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Abstract

We present a global test for disease clustering with power to identify disturbances

from the null population distribution which accounts for the lag time between time

of exposure and time of diagnosis. Location at diagnosis is often used as a surrogate

for the location of exposure, however, the causative exposure could have occurred

at a previous address in a case’s residential history. We incorporate models for the

incubation distribution of a disease to weight each address in the residential history

by the corresponding probability of the exposure occurring at that address. We then

introduce a test statistic which uses these incubation-weighted addresses to test for

a difference between the spatial distribution of the cases and the spatial distribution

of the controls, or the background population. We follow the construction of the M

statistic to evaluate the significance of these new distance distributions. Our results
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show that gains in detection power when residential history is accounted for are of

such a degree that it might make the qualitative difference between the presence of

spatial clustering being detected or not, thus making a strong argument for the inclu-

sion of residential history in the analysis of such data.
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1 Introduction

Our goal is to study the effect long incubation periods have on the power of a test for

global clustering, as defined in [1]. Tests for global clustering attempt to detect the pres-

ence of clustering process throughout a study region, without necessarily attempting to

locate or identify the actual clusters. For several examples of tests for global cluster-

ing, see [2, 3, 4, 5, 6, 7, 8, 9]. Cluster detection techniques have been criticized [10] and,

in 1990, researchers claimed that there had been no cancer clusters found in the prior 22

years [11]. But, if one accepts the fact that cancers have non-auto-induced causes, whether

they be environmental or infectious, then some form of clustering among cases should be

expected. Indeed, the National Cancer Institute cancer mortality maps [12] show that

several cancers have a regional prevalence distribution that is clearly nonuniform. So it

is puzzling why more clusters have not been discovered on a smaller geographic scale.

In this paper, we suggest that one possible reason current statistical techniques do not

provide adequate evidence of cancer clusters is that lengthy incubation periods com-

bined with residential mobility render addresses at diagnosis almost non-informative as

to where a disease causing exposure may have occurred. We propose a test for global

clustering that uses more informative address histories, which has more power to detect

the presence of possible disease clustering.

Disease clusters have been found in the past, and their detection has led to informative

results, especially regarding their etiologic explanations. The most famous of these has to

be the work by John Snow and his famous cholera study [13], but others have been found
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such as the anthrax cluster located downwind of a Russian weapons factory [14]. The

investigators’ brilliant use of the correct addresses accounted for the ability to identify

the most likely cause of exposure, despite the official governmental pronouncements to

the contrary.

What these two successful cluster studies share is the immediacy of the disease; there

is no significant lag between the exposure and disease onset. When this lag time is ex-

tended, as with some chronic diseases, cancers for example, the linkage may become more

tenuous. The substantial amount of time between a possible exposure and subsequent

diagnosis, combined with a mobile population, will mask the true spatial relationship be-

tween cases and exposure. This is why we must incorporate the incubation period of the

disease in our calculations.

That is not to say that an anticipated effect cannot be studied in a prospective manner,

no matter how long the incubation period. For example, the survivors of the Hiroshima

bombing have been followed and their subsequent health studied [15]. So, as happened,

an increase in the incidence of leukemia was observed over several years; an association

that one would not attribute to chance; as defined in [10].

Another example in which a cancer’s long incubation period might have affected the

detection of an informative cluster is the group of young women with adenocarcinoma of

the vagina, in Boston, Massachusetts between 1966 and 1969[16]. Had the investigators

just focused on the cases presenting with disease and their recent exposures, the true

relationship may never have been found.
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As most spatio-temporal analyses are performed to find a link between exposure lo-

cation and disease, typical surveillance data involve a time component, usually date of

diagnosis, together with a spatial component; usually some indicator of residence at the

time of diagnosis [9, 17]. However, critical information regarding the relationship be-

tween location and disease would be the location where the exposure occurred, which

is not always collected, analyzed, known, or even considered. If we are interested in

studying the spatial patterns of a disease such as leukemia or breast cancer, the current

locations of the cases could be irrelevant to our study. According to census estimates, the

median duration of residence for Americans is 4.7 years. For children under 18 years old,

the median duration of residence is 3.8 years [18]. If there is a substantial lag between the

exposure of interest and the detection of this disease, then by using the address at diagno-

sis the spatial relationship is usually lost. Recommendations published by the Mortality

and Morbidity Weekly Report remind investigators of the importance of accounting for

the incubation period of a disease when investigating clusters[19]. Following a meeting

of national experts with backgrounds in statistics, epidemiology and geography the coun-

cil agreed that residential history information is a crucial aspect in the analysis of cancer

registry data [20, 21].

