G(t0 + τ)D̂(β, c)D̃(β, c)

where

Ñ (β, c) = n−1
n∑
i=1

WiI(βTZi ≥ c)I(XLi ≤ t0 + τ,XSi > t0), D̃(β, c) = n−1
n∑
i=1

WiI(XLi ≤ t0 + τ,XSi > t0),

N̂ (β, c) = n−1
n∑
i=1

ŴiI(βTZi ≥ c)I(XLi ≤ t0 + τ,XSi > t0), D̂(β, c) = n−1
n∑
i=1

ŴiI(XLi ≤ t0 + τ,XSi > t0)

Furthermore,

N̂ (β, c)− Ñ (β, c) =
∫ [

1

Ĝ(s)
− 1
G(s)

]
d

{
n−1

n∑
i=1

I(βTZi ≥ c, t0 < XLi ≤ s,XSi > t0, δLi = 1)

}

It follows from the uniform consistency of Ĝ(·) (Fleming and Harrington, 1991), a uniform

law of large numbers, along with Lemma A.3 of Bilias et al. (1997) that supβ,c |N̂ (β, c) −
Ñ (β, c)| → 0 in probability. Similarly, supβ,c |D̂(β, c) − D̃(β, c)| → 0 in probability.

This, together with supβ,c |D̃(β, c) − E{D̃(β, c)}| → 0 in probability by a ULLN and and

infβ,cE{D̃(β, c)} > 0, implies the uniform in probability convergence of Ĥ(β, c)−H̃(β, c)→
0. On the other hand, by a ULLN, supβ,c |H̃(β, c)−H(β, c)| → 0, in probability. This, to-

gether with the consistency of β̂t0 , implies the uniform consistency of Ŝenst0,τ (c) = Ĥ(β̂t0 , c)

for Senst0,τ (c) = H(βt0 , c).

We now approximate the distribution of Ŵ(c) = n
1
2 {Ĥ(β̂t0 , c)−H(βt0 , c)} = n

1
2 {q0q̂1(β̂t0 , Ĝ)−

q1(βt0)q̂0(Ĝ)}/{q0q̂0(Ĝ)}, where q0 = pr(XLi ≤ t0+τ,XSi > t0), q̂1(β, G) = n−1
∑n
i=1 δLiI(βTZi ≥

c,XLi ≤ t0 + τ,XSi > t0)/G(XLi), q1(β) = pr(XLi ≤ t0 + τ,XSi > t0,β
TZi ≥ c) and
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q̂0(G) = n−1
∑n
i=1 δLiI(XLi ≤ t0 + τ,XSi > t0)/G(XLi). We begin by examining the numer-

ator and write n
1
2 {q0q̂1(β̂t0 , Ĝ)− q1(βt0)q̂0(Ĝ)} = (B1) + (B2) + (B3) + (B4), where

(B1) = n
1
2
[
q̂1(βt0 , G)q0 − q̂0(G)q1(βt0)

]
, (B2) = n

1
2

[
q̂1(β̂t0 , Ĝ)− q̂1(βt0 , Ĝ)

]
q0,

(B3) = −n 1
2

[
q̂0(Ĝ)− q̂0(G)

]
q1(βt0), (B4) = n

1
2

[
q̂1(βt0 , Ĝ)− q̂1(βt0 , G)

]
q0.

It is straightforward to show that (B1) = n−
1
2
∑n
i=1B1i(c), where B1i(c) = δLiI(XLi ≤

t0 + τ,XSi > t0){I(βT

t0Zi ≥ c)q0 − q1(βt0)}/G(XLi). For (B2), we write q̂1(β, Ĝ) =∫ t0+τ

t0
η̂1(dt, c,β)/Ĝ(t), where η̂1(t, c,β) = n−1

∑n
i=1 I(XLi ≤ t,XSi > t0)I(βT

t0Zi ≥ c)δLi. It

follows from a FCLT that n
1
2 (η̂1(t, c,β)−η1(t, c,β)) converges weakly to a zero-mean Gaus-

