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Estimating Subject-Specific Treatment Differences for Risk-Benefit Assessment

with Competing Risk Event-Time Data

B. Claggett1, L. Zhao1, L. Tian2, D. Castagno3,4, and L. J. Wei1

Summary

To evaluate treatment efficacy or toxicity using event-time data from a randomized

comparative study, we usually make inference about a summary measure which quantifies

an overall treatment difference. However, a single measure for efficacy, even when coupled

with that for toxicity, is difficult to be utilized for treating a future patient at his or her

bedside. A positive (negative) study result based on such a measure does not mean that

every future subject should (should not) be treated by the new therapy. For clinical practice,

it is desirable to identify subjects who would benefit from the new treatment from a risk-

benefit perspective. In this paper, we propose a systematic approach to achieve this goal

using competing risk event-time data from two similar, but independent studies. We first

utilize data from a study to build a parametric score with respect to a primary event for

the purpose of stratifying the patients in the second study. We then use the data from the

second study to obtain a nonparametric estimate of the treatment difference, with respect

to each competing risk event, for any fixed score. Furthermore, confidence interval and band

estimates are constructed to quantify the uncertainty of our inferences for the treatment

differences over a range of scores. To illustrate the new proposal, we use the data sets from

two cardiovascular studies for evaluating specific beta-blockers in patients with heart failure.

The score is based on time to death, and the competing events are myocardial infarction,

hospitalization and toxicity.
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1. Introduction

Consider a randomized, comparative clinical trial in which a treatment is assessed against

a control with respect to their risk-benefit profiles. These profiles are quantified using event-

time data under a competing risk setting. Conventionally, a single treatment contrast is

utilized to assess an overall treatment difference with respect to efficacy, in addition to a

global measure for toxicity, over a rather heterogeneous population. Unfortunately, the re-

sulting inference about these two measures are rather difficult to interpret in clinical practice.

A positive (negative) trial based on these two overall measures does not mean that every

future patient should (should not) be treated by the new treatment. To bring the clinical

trial results to the patient’s bedside, we may utilize the patient’s characteristics which relate

to the response variable to perform so-called personalized or stratified medicine. Unfortu-

nately, the typical ad hoc subgroup analysis of clinical studies is not credible (Wang et al.,

2007). Moreover, such subgroup analysis is often conducted by investigating the effect of

only a single predictor at a time and is therefore not effective in identifying patients who

would benefit from the new treatment.

In this paper, we present a systematic approach to estimate subject-specific treatment

differences from a risk-benefit perspective where the risk and benefit are quantified using

event times. That is, for each study subject, the observations are times to events that define

the efficacy and toxicity of the treatment. Since formal evaluations of new drugs or devices

usually require two well-conducted studies, one may use one study to build a parametric

scoring system with baseline variables and then stratify subjects in the second study and

estimate the treatment differences nonparametrically with respect to the risk-benefit profiles.

Note that this univariate scoring system can be constructed using a primary or composite

endpoint of interest. Also note that by using the proposed “two-study approach”, one may

avoid the nontrivial “self-serving” bias that can result from creating the score, stratifying

subjects, and estimating subject-specific treatment differences with the same data set. To
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control the overall error rate, using the event-time data from the second study, we provide the

simultaneous, nonparametric confidence band of the treatment differences for each competing

risk event over a range of parametric scores obtained from the first study via an extensive

model or variable selection process.

When there is a single baseline covariate involved, Song and Pepe (2004) and Bonetti and

Gelber (2000, 2005) have proposed novel statistical procedures for identifying a subgroup

of patients who would benefit from the new treatment with respect to efficacy. A recent

paper by Janes et al. (2011), which is based on previous work by Pepe (2003), Huang et al.

(2007), and Pepe et al. (2008), provides practical guidelines for measuring the performance

of individual markers for treatment selection. By incorporating more than one baseline

covariate at a time, our approach is similar in spirit to Cai et al. (2010b) and Li et al.

(2010). However, they both used a single study to create a scoring system by fitting a

prespecified model without model evaluation or variable selection. They then use the same

data set to make inferences for either the treatment difference without competing risks or

risk predictions for a single treatment group.