For example, the incubation period associated with mesothelioma has been estimated

at almost 40 years[22], and 20 years for breast cancer [23], thus those individuals who

are diagnosed with this disease, are likely to have been exposed decades prior to diag-

nosis. The effects of this are two-fold. First, a large proportion of individuals exposed to

asbestos, for example, are likely to have moved to other areas, adding additional cases
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to the background rate and thus attenuating the contrast, and making subsequent signal

detection that much more difficult. Second, those cases currently living at the location of

interest, are perhaps unlikely to have been living there when their cancer causing expo-

sure occurred.

We propose a novel method that summarizes the spatial and temporal distributions

of a group diagnosed with a chronic disease, and compares that distribution to the dis-

tribution of controls. If the cases are distributed differently from the controls then an ex-

planation of this discrepancy is necessary. We seek to evaluate the relationships between

cases using a measure of distance between them that incorporates information specific

to the disease of interest. The additional information which we combine with the physi-

cal distances between cases is the incubation distribution of the disease. The incubation

distribution is the probability distribution of the time between exposure and diagnosis.

This in turn yields information regarding the spatial relationships between the cases. We

extend the M statistic [8] to evaluate the significance of this new “distance” distribution,

building on the work of Sartwell, Armenian and Lillienfeld[24, 25, 26] to define and de-

scribe the incubation distributions. This method attempts to answer the question, “Are

the spatial distributions of the cases and the controls the same?” This question can arise

from evidence-based reports from concerned citizens, or via routine collection and analy-

sis of disease surveillance data. If the the spatial distributions are not the same, then one

can attempt to identify potential clusters. We envision this method being used as a first

step in the identification of a chronic disease cluster.

While residential history collection may not currently be the norm in disease surveil-
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lance, with the adoption of person based surveillance systems, and electronic health

records, this information will be compiled and more widely accessible in the near fu-

ture. We feel it is important to develop methods which utilize this information, both to

lend weight to the importance of its collection, and to be able to use this important infor-

mation once collected.

2 The Incubation Distribution

The lognormal incubation distribution model has been tested for non-infectious, chronic

diseases by Armenian and Lillienfeld[26] who study incubation periods associated with

six neoplastic diseases. They find that the incubation periods for the neoplastic diseases

also closely follow the lognormal distribution. But, because there is no obvious “infec-

tion” time involved with these chronic diseases, the authors define the incubation period

as, “the interval between exposure to an etiologic factor and the onset of symptoms or

disease detection.” In this paper, we refer to time from exposure to diagnosis as the incu-

bation period, though because this is a simulation study, one could easily replace ”address

at diagnosis” with ”address of symptom onset” and arrive at the same conclusions. Also,

to focus our discussion we refer to this first exposure as the time of the“disease causing

exposure.”

In addition to how to define the start of the incubation period, another difference

between an infectious disease and a chronic disease, is the question of a possible dose-
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response relationship between the intensity of the exposure and the outcome. In [27],

an early study of skin tumors in mice induced by UV light exposure, the lognormally

distributed incubation period was observed, with no systematic variability due to either

intensity or frequency of dose, or age of subject. Lack of a dose-response relationship is

also evident in the aftermath of the atomic bomb drops in Hiroshima. While incidence

of leukemia was influenced by individuals’ proximity to the bomb site, there was no sig-

nificant difference between the incubation periods between distances considered close

enough to the blast to be “exposed” [15]. Other studies have shown similar relationships

between the intensity of exposure, the incidence and the incubation period [28, 29]. More

recently, researchers show that while there is a strong positive dose-response between

baseline alcohol intake and the risk of breast cancer, including most recent alcohol intake

diminished the relationship [23], which may indicate the lack of an affect of cumulative

exposure. Thus, for the remainder of this work we assume that given a cancer is diag-

nosed, reversing time and looking back to determine when the exposure occurred should

not be affected by the distance from the source, or intensity of the exposure.

3 Methods

3.1 Complete Residential History

To truly detect if cases of a disease cluster together, we need to measure the spatial distri-

bution of the cases at the moment of infection, or in the case of chronic disease, when the
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disease causing exposure occurred. We can then compare this spatial distribution to the

distribution of a suitably defined control group, to look for differences in the two distri-

butions. Unfortunately, in practice we fall short in two ways: (i) we do not know when

the disease causing exposure occurred, and (ii) as a result, we do not measure the spatial

distribution accurately.

Suppose our data consist of N individuals, with each individual having a residential

history: person i lived at location Aik for a duration of Pik, k in 1, . . . , ni and i in 1, . . . , N .