sian Process in (t, c,β) and thus is equicontinuous, where η1(t, c,β) = E{η̂1(t, c,β)}. This,

together with the uniform consistency of Ĝ, Lemma A.3 of Bilias et al. (1997), and a Tay-

lor series expansion, implies that (B2) ≈ q0n
1
2 (β̂ − βt0)T

∫ t0+τ

t0
G(t)−1η̇1(dt, c,βt0), where

η̇1(t, c,β) = ∂η1(t, c,β)/∂β. This, together with (5), implies that (B2) ≈ n−
1
2
∑n
i=1B2i,

where B2i(c) = q0

∫ t0+τ

t0
G(t)−1η̇1(dt, c,βt0)TUi(βt0).

To account for the variability due to Ĝ in (B3), we first note that n
1
2 {G(t)/Ĝ(t) −

1} ≈ n−
1
2
∑n
i=1 UGi(t) (Fleming and Harrington, 1991), where UGi(t) =

∫ t
0
dMCi(s)/πS(s),

πS(s) = pr(XLi > s), MCi(s) = I(XLi ≤ s, δLi = 0) +
∫ t

0
I(XLj > s)d log{G(s)}. This,

together with a Strong Representation Theorem (Pollard, 1990) and Lemma A.3 of Bilias

et al. (1997), implies that (B3) ≈ q1(βt0)
∫ t0+τ

t0
n

1
2 {G(t)/Ĝ(t) − 1}pr(TL ≤ dt,XS > t0) ≈

n−
1
2
∑n
i=1B3i, where B3i = q1(βt0)

∫ t0+τ

t0
UGi(t)pr(TL ≤ dt,XS > t0). Similarly, we have

(B4) = n−
1
2n−1

∑n
i=1B4i(c), where B4i(c) = q0

∫ t0+τ

t0
UGi(t)pr(TL ≤ dt,XS > t0,β

T

t0Z > c).

Combining the above expansions for (B1), (B2), (B3) and (B4), we have

Ŵ(c) ≈ {q0q̂0(Ĝ)}−1n−
1
2

n∑
i=1

{B1i(c) +B2i(c) +B3i +B4i(c)} .

On the other hand, it follows from the uniform consistency of Ĝ, a ULLN Lemma A.3 of Bil-

ias et al. (1997), that q̂0(Ĝ)→ q0. Therefore, Ŵ(c) ≈ n− 1
2
∑n
i=1 USensi(c), where USensi(c) =

q−2
0 {B1i(c) + B2i(c) + B3i + B4i(c)}. It then follows from a FCLT that Ŵ(c) converges

weakly to a mean-zero Gaussian process with covariance function cov{USensi(c), USensi(c
′)}.
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Table 1. Regression parameter and accuracy measure estimates under the log-normal
mixture model for T and exponential model for C using the proposed landmark
method (Land) vs. the global Cox method (Cox), with corresponding empirical stan-
dard errors (ESE), average of the standard error estimates from the perturbation-
resampling method (ASE), and empirical coverage levels (Coverage)

(a) Regression Coefficients

n=200

Truth Average ESE ASE Coverage

Land Cox Land Cox Land Cox Land Cox Land Cox

β1 0.412 -0.184 0.433 -0.173 0.352 0.265 0.331 0.250 0.928 0.944
β2 0.047 -0.408 0.060 -0.434 0.143 0.120 0.132 0.111 0.936 0.939
β3 -0.381 -0.444 -0.369 -0.448 0.156 0.118 0.142 0.113 0.934 0.944
β4 -0.733 -0.676 -0.729 -0.669 0.196 0.132 0.178 0.136 0.927 0.957
β5 -0.382 -0.381 -0.375 -0.365 0.413 0.316 0.411 0.324 0.951 0.961