To illustrate our proposal, we utilize the data from a recent clinical trial, “Beta-Blocker

Evaluation of Survival Trial” (BEST), which compared a beta-blocker to placebo in patients

with heart failure, with a primary endpoint of all-cause mortality. Here, the competing risk

events include myocardial infarction (MI), hospitalization, and adverse events (AE) (BEST,

2001). Note that in the BEST trial, the non-fatal event times were not censored by other

non-fatal event times, which is different from the conventional competing risk setting. We

first used the mortality data from a similar study, “Cardiac Insufficiency Bisoprolol Study

II” (CIBIS-II), for evaluating a beta-blocker in patients with heart failure, to build a para-

metric score (CIBIS II, 1999). We then used this scoring system to stratify the patients

in the BEST study and make inferences about the treatment differences with respect to

the aforementioned competing risks across a range of scores via simultaneous and pointwise

confidence interval estimates.

3
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2. Building a Scoring System with Respect to a Specific Event Time via a

Training Data Set

To begin, we use the first study, say, the training data set, to build a scoring system

using the patients’ baseline characteristics with respect to a particular or composite event

time which is of primary interest for the target population. This event time may be subject

to censoring from competing event times. Specifically, for this training set, each subject was

assigned to a particular treatment j, where j=1,2. For the jth treatment group, let Tj be an

event time, representing the minimum of the time to this primary event and other competing

event times. Let the indicator function εj = 1, if Tj is not censored by a competing event time.

Also, let Uj be the vector of baseline covariates. In addition to those competing risks, let Cj

be the censoring variable, which is assumed to be independent of Uj and all the underlying

competing event times. Furthermore, let Xj = min(Tj, Cj) and ∆j be the indicator function,

which is one if Tj ≤ Cj. The data consist of {(Xij,∆ij,∆ijεij, Uij)
′, j = 1, · · · , nj}, nj

independent copies of (Xj,∆j,∆jεj, Uj)
′, j = 1, 2. Note that εij is observable if ∆ij = 1.

Now, suppose that we are interested in estimating the t0-year event rates πj(U), j = 1, 2,

with respect to the primary event, where

πj(U) = pr(Tj ≤ t0, εj = 1|U) (2.1)

for a pre-specified time point t0. To obtain an estimate for πj(U), one may use the following

working models

πj(Uij) = gj(β
′
jZij), j = 1, 2, (2.2)

where Zij is a function of Uij, gj(·) is a given monotone function, and βj is an unknown vector

of parameters. An estimating function for βj with the above censored competing risks data

is
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R(βj) = n−1j

nj∑
i=1

wij

Ĝj(Xij ∧ t0)
Zij{I(Xij ≤ t0, εij = 1)− gj(β′jZij)}, (2.3)

where wij = I(Xij ≤ t0)∆ij + I(Xij > t0), I(·) is the indicator function, and Ĝj(·) is the

Kaplan-Meier estimator for Gj(·), the survival function of the censoring variable for the jth

group and this primary event time. (Uno et al., 2007; Li et al., 2010 and Zheng et al., 2006).

The point estimator β̂j for βj can be obtained by solving the equation R(β) = 0. Under some

mild conditions, the resulting estimator β̂j converges to a finite constant vector as n → ∞

even when the model (2.2) is not correctly specified (Uno et al., 2007).

Note that one may repeatedly utilize (2.2) and (2.3) with various Z and gj(·) via, for

instance, the standard stepwise regression with U, to obtain a final estimate π̂j(U). For a

given U, let the score for the treatment contrast be denoted by D̂(U) = π̂2(U) − π̂1(U),

which intends to estimate D(U) = π2(U) − π1(U). Now, suppose that the control group

corresponds to j=1. Then one may use π̂1(·) as the risk score for grouping the patients in the

second study for estimating the subject-specific treatment differences. On the other hand,

because the scoring system D̂(·) is constructed using the interactions between the treatment

and covariates, intuitively, it may more effectively stratify patients with similar treatment

difference profiles.

Models other than (2.3) may also be used to build the scoring systems π̂j(·) and D̂(·).

For example, we may use a generalized Cox proportional hazards model, which deals with

competing event time data, to estimate the survival rate at t0 (Fine and Gray, 1999). Variable

selection procedures can also be utilized with such a global survival model. However, it is

possible that certain covariates may be highly predictive for short-term survival, but not for

long-term survival (or vice versa), in which case it may be more appropriate to use a logistic

regression model as described above to build a scoring system.