We scale the durations such that
∑

k Pik = 1, and consider Pik as the proportion of time

person i is living at location Aik. The set Hi = {(Ai1, Pi1), (Ai2, Pi2), . . . , (Aini
, Pini

)} is the

complete residential history of individual i.

To overcome the problem of not knowing which address is the informative location,

we can weight each known addresses by the relative probability that it is the address of

exposure. A naive approach might be to use a uniform prior; i.e. weight each address by

the length of time resided at that address, given above as Pik. A more refined approach,

which we suggest, is to define each weight as the probability of that address being the

address of exposure. We use the incubation distribution to estimate these probabilities.

With this approach, each address for a given case has attached to it, the probability that

the disease causing exposure occurred at that location. Let Cik be the incubation based

weight, which we can calculate as Cik =
∫
Aik

f(t)dt, k = 1, . . . , ni, where f(·) is the den-

sity function for the estimated incubation distribution, and integrating over Aik is to be

taken as the integral over the period of time individual i lived at address Aik. Follow-

ing the work of Sartwell, Armenian, and Lillienfeld [25, 26, 30], we use the lognormal
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distribution to model the incubation distribution.

For each individual in our study population, we have a set of addresses, and each

address has an associated weight. We use these addresses and weights to summarize the

difference between the spatial locations of the cases and the controls, by examining the

distribution of the distances between the cases and the distribution of the distances be-

tween the controls. To test the difference between the spatial distributions of the cases

and the controls, we use an adapted form of the M -statistic [8]. The M -statistic is a non-

parametric test that quantifies the difference between two sets of locations by examining

the differences of the distributions of the distances between those locations. The distances

between the locations are called the interpoint distances, and the distribution of these dis-

tances is the interpoint distance distribution. The M -statistic has typically been used to

summarize differences based on Euclidean distances, but in this work, we generalize this

statistic to handle a new distance metric.

Specific to chronic illnesses, such as leukemia or breast cancer, we formulate a distance

metric that has power to detect a point-source environmental exposure. This point-source

could be a contaminated well (as in the cholera outbreak), or a source of aerosolized re-

lease (as in the anthrax cluster). In those settings, we are concerned with the spatial

proximity between cases more so than with their temporal proximity. Consider the John

Snow Cholera setting: it is informative to know that two people visited the same well,

not necessarily that those two people visited at the same (or different) times. If two cases

happen to occupy the same residence but at different times, we are still interested in this

spatial relationship. For this reason, the metric we choose to consider is the ‘all possi-
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ble distances’ measure. This metric weights the physical distances between individual’s

locations by the time each person spends at each respective address.

We represent this random distance between individuals i and j by the random variable

Dij whose distribution we define as,

Dij =



d(Ai1, Aj1) with probability Ci1Cj1

d(Ai1, Aj2) with probability Ci1Cj2

...
...

d(Aini
, Ajnj

) with probability Cini
Cjnj

,

where d(X, Y ) is the Euclidean distance between locations X and Y . Although we use

the Euclidean distance, if the scale of the study region is especially large, other distances

such as the Harvesine distance can be used [31]. Summarize this non-negative random

variable, Dij , by constructing its distribution function Fij(·). The steps of Fij are at the

possible distance values and the step sizes are determined by the probability associated

with those values. Thus the cumulative distribution function for the random variable

representing all possible distances between individuals i and j is given by,

Fij(d) = P (Dij ≤ d) =
∑
k,l

CikCjl · 1(d(Aik, Ajl) ≤ d) ,∀ d ≥ 0, (1)

where 1(X) is the indicator function, with values 1 if X is true, zero otherwise. Once

we calculate each distribution function corresponding to the
(
N
2

)
pairs of individuals, we

define the overall empirical distribution function for our sample as,

F(d) =
1(
N
2

)∑
(N2 )

Fij(d),∀ d ≥ 0 (2)
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where scaling by 1/
(
N
2

)
ensures that F(+∞) = 1 and F(·) is thus a proper distribution

function.

This summary measure associated with the spatial distribution is not usually invert-

ible (it is translation and rotation invariant) and thus does not uniquely identify the con-

temporaneous spatial distribution, but it does have advantages: One, a general advan-

tage, is that it is univariate and thus much easier to manipulate and comprehend. Two, it

has been shown to be powerful in detecting the presence of clusters[32, 33, 8]. And, three,

it lends itself easily to the problem at hand when we actually do not know with certainty

which address we wish to consider. The details of the proposed method follows.