n=500

β1 0.412 -0.184 0.405 -0.176 0.205 0.157 0.202 0.155 0.950 0.936
β2 0.047 -0.408 0.052 -0.425 0.084 0.070 0.081 0.069 0.943 0.941
β3 -0.381 -0.444 -0.379 -0.449 0.090 0.072 0.087 0.069 0.941 0.951
β4 -0.733 -0.676 -0.732 -0.659 0.113 0.086 0.109 0.083 0.928 0.946
β5 -0.382 -0.381 -0.392 -0.390 0.256 0.202 0.248 0.199 0.943 0.945

n=1000

β1 0.412 -0.184 0.413 -0.174 0.140 0.108 0.141 0.108 0.943 0.949
β2 0.047 -0.408 0.051 -0.414 0.058 0.048 0.057 0.048 0.937 0.944
β3 -0.381 -0.444 -0.380 -0.445 0.062 0.048 0.061 0.049 0.940 0.958
β4 -0.733 -0.676 -0.728 -0.675 0.079 0.059 0.076 0.058 0.946 0.946
β5 -0.382 -0.381 -0.391 -0.381 0.181 0.141 0.174 0.139 0.939 0.943

(b) Accuracy Measures

n=200

Truth Average ESE ASE Coverage

Land Cox Land Cox Land Cox Land Cox Land Cox

AUC 0.741 0.668 0.756 0.675 0.051 0.067 0.048 0.064 0.891 0.920
Spec 0.319 0.207 0.360 0.243 0.119 0.106 0.129 0.117 0.952 0.960
NPV 0.771 0.686 0.790 0.707 0.074 0.114 0.078 0.120 0.885 0.892
PPV 0.557 0.519 0.577 0.535 0.067 0.059 0.072 0.065 0.952 0.962

n=500

AUC 0.741 0.668 0.746 0.671 0.031 0.041 0.031 0.041 0.937 0.946
Spec 0.319 0.207 0.336 0.223 0.074 0.065 0.081 0.071 0.954 0.960
NPV 0.771 0.686 0.779 0.696 0.046 0.071 0.050 0.075 0.931 0.931
PPV 0.557 0.519 0.565 0.526 0.042 0.038 0.044 0.040 0.958 0.960

n=1000

AUC 0.741 0.668 0.744 0.671 0.023 0.030 0.022 0.029 0.942 0.937
Spec 0.319 0.207 0.329 0.216 0.055 0.046 0.057 0.049 0.958 0.958
NPV 0.771 0.686 0.775 0.691 0.034 0.051 0.035 0.052 0.922 0.923
PPV 0.557 0.519 0.561 0.522 0.030 0.026 0.031 0.027 0.957 0.963
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Table 2. Regression parameter and accuracy measure estimates under the log-normal
mixture model for T and exponential mixture model for C using the proposed land-
mark method (Land) vs. the global Cox method (Cox), with corresponding em-
pirical standard errors (ESE), average of the standard error estimates from the
perturbation-resampling method (ASE), and empirical coverage levels (Coverage)

(a) Regression Coefficients

n=200

Truth Average ESE ASE Coverage

Land Cox Land Cox Land Cox Land Cox Land Cox

β1 0.320 -0.129 0.344 -0.104 0.285 0.229 0.274 0.221 0.943 0.939
β2 0.041 -0.298 0.039 -0.346 0.123 0.102 0.111 0.097 0.921 0.935
β3 -0.392 -0.444 -0.392 -0.448 0.127 0.103 0.120 0.099 0.933 0.943
β4 -0.764 -0.735 -0.770 -0.734 0.168 0.126 0.151 0.122 0.922 0.950
β5 -0.397 -0.396 -0.366 -0.361 0.371 0.293 0.345 0.285 0.933 0.947