Since many explanatory models can be considered as candidates for estimating πj(·), j =

1, 2, it is important to formally evaluate their relative merits. To this end, we first note that

5
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the adequacy of a survival model for t0-year survival can be quantified by the area under

the receiver operating characteristic curve (AUC). Specifically, for treatment j, the AUCj

for the t0-year survival rate is

pr(π̂j(Uij) > π̂j(Ulj)|I(Tij ≤ t0) > I(Tlj ≤ t0)),

where I(Tij ≤ t0) 6= I(Tlj ≤ t0). A large value of AUC indicates that the model fits the

event-time data well. With censored data, we may use a similar procedure proposed by Uno

et al. (2007) to consistently estimate the AUC nonparametrically.

Next we use an M-fold cross validation procedure to evaluate all the candidate models.

Specifically, we split the training data set into M disjoint subsets of approximately equal

size, denoted by {Im,m = 1, ...,M}. For each m, we use all observations not in Im to build

a working model and apply the estimates π̂j(Uij) to the data in Im, with the resulting AUC

estimate denoted by ÂUC
(m)

j . Lastly, we average these AUC estimates over m = 1, ...,M

to obtain a final estimate ÂUCj. The model which yields the largest cross-validated AUCj

value among all candidate models will be chosen as the final model for treatment group j.

We then refit the entire training data set with this model in order to construct the final score.

3. Making inferences About the Treatment Differences over a Range of Scores

with Respect to all Competing Risk Event-Time Data from the Target Data Set

Let the final parametric score for a patient with the covariate vector U in the target

study be denoted by S(U), which may be the risk score π̂1(U) based on the control group or

the treatment selection score D̂(U) discussed in the previous section. Now, with the event-

time data from the second study, in order to obtain the personalized risk-benefit assessment,

we construct the confidence interval or band estimates for the treatment differences with

respect to each competing risk event over the score. To this end, let Tijk be the minimum

6
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of the time to the kth event and its competing event times, where i = 1, ..., nj; j = 1, 2; k =

1, ..., K. Moreover, let εijk be a binary indicator, which is one if we observe the time to

the kth event. The data consist of nj independent and identically distributed observations

{(Xijk,∆ijk,∆ijkεijk, Uij), k = 1, · · · , K; i = 1, · · · , nj}, j = 1, 2, where Xijk = min(Tijk, Cij),

∆ijk = I(Tijk ≤ Cij) and Cij is the censoring time, which is independent of {(Tijk, Uij), i =

1, · · · , nj; j = 1, 2; k = 1, · · · , K}. Furthermore, we let Yijk = I(Xijk ≤ t0, εijk = 1). For the

kth event, we are interested in estimating the treatment difference conditional on S(U) = s,

that is,

Ek(s) = pr(Ti2k ≤ t0, εi2k = 1|S(U) = s)− pr(Ti1k ≤ t0, εi1k = 1|S(U) = s). (3.1)

To estimate Ek(s) nonparametrically, we use a kernel estimator for each term on the right

hand side of (3.1). Specifically, we estimate pjk(s) = pr(Tijk ≤ t0, εijk = 1|S(U) = s) with

p̂jk(s)

=

{∑
i

wijk

Ĝjk(Xijk ∧ t0)
Khjk(Vij − s)Yijk

}
/

{∑
i

wijk

Ĝjk(Xijk ∧ t0)
Khjk(Vij − s)

}
, (3.2)

where Vij = S(Uij), wijk = I(Xijk ≤ t0)∆ijk + I(Xijk > t0), Ĝjk(·) is the Kaplan-Meier

estimator of Gj(·), the survival distribution of the censoring variable Cj, estimated us-

ing observations {(Xijk,∆ijk), i = 1, · · · , nj; j = 1, 2}, Khjk(s) = K(s/hjk)/hjk, K(·) is a

smooth symmetric kernel with finite support and hjk is a smoothing parameter. When

hjk = O(n−v), 1/5 < v < 1/2, it follows from a similar argument by Li et al. (2010) that

p̂jk(s) converges to pjk(s) uniformly over the interval s ∈ S, where S is an interval contained

properly in the support of S(U). Let E(s) = {E1(s), ..., EK(s)}′ = p2(s)− p1(s) and its em-