3.2 Incomplete Residential History

Consider a situation where individual i has the complete residential history Hi, as

above, but the data consist of only a subset of these values. Let the subset be H′i =

{(Ai1, Ci1), (Ai2, Ci2), . . . , (Aimi
, Cimi

)}where mi < ni.

In this situation, the property
∑

k Cik = 1 no longer holds, instead
∑

k Cik = pi, the

proportion of the residential history known for individual i. The individual CDFs, Fij(·),

are constructed in the same manner as outlined in Section 3.1, except now Fij(+∞) =

pipj . When we sum across the
(
N
2

)
CDFs, the resultant function F is such that F(+∞) =∑

i,j pipj . To obtain a proper empirical CDF (ECDF), the increment of the step function

that the missing information would have contributed must be appropriately accounted
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for.

This missing information is analogous to a censored observation in the survival set-

ting. However, with right censored survival times, the minimum time is known (the time

at which the observation is censored) and the maximum likelihood solution, as shown in

[34], distributes the observation’s mass equally to all remaining event times greater than

the censoring time. Here, in the distance based setting, there is no directional informa-

tion regarding the missing distances, therefore we distribute the missing distance’s mass

equally among all observed distances. Thus, we assume a missing distance is equally

likely to be any distance which we observe. In practice, this is achieved by a proper scal-

ing factor applied to F,

F(·) =

∑
(N2 )

Fij(·)∑
(N2 )

Fij(+∞)
, (3)

and thus F(·) is now a proper distribution function. In the complete residential history

setting,
∑
(N2 )

Fij(+∞) =
(
N
2

)
. Note that this method of scaling F is not equivalent to scaling

each Fij individually, as we use all observed distances to determine the proper weighting

factor.

4 Constructing the two-sample test statistic

Suppose the data consist of the N couplets, ((X1, G1), (X2, G2), . . . , (XN , GN)), where

Xi = {(Ai1, Ci1), (Ai2, Ci2), . . . , (Aini
, Cini

)} and Gi is a group indicator variable with val-

ues, Gi = 1 if subject i is in Group 1 and Gi = 0 if subject i is in Group 2. Let N1 and N2 be
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the number of subjects belonging to Group 1 and Group 2, respectively. The cumulative

distribution function corresponding to the distance between individuals i and j is given

by Fij in Equation 1. If there is a relationship between location and disease, then we ex-

pect the distribution function of the interpoint distances between the cases to be different

from the distribution function of the interpoint distances between the controls.

To compare two distribution functions, we first select a vector d = (d1, d2, . . . , dm),

spanning the range of observed values of the weighted distances between individuals.

We then define two vectors, F̂j(d) = {F̂j(d1), F̂j(d2), . . . , F̂j(dm)}, j = 1, 2, to construct

the test statistic,

MR(F̂1, F̂2) =

(
F̂1(d)− F̂2(d)

)t
S−R

(
F̂1(d)− F̂2(d)

)
, (4)

where S−R is the generalized inverse of the estimated covariance matrix for the weighted

distances.

Note that (F̂1 − F̂2) is indeed a U-statistic[35], and thus will allow us to appeal to the

appropriate asymptotic results[36], to define the covariance between F̂1 and F̂2 evaluated

at any two interpoint distances, da, db as

Ĉov

(
F̂1(da)−F̂2(da), F̂1(db)−F̂2(db)

)
=

(
N1N2

N1 +N2

)
1(
N
3

) ∑
m,n,p

(
φ1(m,n, p, da, db) + φ0(m,n, p, da, db)

)
.

Where φg(m,n, p, da, db) =
∑

i,j,k,l (CmiCnjCmkCpl1
(
d(Xmi, Xnj) ≤ da, d(Xmi, Xpk) ≤ db

)
|Gm =

Gn = Gp = g).

This test is analogous to a χ2 goodness-of-fit test, where the choice of the vector d

represents the binning of the data. For a more complete discussion of the bin selection
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procedure, see [33]. When the interpoint distance distribution of the cases differs from

the distribution of the controls, MR will have larger values. To calculate a p-value, one

could rely on the asymptotic theory available from U-statistic theory, or generate the null

permutation distribution for MR using the random labeling hypothesis and randomly

switching the case and control status of the subjects in the sample[37].

We also note the simplifying assumptions made in the construction of this test statistic.

In this paper a common incubation distribution is considered for each individual. While

this assumption may not be ideal in practice, modeling a different incubation distribu-

tion for each subject is a straightforward extension, as this distribution just influences

the weights assigned to each address. We also assume uniformity of exposure conditions

through time. If there is a clustering mechanism, such as a point-source of exposure, then

this assumption means that mechanism will be present throughout duration of the study.