n=500

β1 0.320 -0.129 0.328 -0.121 0.177 0.138 0.169 0.137 0.936 0.946
β2 0.041 -0.298 0.046 -0.313 0.077 0.060 0.069 0.060 0.916 0.942
β3 -0.392 -0.444 -0.387 -0.445 0.078 0.064 0.074 0.061 0.931 0.938
β4 -0.764 -0.735 -0.770 -0.734 0.098 0.079 0.093 0.075 0.937 0.926
β5 -0.397 -0.396 -0.384 -0.388 0.219 0.180 0.211 0.175 0.942 0.938

n=1000

β1 0.320 -0.129 0.320 -0.125 0.118 0.096 0.119 0.096 0.959 0.948
β2 0.041 -0.298 0.044 -0.307 0.052 0.043 0.049 0.042 0.937 0.946
β3 -0.392 -0.444 -0.391 -0.444 0.053 0.043 0.052 0.043 0.944 0.942
β4 -0.764 -0.735 -0.764 -0.733 0.070 0.054 0.066 0.053 0.926 0.942
β5 -0.397 -0.396 -0.398 -0.394 0.149 0.124 0.149 0.123 0.952 0.942

(b) Accuracy Measures

n=200

Truth Average ESE ASE Coverage

Land Cox Land Cox Land Cox Land Cox Land Cox

AUC 0.739 0.691 0.749 0.694 0.046 0.055 0.045 0.056 0.923 0.948
Spec 0.311 0.223 0.342 0.254 0.110 0.098 0.119 0.112 0.952 0.973
NPV 0.766 0.701 0.780 0.719 0.072 0.097 0.077 0.108 0.918 0.916
PPV 0.553 0.523 0.571 0.539 0.062 0.055 0.066 0.061 0.949 0.958

n=500

AUC 0.739 0.691 0.743 0.692 0.030 0.036 0.029 0.036 0.932 0.939
Spec 0.311 0.223 0.322 0.232 0.070 0.062 0.075 0.069 0.959 0.962
NPV 0.766 0.701 0.773 0.707 0.045 0.063 0.049 0.069 0.933 0.939
PPV 0.553 0.523 0.558 0.526 0.040 0.036 0.041 0.038 0.948 0.959

n=1000

AUC 0.739 0.691 0.742 0.692 0.021 0.025 0.021 0.025 0.944 0.949
Spec 0.311 0.223 0.317 0.231 0.052 0.045 0.053 0.048 0.945 0.955
NPV 0.766 0.701 0.769 0.706 0.033 0.045 0.034 0.048 0.927 0.938
PPV 0.553 0.523 0.557 0.527 0.029 0.026 0.029 0.026 0.947 0.948
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Table 3. Regression parameter and accuracy measure estimates under the Cox model
for T using the proposed landmark method (Land) vs. the global Cox method (Cox),
with corresponding empirical standard errors (ESE), average of the standard error
estimates from the perturbation-resampling method (ASE), and empirical coverage
levels (Coverage)

n=200

Truth Average ESE ASE Coverage

Land Cox Land Cox Land Cox Land Cox Land Cox

β1 -0.603 -0.603 -0.605 -0.605 0.296 0.271 0.283 0.257 0.932 0.931
β2 -0.301 -0.302 -0.301 -0.302 0.137 0.121 0.132 0.115 0.940 0.937
β3 -0.301 -0.302 -0.298 -0.298 0.135 0.115 0.131 0.114 0.940 0.946
β4 -0.603 -0.603 -0.603 -0.604 0.181 0.157 0.172 0.147 0.935 0.927
β5 -0.302 -0.302 -0.301 -0.299 0.379 0.330 0.361 0.319 0.935 0.928

n=500

β1 -0.603 -0.603 -0.604 -0.604 0.182 0.166 0.172 0.158 0.931 0.944
β2 -0.301 -0.302 -0.302 -0.303 0.083 0.075 0.080 0.071 0.937 0.930
β3 -0.301 -0.302 -0.301 -0.301 0.084 0.074 0.080 0.070 0.939 0.931
β4 -0.603 -0.603 -0.604 -0.603 0.113 0.097 0.105 0.090 0.925 0.921
β5 -0.302 -0.302 -0.298 -0.299 0.231 0.202 0.221 0.197 0.936 0.947