pirical counterpart Ê(s) = {Ê1(s), ..., ÊK(s)}′ = p̂2(s)−p̂1(s), where Êk(s) = p̂2k(s)−p̂1k(s),

pj(s) = {pj1(s), · · · , pjK(s)}′ and p̂j(s) = {p̂j1(s), · · · , {p̂jK(s)}′

It follows from a similar argument by Li et al. (2010) that when hjk is of the same order
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as above, for a fixed s, the joint distribution

diag{(n1h11 + n2h21)
1/2, ..., (n1h1K + n2h2K)1/2}{Ê(s)− E(s)} (3.3)

converges in distribution to a multivariate normal with mean 0 and covariance matrix Σ(s)

as n→∞, where diag{· · · } is a K ×K diagonal matrix.

To approximate the distribution in (3.3), we may use a perturbation-resampling method,

which is similar to ‘wild bootstrapping’ (Wu, 1986; Mammen, 1993) and has been successfully

implemented in many estimation problems (Lin et al., 1993; Park and Wei, 2003; Cai et al.

2010). Specifically, let {Bij : i = 1, ..., nj; j = 1, 2} be independent random samples from

a strictly positive distribution with mean and variance equal to one. Let p∗jk(s) be the

perturbed version of p̂jk(s) with p∗jk(s)

=

{∑
i

Bijwijk

Ĝ∗jk(Xijk ∧ t0)
Khjk(Vij − s)Yijk

}
/

{∑
i

Bijwijk

Ĝ∗jk(Xijk ∧ t0)
Khjk(Vij − s)

}
. (3.4)

Here, Ĝ∗jk(·) is the perturbed estimator for the survival function Gj(·)

Ĝ∗jk(t) = exp

[
−

nj∑
i=1

∫ t

0

Bijd{I(Cij ≤ u ∧Xijk)}∑nj

l=1BljI(Xljk ≥ u)

]
. (3.5)

Denote E∗(s) = p∗2(s)−p∗1(s), where p∗j(s) = {p∗j1(s), · · · , p∗jK(s)}′. Using the arguments by

Cai et al. (2010), the limiting distribution, conditional on the target data set, of

diag{(n1h11 + n2h21)
1/2, ..., (n1h1K + n2h2K)1/2}{E∗(s)− Ê(s)}, (3.6)

is also multivariate normal with mean 0 and covariance matrix Σ(s).

In order to obtain an approximation to Σ(s), we generate a large number of realizations of

{Bi1, Bi2}, and compute E∗(s) for each perturbation sample. The resulting sample covariance

matrix based on those perturbed estimates E∗, say, Σ̃(s), is a consistent estimator of Σ(s).
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A two-sided confidence interval for an individual risk difference Ek(s) is then given by

Êk(s)± z(1−α/2)(n1h1k + n2h2k)
−1/2σ̃k(s), (3.7)

where σ̃k(s) is the kth diagonal element of Σ̃(s).

To construct a (1 − α) simultaneous confidence band for Ek(s) over the pre-specified

interval S, we cannot use the conventional method based on the sup-statistic,

sup
s∈S

σ̃−1k (s)|(n1h1k + n2h2k)
1/2{Êk(s)− Ek(s)}|

due to the fact that as a process in s, (n1h1k +n2h2k)
1/2{Êk(s)−Ek(s)} does not converge to

a process. On the other hand, one may utilize the strong approximation argument given in

Bickel and Rosenblatt (1973) to show that an appropriately transformed sup of Êk(s)−Ek(s)

converges to a proper random variable. In practice, to construct a confidence band, we can

first find a critical value bα such that

pr(sup
s∈S
|E∗k(s)− Êk(s)|/{(n1h1k + n2h2k)

−1/2σ̃k(s)} > bα) ≈ α.

Then the confidence band for Ek(s) : s ∈ S is given by

Êk(s)± bα(n1h1k + n2h2k)
−1/2σ̃k(s). (3.8)

Here S can be chosen as an interval whose lower and upper bounds are the 5th and 95th

percentile of the empirical distribution of S(U).

As with any nonparametric estimation problem, it is important that we choose appro-

priate smoothing parameters in to make inference about E(s). Here, we use a ‘leave-one-

out’ cross-validation procedure to choose the smoothing parameter ĥjk which minimizes a

weighted cross-validated mean squared error, as discussed in Altman and MacGibbon (1998).