This assumption will often be satisfied when studying patients diagnosed within a rela-

tively short time period of each other. We also note that calendar time does not enter into

our model, as each person’s time origin is their time of diagnosis.

4.1 Properties of the test statistic

Incorporating weights into the residential histories through the incubation distribution

results in greater power for the M statistic to detect a difference between F1(·) and F2(·),

than simply using the address at diagnosis.
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Proposition 4.1 (Increased weight) On average, the weighting scheme which accounts for res-

idential history will give more weight to the address of exposure than the method which only uses

the address at diagnosis.

Proof: For each case i = 1, . . . , N1, let {(Ai1, Ci1), . . . , (Aie , Cie), . . . , (Aini
, Cini

)} be the com-

plete residential history, whereAie is the address of exposure, andCie is the corresponding

weight given to that address. Note, if the address at diagnosis is in fact the address of ex-

posure, then e = ni. Considering only the address at diagnosis is equivalent to forcing

Cini
= 1.

When considering only the address at diagnosis, the expected weight given to the

address at exposure, Cie, is equal to the probability that the address of exposure is also

the address at diagnosis. Let t∗ be the time at which the exposure occurred, and t be

the duration of residence at the address at diagnosis, Aini
, which we assume follows an

exponential distribution, with mean λ. The expectation of the weight given to the address

of exposure is then,

E[Cie] = E
[
E[Cie|t∗]

]
= Et∗

[
P (t ≥ t∗)

]
= Et∗

[
1−P (t ≤ t∗)

]
= 1−Et∗

[ 1
λ
e−t

∗/λ
]
= 1−

∫ ∞
0

1

λ
e−t

∗/λf(t∗)dt∗.

Assuming t∗ ∼ LogNormal(µ, σ) gives the form of f(t∗), and allows us to evaluate this

probability for a given set of parameters, µ and σ. We call this expectation, E[CDDx
ie ].

Using the residential history weighting scheme outlined above, we can calculate the

expected weight given to Aie, and compare this to E[CDDx
ie ]. Using the residential history

method, the expected weight each address is given is defined as the probability that the

exposure occurred at that address, E[Cik] = Pr{Aik = Aie}. Thus, under this scheme,
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E[Cini
] = Et∗

[
P (t ≥ t∗)

]
, which is equivalent to the expected weight from the method

only incorporating the address at diagnosis. So, if the exposure occurred at the address at

diagnosis, the expected weight given to that address,E[Cini
], is the same in both methods.

However, if Aie is not the address at the time of diagnosis, then the address at diagno-

sis method will result in Cie = 0, whereas the residential history weighting method will

still assign a non-negative weight. Thus, the residential history weighting scheme will

always result in the address at exposure having an expected weight that is greater than

or equal to the expected weight resulting from the address at diagnosis method.2

Proposition 4.2 (Increased power) Assuming a constant covariance matrix for the different

weighting schemes, the M statistic which accounts for residential history will have more power to

detect a difference between the distributions of the cases and the controls.

Proof: Assume that each case in our study population was exposed to a causative agent

at exactly one location in their residential history, then the interpoint distances described

by F̂1(·) come from three possible categories: (i) the distances between two addresses of

exposure, (ii) the distances between one address of exposure and one non-exposure ad-

dress, and (iii) the distances between two non-exposure addresses. Because we expect the

clustering to only occur among the addresses of exposure, the third group of distances,

should be indistinguishable from the interpoint distance distribution for the controls, es-

timated by F̂2(·) . By examining how each category of interpoint distances contributes to

F̂1(·), one can compare the performance of the proposed test statistic under two different

weighting schemes.
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Let us decompose F̂1(·) into a mixture of F̂′1(·), the distribution from interpoint dis-

tances (i) and (ii), and F̂2(·), as

F̂1(d) = αF̂′1(d) + (1− α)F̂2(d).

We can expand the M statistic as,

M =

(
F̂1(d)−F̂2(d)

)t
S−
(
F̂1(d)−F̂2(d)

)
= α2

(
F̂′1(d)−F̂2(d)

)t
S−
(
F̂′1(d)−F̂2(d)

)
= α2M ′

Larger values of α will result in larger values of M . Because NM ∼ χ2
rank(S), larger values

of M will result in increased power to reject the null hypothesis. From Proposition 4.1,

we see that the incubation based weighting scheme gives increased weight to the correct

address, which in turn, increases α, yielding greater power.2

Despite our simplifying assumption of a constant covariance matrix in Proposition

4.2, all of the simulations presented in the following section are consistent with both of

these results, even when the covariance matrix does vary.