n=1000

β1 -0.603 -0.603 -0.605 -0.604 0.121 0.113 0.121 0.111 0.946 0.941
β2 -0.301 -0.302 -0.302 -0.302 0.057 0.051 0.056 0.050 0.948 0.942
β3 -0.301 -0.302 -0.300 -0.300 0.058 0.051 0.056 0.050 0.947 0.950
β4 -0.603 -0.603 -0.602 -0.602 0.077 0.066 0.074 0.063 0.936 0.932
β5 -0.302 -0.302 -0.301 -0.301 0.159 0.142 0.156 0.139 0.937 0.941

(b) Accuracy Measures

n=200

Truth Average ESE ASE Coverage

Land Cox Land Cox Land Cox Land Cox Land Cox

AUC 0.865 0.865 0.870 0.869 0.030 0.030 0.029 0.030 0.910 0.915
Spec 0.588 0.588 0.601 0.599 0.102 0.102 0.112 0.112 0.931 0.935
NPV 0.907 0.907 0.914 0.914 0.021 0.021 0.024 0.025 0.921 0.927
PPV 0.568 0.568 0.584 0.582 0.074 0.074 0.080 0.080 0.951 0.949

n=500

AUC 0.865 0.865 0.867 0.866 0.019 0.019 0.019 0.019 0.946 0.947
Spec 0.588 0.588 0.591 0.591 0.066 0.067 0.073 0.073 0.956 0.960
NPV 0.907 0.907 0.910 0.910 0.013 0.013 0.015 0.015 0.929 0.940
PPV 0.568 0.568 0.573 0.573 0.047 0.047 0.051 0.051 0.959 0.961

n=1000

AUC 0.865 0.865 0.866 0.866 0.013 0.013 0.014 0.014 0.959 0.960
Spec 0.588 0.588 0.588 0.587 0.046 0.046 0.051 0.051 0.953 0.955
NPV 0.907 0.907 0.908 0.908 0.010 0.009 0.010 0.010 0.947 0.950
PPV 0.568 0.568 0.569 0.569 0.033 0.033 0.036 0.036 0.965 0.956
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Table 4. Estimates of the regression coefficient along with the accuracy of the re-
sulting prognosis rules based on truncated Cox model for predicting Dt0

S (Trunc),
the global Cox model (Cox), as well as the landmark procedure (Land) for the pre-
diction of Dt0+τ

L | TS > t0, where both TS and TL represent metastasis free survival.
Shown also are the standard error (SE) estimates based on the proposed resampling
methods. The regression coefficients are normalized such that ‖~β‖ = 1.

(a) Regression Coefficients

with gene score without gene score
Estimate SE Estimate SE

Dt0
S Trunc Cox Trunc Cox Trunc Cox Trunc Cox

genescore 0.495 0.928 0.322 0.200
age -0.061 -0.093 0.028 0.020 -0.050 -0.099 0.027 0.020

grade 0.860 0.324 0.343 0.175 0.944 0.827 0.303 0.151
size 0.030 0.038 0.017 0.013 0.026 0.041 0.016 0.012

ERstatus -0.009 0.153 0.437 0.311 -0.283 -0.520 0.363 0.272
posLN 0.102 -0.020 0.334 0.228 0.160 0.188 0.328 0.224

Dt0+τ
L Land Cox Land Cox Land Cox Land Cox

genescore 0.897 0.928 0.234 0.200
age -0.072 -0.093 0.026 0.020 -0.225 -0.099 0.026 0.020

grade -0.200 0.324 0.215 0.175 0.599 0.827 0.182 0.151
size 0.022 0.038 0.018 0.013 0.067 0.041 0.017 0.012