9

Hosted by The Berkeley Electronic Press



Specifically, for any fixed values of h and (j, k), we can estimate pjk(s) using all observations

except for the ith subject, which yields estimator p̂(−i)jk(s). The weighted leave-one-out mean

squared error is
nj∑
i=1

wijk

Ĝjk(Xijk ∧ t0)
{Yijk − p̂(−i)jk(Vij)}2. (3.9)

Let ĥjk be a minimizer of (3.9). In the Appendix, we show that ĥjk is of the order n−1/5.

To ensure the validity of the above large-sample approximation, however, we let the final

smoothing parameter be h̃jk = ĥjk × n−ξ where ξ is a small positive number less than 0.3.

4. Example

We illustrate the new proposal using the data from the CIBIS-II and BEST trials, as

discussed in the Introduction. First we build the scoring system using the data from CIBIS-

II. In the CIBIS-II trial, 2647 patients were assigned to either placebo or beta-blocker, with

an average followup time of 1.3 years. By the end of the study, 156 patients in the beta-

blocker group and 228 patients in the placebo group had died. For each group, we used

15 clinically relevant covariates from Table 1 of Castagno et al. (2010) to fit the mortality

data with various working models to estimate the probability of death at t0 = 18 months.

These baseline variables are: age, sex, left ventricular ejection fraction (LVEF), estimated

glomerular filtration rate adjusted for body surface area (eGFR), systolic blood pressure

(SBP), class of heart failure (Class III vs. Class IV), obesity (Body mass index (BMI) > 30

vs. BMI ≤ 30), resting heart rate, smoking status (ever vs. never), history of hypertension,

history of diabetes, ischemic heart failure, and atrial fibrillation. As in Castagno et al. (2010),

we used 3 indicator variables to discretize eGFR values into 4 categories, with cut-points of

45, 60, and 75. Since the primary endpoint was the time to death, there were no competing

risks involved in CIBIS-II. We used two classes of models to fit survival data: the standard

Cox model and the t0-year logistic regression model proposed in Section 2. For each of these
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two models, we used four different methods of variable selection. The first one used all 15

variables additively. The second one used a simple backwards stepwise regression procedure.

It started from the full model including all 15 covariates and successively eliminated the least

significant covariate until all p-values of remaining covariates were less than 0.15. The third

and fourth ones used the same backwards elimination procedure. However, the third one

stopped when all remaining p-values were less than 0.05 and the fourth one stopped when no

more covariates could be removed without subsequently increasing the Akaike information

criterion (AIC). Therefore, a total of eight models were considered for each treatment group.

Although there were 16 candidate models in total, for each treatment group, there were six

distinct candidate models left after variable selection. To evaluate these models, we used

a 10-fold cross validation procedure. In Table 1, we present those 12 models with their

corresponding average AUC values. It is interesting to note that all these models have very

similar AUC values. Our final models for the present example are the two marked with ∗∗

in Table 1.

Table 1: Candidate models with average cross-validated AUC values

Placebo Group Treatment Group
Model Covariates AUC Model Covariates AUC
logistic-full (1-15) 0.651 logistic-full (1-15) 0.663
logistic-stepwise(p=0.15) (1,2,3,6,7,8,12,13) 0.666 logistic-stepwise(p=0.15) (2,3,5,6,8,13,15) 0.695∗∗

logistic-stepwise(p=0.05) (1,2,3,6,7,8,12) 0.669∗∗ logistic-stepwise(p=0.05) (2,3,5,6,8,13) 0.690
logistic-stepwise(AIC) (1,2,3,6,7,8,12,13) 0.666 logistic-stepwise(AIC) (2,3,5,6,8,12,13,15) 0.689
Cox-full (1-15) 0.657 Cox-full (1-15) 0.670
Cox-stepwise(p=0.15) (1,2,3,4,6,7,8,12) 0.667 Cox-stepwise(p=0.15) (2,3,5,6,8,12,13,15) 0.689
Cox-stepwise(p=0.05) (2,3,4,6,7,8) 0.657 Cox-stepwise(p=0.05) (2,3,5,6,8,12,13,15) 0.689
Cox-stepwise(AIC) (1,2,3,4,6,7,8,12) 0.667 Cox-stepwise(AIC) (2,3,5,6,8,12,13,15) 0.689