5 A Simulation Study

To assess the validity and performance of our proposed methods in controlled situations,

we simulate case control data with complete residential histories. The design of the cur-

rent simulation gives us control over several important factors. First, we decide on the

source(s) of exposure, as well as a radius of influence of exposure for each source. We also

control the percent of cases whose infection we attribute directly to these point-sources
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(to vary the strength of the signal in the noise), and these in turn determine the magni-

tude of the cluster. Thirdly, we control the residential mobility, imposing a model on the

number of years the subjects spend at each address throughout the designated time span,

as well as the total length of time for which we keep a history.

For the results presented, we simulate situations with both one and two point-

sources located in the unit square, our study region. We impose an exposure radius

of 0.1 units around each point-source. This exposure radius defines which cases are

part of the clusters. Of the Nc cases generated, we designate a proportion p of these

cases as “exposed cases”, meaning that these individuals are part of a cluster induced

on the background population, the signal in the noise, the remainder of the cases are

part of the background. We vary the proportion of cases considered to be exposed:

p = {0.00, 0.10, 0.25, 0.35, 0.50, 0.75, 1.00}. Each of the pNc, “exposed cases” are guaran-

teed to have at least one address from their residential history located within the expo-

sure radius of a point-source: this is our definition of an “exposed case”. The remaining

(1− p)Nc cases may have an address within the exposure radius as well, but are not part

of the cluster. These would be the naturally occurring background cases. A control may

also have an address within the exposure radius, but never develop disease.

For both the one-source and two-source settings, we generate individual residential

histories under two scenarios. To study the influence residential mobility has on our

statistic, we vary the mean number of moves per year, m, from m = 0.25 (roughly cor-

responding to an estimated median duration of residence of 3.8 to 4.7 years, the current

mean in the United States) to m = 0.10 (to model the effect on less mobile populations).
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The length of time each individual spends at each address is modeled as a Poisson process

where the inter-arrival times are distributed exponentially with mean µ = 1/m. Using a

20 year history length, we generate a set of ni times, Ti = {Ti0, Ti1, . . . , Tini
} for each indi-

vidual, i = 1, . . . , N . These ni times represent when an individual’s address changes.

An address for each time in an individual’s residential history, is randomly gener-

ated on the uniform square. Though we assume a homogeneous population density, the

M -statistic is effective at identifying the presence of clustering in situations involving

heterogeneous population structures [38]. Here we make the simplifying assumption of

a closed population with no movement into, or out of, the study region. Thus the ad-

dress history for individual i is listed as Ai = {Ai1, Ai2, . . . , Aini
}, where Aij = (xij, yij),

the coordinates of address Aij . If individual i is an “exposed case,” then one of these ad-

dresses will be guaranteed to be located within the exposure radius of a point-source.This

guaranteed address is selected according to the incubation distribution we use in this sim-

ulation, and the address location is randomly generated within the exposure radius of the

point-source.

Consider an incubation distribution, lognormally distributed with a median of 6.4

years and a dispersion factor of 1.71 years, the estimates from a leukemia study pre-

sented by Court Brown and Doll [39]. To determine which address will be the “exposed

address” we use multinomial selections with probabilities associated with picking each

address equal to the weights under the incubation distribution, Cik. For the example, if

the residential history of individual i is comprised of three addresses, we would select the

cluster address based on a realization of the multinomial random variable taking the val-
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ues (Ai1, Ai2, Ai3) with the respective probabilities (Ci1, Ci2, Ci3). Using the multinomial

distribution to select which address should be restricted to a cluster site insures that the

method of weighting by the incubation distribution is being evaluated fairly.

In practice, cluster investigations are not conducted on an on-going basis, but are gen-

erally only performed when there is sufficient cause for alarm, often when a concerned

citizen notices an abundance of cases within a close proximity to each other. We also

consider the power of using the incubation weighted residential histories versus just the

address at diagnosis in these potential cluster situations, to further examine the benefit of

incorporating this additional information. We define two distinct potential cluster situ-

ations, both determined by the spatial distributions of the cases’ addresses at diagnosis,

and simulated in the single point-source setting.

In summary the process described above simulates a closed sample of cases and con-

trols on the unit square. Each individual in the sample has a random number of ad-

dresses, and spends a random amount of time at each address. Of the simulated cases, a

proportion of them, which we vary, are guaranteed to have at least one address in their

residential history located within a pre-specified radius of a point-source of exposure.