ERstatus 0.357 0.153 0.431 0.311 -0.746 -0.520 0.383 0.272
posLN -0.147 -0.020 0.290 0.228 0.171 0.188 0.286 0.224

(b) Estimates of accuracy measures along with their standard errors (SE).

with gene score without gene score
Estimate SE Estimate SE

Dt0
S Trunc Cox Trunc Cox Trunc Cox Trunc Cox

AP CV AP CV AP CV AP CV
AUC 0.770 0.733 0.754 0.728 0.035 0.057 0.761 0.730 0.755 0.730 0.039 0.057
Spec 0.451 0.396 0.428 0.375 0.109 0.112 0.456 0.400 0.433 0.390 0.156 0.101
NPV 0.961 0.955 0.959 0.956 0.011 0.020 0.961 0.945 0.959 0.948 0.032 0.037
PPV 0.243 0.239 0.235 0.234 0.049 0.051 0.244 0.242 0.236 0.238 0.058 0.039

Dt0+τ
L Land Cox Land Cox Land Cox Land Cox

AP CV AP CV AP CV AP CV
AUC 0.716 0.646 0.655 0.635 0.052 0.057 0.624 0.536 0.581 0.560 0.061 0.057
Spec 0.455 0.363 0.337 0.353 0.112 0.112 0.248 0.230 0.238 0.233 0.104 0.101
NPV 0.972 0.974 0.953 0.984 0.015 0.020 0.934 0.956 0.925 0.954 0.038 0.037
PPV 0.257 0.231 0.218 0.231 0.058 0.051 0.197 0.198 0.193 0.199 0.043 0.039

(c) Predicted proability of survival (standard errors) for the short term outcome and
conditional survival for the long term outcome given the corresponding prognoses. .

probability of TS > t0 probability of Rt0L > τ | TS > t0

S+
t0

0.757 (0.049)
Lτ+t0 0.736 (0.058)
Lτ−t0 0.958 (0.079)

S−t0 0.961 (0.011)
Lτ+t0 0.837 (0.145)
Lτ−t0 0.977 (0.020)
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Table 5. Estimated accuracy of the prognosis rules based on the global Cox model
(Cox) and the landmark procedure (Land) in predicting Dt0+τ

L | TS > t0, where both
TS represents metastasis free survival and TL represents overall survival. Shown also
are the standard error (SE) estimates based on the proposed resampling methods.

with gene score without gene score
Estimate SE Estimate SE

Land Cox Land Cox Land Cox Land Cox

AP CV AP CV AP CV AP CV
AUC 0.750 0.678 0.723 0.687 0.048 0.056 0.654 0.587 0.653 0.637 0.056 0.053
Spec 0.550 0.432 0.495 0.475 0.122 0.091 0.459 0.378 0.450 0.454 0.106 0.072
NPV 0.984 1.000 0.982 1.000 0.009 0.008 0.983 0.996 0.982 0.999 0.011 0.010
PPV 0.190 0.179 0.173 0.187 0.059 0.051 0.164 0.159 0.162 0.176 0.042 0.040
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Fig. 1. ROC curves for the prediction of (i) TL < τ + t0 among Ωt0 based on the
landmark (solid thin line) and global Cox (solid thick line) procedures and for the
prediction of (ii) TS < τ based on the truncated (dashed thin line) and global Cox
(dashed thick line) procedures.
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Fig. 2. ∆t0,τ based on ÂUC
(CV)(M2)

t0,τ − ÂUC
(CV)(M1)

t0,τ (Solid line) for fixed t0 and various
values of τwhere M2 is the model including gene score and M1 is the model not
including gene score; pointwise confidence interval (dotted lines) and simultaneous
confidence bands (dashed lines).

Hosted by The Berkeley Electronic Press



26 Layla Parast and Tianxi Cai lparast@hsph.harvard.edu tcai@hsph.harvard.edu

References

Begg, C. B. (1991). Advances in statistical methodology for diagnostic medicine in the

1980’s. Statistics in Medicine 10, 1887–1895.