Covariates: 1. age 2. sex: male 3. LVEF 4. I(eGFR> 75) 5. I(eGFR> 60) 6. I(eGFR> 45) 7. SBP
8. Class IV heart failure 9. I(BMI> 30) 10. never-smoker 11. heart rate 12. history of hypertension
13. history of diabetes 14. ischemic heart failure 15. atrial fibrillation

Now, we apply the final scoring systems to the patients in the BEST trial. Since the

patients in CIBIS-II were predominantly white, for illustration, we only considered the data

from white patients in BEST (CIBIS II, 1999; BEST, 2001). There were 1895 white patients

and the average follow-up time was about 2 years. Two potential scoring systems from Table

11
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Table 2: Regression coefficients for the final logistic models with CIBIS-II data with respect
to all-cause mortality

Placebo Beta-Blocker
Covariates Covariates
(Intercept) -0.175 (Intercept) -1.285
Sex: male* 0.682 Sex: male* 1.167
LVEF -0.034 LVEF -0.041
I(eGFR>45)* -0.712 I(eGFR>45)* -0.822
Class IV Heart Failure* 0.775 Class IV Heart Failure* 1.060

age 0.025 I(eGFR>60)* -0.543
SBP -0.018 Hist. Diabetes* 0.686
Hist. Hypertension* 0.474 Atrial Fibrillation* 0.416

* Binary risk factor: 1 if factor is present, 0 otherwise.

2 are considered, π̂1(·) and D̂(·), for the patients in BEST. The four competing risk events

are all-cause mortality, MI, any hospitalization, and treatment discontinuation due to AE.

Again, only the time to death is a potential competing risk for the times to the non-fatal

events. We present the event counts at t0 = 18 months for each treatment arm in Table 3

below, and the cumulative incidence function estimates in Figure 1.

Table 3: BEST 1.5-year Event Totals

Control Group Treated Group
Death 201 167

MI 30 15
Hospitalization 504 467

AE Discontinuation 234 198
n 950 945

To estimate p1(s), p2(s) and E(s) in our examples, we let K(·) be the standard Epanechnikov

kernel. The smoothing parameters were chosen as the minimizers of (3.9) using “leave-one-

out” cross-validation, then multiplied by n−0.05j .

First, we used the risk score π̂1(·) from the CIBIS-II control group to construct estimates

for the 1.5-year event rates for the white patients in the control group of BEST. In the left

panel of Figure 2, the point and 0.95 interval estimates are presented. We find that our

12
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Figure 1: Cumulative incidence function estimates for each endpoint (solid: control group,
dashed: treated group).

risk scoring model π̂1(·) matches the t0-year survival profile well. Furthermore, the 1.5-year

event rate for each non-fatal event increases with this risk score derived from the CIBIS-II

mortality data. In Figure 2, the 0.95 pointwise interval and band are denoted by dashed and

solid lines, respectively.

Next, we estimate the treatment difference for each competing risk over the score π̂1(·).

We present the estimates in the right panel of Figure 2. A common clinical practice is to use

such a risk scoring system to guide us for the patient’s treatment management. The results of

our analysis suggest that patients with a low risk score would experience a nontrivial benefit
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Figure 2: Use of π̂1(U) as a scoring system (left panel: 1.5-year event probabilities in control
group; right panel: 1.5-year treatment effect; from top: death, MI, hospitalization, AE
discontinuation; bottom row: empirical CDF of risk scores).

from beta-blockers with respect to overall mortality. The pointwise 0.95 confidence interval

estimates indicate that patients with risk scores below 0.2 show a significant benefit in terms

of reduced risk of death, and those with risk scores below 0.12 show significant effects using

the simultaneous confidence band estimate. These two subsets represent approximately 36%

and 7%, respectively, of the BEST patient population. The risk of discontinuation due to

adverse events also appears to be decreased for patients with low risk scores, showing (point-

wise) significant effects for those with scores below 0.14. On the other hand, the subset of

patients with scores greater than 0.28 showed significant reductions in MI. These same pa-
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tients show no evidence of reduction with respect to any of the other risks, with considerable

uncertainty surrounding the estimates for these patients. These high-risk patients make up

approximately 30% of the BEST patient population. There is no strong evidence to claim

any increase or decrease in risk of hospitalization over the score. Note that high risk scores

were most strongly associated with increased age and low values of LVEF.
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Figure 3: Use of π̂2(U)− π̂1(U) as a scoring system (left panel: 1.5-year event probabilities
in control group; right panel: 1.5-year treatment effect; from top: death, MI, hospitalization,
AE discontinuation; bottom row: empirical CDF of risk scores).