Our simulation varies the parameters governing the average length of time an individ-

ual lives at an address, and the percent of the cases considered exposed. We present the

performance of the weighted M -statistic under these different scenarios. We compare the

performance of the incubation-weighted M -statistic to the performance of the M -statistic

in the currently more accepted situation when one simply uses the address at the time of

diagnosis (as is done in [8], for example).
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To further demonstrate the information contained in the residential histories, we also

calculate a uniformly-weighted M -statistic. This uniform-weighted M -statistic is con-

structed similarly to the incubation-weighted M -statistic, except each address in an indi-

vidual’s residential history is given weight proportionate to the corresponding residential

duration. This statistic is useful in situations where residential addresses are collected, but

the incubation distribution is unknown. Thus we consider the three weighting schemes:

(i) known incubation distribution based weights (fully informed), (ii) uniform weights

(partial information), and (iii) address at diagnosis (uninformed).

6 Simulation results

We present the results of several simulations, each of which are considered at the α = 0.05

significance level. For each scenario described, we create a null distribution for the M -

statistic, which is calculated by randomly permuting the case/control status of the in-

dividuals in the data set, following the method presented in [37]. A test is considered

significant when the value of the M -statistic obtained is greater than the 95th percentile

of the null distribution. First, consider the situation where a single point-source is gener-

ated on the unit square, and the population has an average residential duration of 4 years,

m = 0.25. Figure 1, top left, shows the dramatic gain in power one achieves by incorpo-

rating residential histories, through the incubation based weighting scheme, compared to

simply using the address at the time of diagnosis. Because this population is so mobile,

using the address at diagnosis time results in a power level which is only marginally bet-
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ter than the type-1 error rate as the percentage of cases exposed, p, reaches 100%. Clearly,

as an individual’s number of addresses increases, the chance that the exposure occurred

at the address of diagnosis decreases.

Next, we examine the one point-source scenario on a less mobile population, with an

average residential duration of 10 years, m = 0.10, in Figure 1, top right. We see that

in the less mobile population, that as the proportion of cases exposed approaches 1, the

power when using the address at diagnosis also reaches 1, but at a much slower rate and

in fact, the method incorporating incubation based weights results in higher power for all

p > 0.

When we consider two point-sources of exposure, the results are similar to the single

point-source setting. From Figure 1, bottom left, we see that in a more mobile population,

when m = 0.25, the power of the address at diagnosis method hovers at the alpha level

for all values of p. However, the power of the incubation based weights method rises

sharply with p, dominating the address at diagnosis method. When m = 0.10, again with

two point-sources, Figure 1, bottom right, shows that the incubation based weighting

scheme is consistently more powerful. These four figures give evidence of the potential

power gains when the residential history is incorporated into the M -statistic to test for

differences between two spatial distributions.

In the scenarios we investigate, the power curves for the uniformly-weighted M -

statistic are bounded above by the incubation-weighted statistic and below by the

address-at-diagnosis method, with the exception of the 10 year duration, single point-
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source setting. In this situation, the uniformly-wieghted M -statistic power curve lies ap-

proximately on top of the power curve for the incubation-weight scheme.

In the first potential cluster scenario, we perform both tests when at least eight of the

100 cases have addresses of diagnosis within a distance of 0.1 units of each other. From

the results of this subset of tests, which are shown on the top row of Figure 2, we see

slight power gains for the standard address at diagnosis tests. While one would expect to

observe power gains for the address at diagnosis test, the incubation weighting scheme

still dominates.

In Scenario 2, we only test for spatial differences when ten or more cases reside at

addresses within 0.1 units of each other at the time of diagnosis. We present the results

of these tests on the bottom row of Figure 2. Again, while there are slight gains for the

address at diagnosis method, the incubation weighted statistic still outperforms it. It is

clear from these power comparison plots that, even in these circumstances, the residential

history and the incubation distribution are crucial factors in the detection of the imposed

clusters. Even when one only investigates if an alarm is raised, here defined as either

eight or ten cases within a 0.1 units of each other, the conventional test underperforms

our proposed test.
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7 Discussion

We argue that using the location at the time of diagnosis, though informative for a dis-

ease with a short incubation period, is much less desirable when considering diseases

that have long incubation periods. Most cancers, for example, have long incubation peri-

ods and combining that with the relatively brief time that the average American resides

in their residence, might contribute to why we have not been successful in describing

the obvious non-uniform geographical distribution of cancer cases. To overcome this

predicament we propose a method for the incorporation of residential history into ex-

isting methods to detect the difference between two sets of spatial data, with an eye to

disease surveillance. The information contained in a subject’s residential history can read-

ily be incorporated into the distance based framework of the M -statistic. The inclusion

of residential history allows an investigator to more accurately assess spatial differences

between affected populations and background populations when the disease of interest

may have a long incubation period. These methods are also useful in situations involv-

ing mobile populations, where despite short lag times, the address at exposure may be

different from the address at diagnosis. This method can also be extended to station-

ary populations, where individuals remain at the same address but visit several locations

throughout a day–such as work address, home address, gym address, etc.