Bilias, Y., M. Gu, and Z. Ying (1997). Towards a general asymptotic theory for Cox model

with staggered entry. The Annals of Statistics 25 (2), 662–682.

Breslow, N. and D. Clayton (1993). Approximate inference in generalized linear mixed

models. Journal of the American Statistical Association 88 (421), 9–25.

Cai, T. and S. Cheng (2008). Robust combination of multiple diagnostic tests for classifying

censored event times. Biostatistics 9 (2), 216.

Cai, T., S. Cheng, and L. Wei (2002). Semiparametric Mixed-Effects Models for Clustered

Failure Time Data. Journal of the American Statistical Association 97 (458), 514–523.

Cai, T., M. S. Pepe, Y. Zheng, T. Lumley, and N. S. Jenney (2006). The sensitivity and

specificity of markers for event times. Biostatistics 7 (2), 182–97.

Cai, T., L. Tian, H. Uno, S. Solomon, and L. Wei (2010). Calibrating Parametric Subject-

specific Risk Estimation. Biometrika, in press.

Cai, T., L. Tian, and L. J. Wei (2005). Semiparametric Box-Cox power transformation

models for censored survival observations. Biometrika 92 (3), 619–632.

Carter, S., A. Eklund, I. Kohane, L. Harris, and Z. Szallasi (2006). A signature of chro-

mosomal instability inferred from gene expression profiles predicts clinical outcome in

multiple human cancers. Nature genetics 38 (9), 1043–1048.

Fleming, T. R. and D. P. Harrington (1991). Counting Processes and Survival Analysis.

Wiley.

Ha, I., Y. Lee, and J. Song (2001). Hierarchical likelihood approach for frailty models.

Biometrika 88 (1), 233–243.

Hanley, H. A. (1989). Receiver Operating Characteristic (ROC) methodology : the state of

the art. Clinical Reviews in Diagnostic Imaging 29, 307–35.

Heagerty, P. J., T. Lumley, and M. S. Pepe (2000). Time-dependent ROC curves for censored

survival data and a diagnostic marker. Biometrics 56 (2), 337–344.

http://biostats.bepress.com/harvardbiostat/paper123



Landmark Prediction of Survival 27

Hjort, N. (1992). On inference in parametric survival data models. International Statistical

Review/Revue Internationale de Statistique 60 (3), 355–387.

Hougaard, P. (1995). Frailty models for survival data. Lifetime data analysis 1 (3), 255–273.

Hunter, D. (2005). Gene-environment interactions in human diseases. Nature Reviews

Genetics 6 (4), 287–298.

Jewell, N. and J. Nielsen (1993). A framework for consistent prediction rules based on

markers. Biometrika 80 (1), 153.

Kalbfleisch, J. D. and R. L. Prentice (2002). The Statistical Analysis of Failure Time Data.

John Wiley & Sons.

Klaassen, C. and J. Wellner (1997). Efficient estimation in the bivariate normal copula

model: normal margins are least favourable. Bernoulli 3 (1), 55–77.

McIntosh, M. W. and M. S. Pepe (2002). Combining several screening tests: Optimality of

the risk score. Biometrics 58 (3), 657–664.

Newey, W., D. McFadden, R. Engle, and D. McFadden (1994). Handbook of econometrics.

Oakes, D. and J. Ritz (2000). Regression in a bivariate copula model. Biometrika 87 (2),

345.

Park, Y. and L. J. Wei (2003). Estimating subject-specific survival functions under the

accelerated failure time model. Biometrika 90, 717–23.

Pencina, M., R. D’Agostino, R. D’Agostino, and R. Vasan (2008). Evaluating the added

predictive ability of a new marker: from area under the ROC curve to reclassification and

beyond. Statistics in Medicine 27 (2), 157–172.