Next, we used the treatment selection score S(U) = g(β̂′2Z2) − g(β̂′1Z1) from CIBIS-II

to estimate the subject-specific treatment difference with respect to each competing risk. A

patient who has a negative score would be anticipated to experience a decrease in risk of death
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by taking the treatment, while a patient who receives a positive score would be expected

to experience an increase in risk of death with the beta-blocker. The resulting scores range

from -0.38 to +0.25, with empirical 5th and 95th percentile values of approximately -0.24 and

+0.05, respectively. The median score in the BEST population was -0.08. It is important

to note that due to the highly significant treatment benefit found in CIBIS-II, the score has

a large mass on the negative side. On the other hand, the overall treatment benefit from

beta-blocker in BEST was rather modest. Therefore, this score may not reflect the true

treatment difference well for mortality in the BEST population.

The results from our analysis suggest that patients with negative scores show reductions

in mortality and MI. In particular, the 0.95 confidence intervals indicate that a score below

-0.02 (81% of the patient population) is associated with a significant reduction in either

death or MI. On the other hand, patients with scores greater than 0.02 showed an estimated

(non-significant) increased risk of mortality.

Note that for the treatment difference with respect to overall mortality, the treatment

selection score system cannot differentiate well between patients with negative scores. For

example, the curve is relatively flat for scores between -0.25 and -0.02. For the present

example, it appears that the risk score π1(·) works well. Note that the treatment selection

score was most strongly associated with increased SBP values and history of diabetes.

5. Remarks

In this paper, we use two independent data sets to construct a systematic, subject-

specific treatment selection procedure. The final scoring system may be chosen via a com-

plex, exploratory model and variable selection process using the training data set. We then

apply this system to stratify the patients in the second study and make inferences about

the treatment differences with respect to various competing risks for each stratum. If two

similar studies are unavailable, one may instead split a single data set randomly into two
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pieces and implement our proposal accordingly. However, if different random splits result in

markedly different profiles for the treatment differences, this indicates that our data may not

have enough information for making inference for risk prediction or personalized treatment

selection.

Although using a treatment selection score D̂(·) may be a more effective procedure to

group subjects with similar treatment difference profiles within each stratum, the resulting

score may not represent the patients in the second study well, due to nontrivial differences in

treatment efficacy between the two studies. On the other hand, the risk score built using the

control group patients in the training data set may be validated with the data from the second

study, as shown in our example. Moreover, clinical practitioners seem more comfortable with

using a risk score from the control arm to make treatment decisions, especially when there

is more than one treatment involved in the comparison.

In this paper, we used the t0-year event rates as the parameters of interest, where t0

may be chosen from a clinical perspective. In practice, one may repeat our procedure with

various time points. It would be interesting to choose a global measure to quantify the

treatment contrast, for example, the difference, between two treatment groups, of the areas

under the cumulative incidence function, truncated at a specific time point. Further research

is warranted along this line.

Our model and variable selection procedure is intended to select the “best” model for

each treatment group among all candidate models, where the two models are built and

evaluated independently of one another. When the endpoint is the treatment difference, it is

not clear that our approach of using two independent models would produce the “best” score.

In his unpublished thesis, Signorovitch (2007) proposed a novel method for modeling the

treatment contrast directly with covariates. Intuitively, his approach would more effectively

select the treatment and covariate interactions for creating the score. Further research is

needed to evaluate scoring systems with respect to the subject-specific treatment differences.