Through several simulations, we demonstrate the power gains possible from using

the methods presented. As expected, across all the studied scenarios, the tests that incor-

porate incubation based weights outperform the tests that rely solely on the address at
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the time of diagnosis. The effects of residential mobility and the incubation distribution

of the disease of interest are significant factors in the detection of spatial differences be-

tween study populations, especially when dealing with a disease with a long incubation

period. Even when the tests are only performed in situations with cause for alarm, the in-

cubation weighted statistic is much more powerful. This adds evidence to the importance

of collecting (as suggested by the CDC [40]), and using, residential history when attempt-

ing to study the relationships between exposure and chronic disease. The performance of

the uniformly-weighted statistic serves to further enhance the argument that residential

histories must be collected to gain a more complete summary of exposure, even in the

situation where an incubation distribution is unknown.

Enhancing cluster modeling by accounting for residential mobility has begun to ap-

pear. Jacquez et al. and Meliker et al. present a k-nearest neighbor method for incor-

porating residential histories and exposure traces [41, 42]. Their work concentrates on

combining nearest neighbor statistics over varying exposures. Han et al. use kernel den-

sity estimation methods to identify clustering of breast cancer using residential histories

[43]. Sabel et al. examine clustering of Amyotrophic Lateral Sclerosis in Finland based

on place of birth and place of death [44]. Gallagher et al. use residential history to asses

the affect of drinking water exposure to breast cancer [45], by examining any previous

address where a study participant was exposed to public drinking water impacted by

wastewater. In this work, we include a model for the incubation period distribution to

assign weights to all available addresses in the residential history. We prefer to look at the

spatial distribution in this manner which incorporates the likelihood of the time when the
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disease causing exposure occurred via the incubation distribution.

We have made several simplifying assumptions that we feel can be relaxed in future

work. We assume a single-hit model for the exposure, similar to the Hiroshima example.

This has allowed us to consider the incubation period as starting at a single time point.

However, in future work we hope to relax this assumption, possibly by convolving the

incubation period distribution with a specific disease’s exposure curve. Similarly, we

have used the work of [27, 15, 28, 29] to justify our assumption of the independence of

exposure intensity and incubation period. In the future, we could remove this assumption

by allowing different incubation period distributions for different subjects, determined by

the exposure history of each subject. We also plan to investigate the affect of relaxing both

of these stated assumptions simultaneously, and allowing differential exposure intensities

to affect the course of disease development. Within each presented simulation, we assume

constant residential mobility processes. In actuality, residential mobility is affected by

several factors such as age, socio-economic group, and population density [18].

Despite these assumptions, we think this proposed statistic, which combines incuba-

tion distribution modeling, residential histories and cluster detection has the potential to

drastically improve disease surveillance.
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Figure 1: Power curves for simulations of 100 cases and 100 controls on the unit square.

Top left and top right assume a single point-source. Bottom left and bottom right as-

sume two point-sources. Top left and bottom left assume an average residential dura-

tion of 4 years. Top right and bottom right assume an average residential duration of 10

years. These plots present the power curves for theM -statistic using the incubation based

weighting system (−•−) compared to the M -statistic with uniform weights (−·�−·)and

the M -statistic using just the address at diagnosis (−N−).
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Figure 2: Power curves for simulations of 100 cases and 100 controls on the unit square,

assuming one point-source. Plots on the left assume an average residential duration of 4

years, while the plots on the right assume an average residential duration of 10 years. We

only test for a difference between the cases and the controls when we have a large enough

signal to sound an alarm. For the top row of plots, we define that signal as 8 cases within

0.1 units of each other, while with the bottom row of plots we define that signal as 10

cases within 0.1 units of each other. Power of the M -statistic using the incubation based

weighting system is plotted as (•), power of the M -statistic using address at diagnosis

is plotted as (N). The solid lines (—) represent the calculated power for all simulations,

while the dashed lines (−−−) represent the calculated power for those simulations with

N cases (N= 8 or 10) within 0.1 units of each other.
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