Pepe, M., Z. Feng, Y. Huang, G. Longton, R. Prentice, I. Thompson, and Y. Zheng (2008).

Integrating the predictiveness of a marker with its performance as a classifier. American

Journal of Epidemiology 167 (3), 362.

Pepe, M. S., T. Cai, and G. Longton (2005). Combining predictors for classification using

the area under the receiver operating characteristic curve. Biometrics. , in press.

Pepe, M. S., H. Janes, G. Longton, W. Leisenring, and P. Newcomb (2004). Limitations

of the odds ratio in gauging the performance of a diagnostic, prognostic, or screening

marker. American Journal of Epidemiology 159 (9), 882–90.

Hosted by The Berkeley Electronic Press



28 Layla Parast and Tianxi Cai lparast@hsph.harvard.edu tcai@hsph.harvard.edu

Pepe, M. S. and M. L. Thompson (2000). Combining diagnostic test results to increase

accuracy. Biostatistics 1, 123–40.

Pitt, M., D. Chan, and R. Kohn (2006). Efficient Bayesian inference for Gaussian copula

regression models. Biometrika 93 (3), 537.

Pollard, D. (1990). Empirical processes: theory and applications. Institute of Mathematical

Statistics.

Shih, J. and T. Louis (1995). Inferences on the association parameter in copula models for

bivariate survival data. Biometrics 51 (4), 1384–1399.

Su, J. Q. and J. S. Liu (1993). Linear combinations of multiple diagnostic markers. J. Am.

Statist. Assoc. 88, 1350–1355.

Swets, J. A. and R. M. Pickett (1982). Evaluation of Diagnostic Systems: Methods from

Signal Detection theory. New York: Academy press.

Tian, L., T. Cai, E. Goetghebeur, and L. Wei (2007). Model evaluation based on the

sampling distribution of estimated absolute prediction error. Biometrika 94 (2), 297.

Uno, H., T. Cai, L. Tian, and L. J. Wei (2007). Evaluating prediction rules for t-year

survivors with censored regression models. Journal of the American Statistical Associa-

tion 102, 527–37.

van de Vijver, M., Y. He, L. van’t Veer, and et. al. (2002). A gene-expression signature as

a predictor of survival in breast cancer. N. Engl. J. Med. 345 (25), 1999–2009.

van der Sluis, C., J. Kingma, W. Eisma, and H. ten Duis (1997). Pediatric Polytrauma:

Short-term and Long-term Outcomes. The Journal of Trauma: Injury, Infection, and

Critical Care 43 (3), 501.

Van Houwelingen, H. (2007). Dynamic prediction by landmarking in event history analysis.

Scandinavian journal of statistics 34 (1), 70.

van’t Veer, L., H. Dai, M. van de Vijver, and et. al. (2002). Gene expression profiling

predicts clinical outcome of breast cancer. Nature 415 (6871), 530–6.

Weisner, C., G. Thomas Ray, J. Mertens, D. Satre, and C. Moore (2003). Short-term

alcohol and drug treatment outcomes predict long-term outcome. Drug and Alcohol

Dependence 71 (3), 281–294.

http://biostats.bepress.com/harvardbiostat/paper123



Landmark Prediction of Survival 29

Wilson, P., R. D’Agostino, D. Levy, A. Belanger, H. Silbershatz, and W. Kannel (1998).

Prediction of coronary heart disease using risk factor categories. Circulation 97, 1837–47.

Zeng, D. and D. Lin (2007). Maximum likelihood estimation in semiparametric regres-

sion models with censored data. Journal - Royal Statistical Society, Series B Statistical

Methodology 69 (4), 507.

Zheng, Y., T. Cai, and Z. Feng (2006). Application of the time-dependent roc curves for

prognostic accuracy with multiple biomarkers. Biometrics 62, 279–287.

Hosted by The Berkeley Electronic Press


	text.pdf.1285600083.titlepage.pdf.txlB1
	tmp.1285600083.pdf.SlRND