Lastly, the choice of treatment based on a risk-benefit perspective is quite individual-
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ized. A global summary of the treatment effectiveness, for example, the risk-benefit ratio,

may not provide enough information for personalized medicine. Separate summaries for the

treatment’s toxicity and efficacy at the subject level, as we have proposed in this article, can

be quite useful for the patient’s bedside management.
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Appendix

With slight abuse of notation, we only consider the smoothing parameter selection in one

treatment group and one type of event. For convenience, we drop the subscripts for treatment

arms as well as type of event. Specifically, we let Yi = I(Xi ≤ t0, εi = 1), i = 1, · · · , n, p(v) =

pr(T ≤ t0, ε = 1|V = v), where V = S(U), Ŵi = wi/Ĝ(Xi∧t0) andWi = wi/G(Xi∧t0), where

G(·) is the survival function for the censoring distribution. ĥCV , the bandwidth selected via

cross-validation, is the minimizer of the weighted least square loss function

ĈV (h) =
1

n

n∑
j=1

Ŵj

[
Yj −

∑
i6=jKh(Vi − Vj)ŴiYi∑
i6=jKh(Vi − Vj)Ŵi

]2
.

Firstly, one can show that ĈV (h) can be approximated by

CV (h) =
1

n

n∑
j=1

Wj

[
Yj −

(n− 1)−1
∑

i6=jKh(Vi − Vj)WiYi

f(Vj)

]2
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in that |ĈV (h) − CV (h)|/ĈV (h) = op(1) uniformly in h ∈ Hn = [n−1+δ, n], where δ > 0,

and f(·) is the density function of Vi. Let

Q(h) =
1

n

n∑
j=1

Wj

[
Yj −

n−1
∑n

i=1Kh(Vi − Vj)WiYi
f(Vj)

]2
.

CV (h) can be expressed as Q(h) + A+B where

A =
2K(0)

n2h

n∑
j=1

Wj

[
Yj −

n−1
∑n

i=1Kh(Vi − Vj)WiYi
f(Vj)

]
WjYj
f(Vj)

+Op(n
−1)

and

B = n−1
n∑
j=1

Wj

[
(n− 1)−1

∑
i6=jKh(Vi − Vj)WiYi

f(Vj)
− n−1

∑n
i=1Kh(Vi − Vj)WiYi

f(Vj)

]2
.

Furthermore, one can verify that

Q(h) = E[p(V ){1− p(V )}] +Op(n
−1h−1)

A =
2K(0)

nh
E

[
{Y − p(V )}2

G(X ∧ t0)f(V )

]
+Op(n

−1h−1)

and B = Op(n
−2h−2) uniformly in h ∈ Hn. Therefore

ĈV (h) = Q(h)

(
1 +

2K(0)

nh
E

[
{Y − p(V )}2

G(X ∧ t0)f(V )

]
1

E [p(V ){1− p(V )}]
+Op(n

−2h−2)

)

It follows from Theorems 1 and 2 of Hardle et al. (1988) that ĥCV is consistent to the optimal

bandwidth and in the order of Op(n
− 1

5 ).

19

Hosted by The Berkeley Electronic Press



References

Altman, N. and MacGibbon, B. (1998). Consistent bandwidth selection for kernel binary

regression. Journal of Statistical Planning and Inference, (70), 121.

The Beta-Blocker Evaluation of Survival Trial Investigators (2001). A Trial of the Beta-

Blocker Bucindolol in Patients with Advanced Chronic Heart Failure. New England Jour-

nal of Medicine, 344(22), 1659.

Bickel, P. and Rosenblatt, M. (1973). On Some Global Measures of the Deviations of Density

Function Estimates. Annals of Statistics, 1, 1071.

Bonetti, M. and Gelber, R. D. (2000). A graphical method to assess treatment-covariate

interactions using the Cox model on subsets of the data. Statistics in Medicine, 19, 2595.

Bonetti, M. and Gelber, R. D. (2005). Patterns of treatment effects in subsets of patients

in clinical trials. Biostatistics, 5, 465.

Cai, T., Tian, L., Uno, H., Solomon, S. and Wei, L.J. (2010) Calibrating Parametric Subject-

specific Risk Estimation. Biometrika, (97), 389.

Cai, T., Tian, L., Wong ,P.H., and Wei, L.J. (2010b) Analysis of randomized comparative

clinical trial data for personalized treatment selections. Biostatistics, Ahead of print.

Castagno, D., Jhund, P., McMurray, J.J.V., Lewsey, J., Erdmann, E., Zannad, F., Remme,

W., Lopez-Sendon, J.L., Lechat, P., Follath, F., Höglund, C., Mareev, V., Sadowski,
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