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Abstract

Bioequivalence trials are abbreviated clinical trials whereby a generic drug or new

formulation is evaluated to determine if it is “equivalent” to a corresponding previ-

ously approved brand-name drug or formulation. In this manuscript, we survey the

process of testing bioequivalence and advocate the likelihood paradigm for represent-

ing the resulting data as evidence. We emphasize the unique conflicts between hy-

pothesis testing and confidence intervals in this area - which we believe are indicative

of the existence of the systemic defects in the frequentist approach - that the likeli-

hood paradigm avoids. We suggest the direct use of profile likelihoods for evaluating

bioequivalence and examine the main properties of profile likelihoods and estimated

likelihoods under simulation. This simulation study shows that profile likelihoods are

a reasonable alternative to the (unknown) true likelihood for a range of parameters

commensurate with bioequivalence research. Our study also shows that the standard

methods in the current practice of bioequivalence trials offers only weak evidence from

the evidential point of view.
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1 Introduction

When pharmaceutical companies would like to market a generic drug after the patent of

a brand-name drug expires or when they would like to market a new formulation of an

approved drug, regulatory authorities do not require the performance of costly full scale

clinical trials to demonstrate the efficacy and safety. Instead, pharmaceutical companies

conduct bioequivalence (BE) trials to establish that the generic drug or new formulation

(“the test”) is bioequivalent to the brand-name drug or originally approved drug (“the

reference”).

It might seem strange, for those who are not familiar with BE trials, that a drug formu-

lation containing the same active ingredient can show different effects or toxicities. Two

formulations having different excipients, or the same excipients formulated differently, can

result in different effects. Stated more succinctly, chemical equivalence of the active agent

does not guarantee biological equivalence. Such problems often occur when the drugs

have a narrow therapeutic index, as with digoxin (a heart medication), warfarin (a blood

thinner), sustained-release theophylline formulations (an asthma medication) and pheny-

toin (an anticonvulsant or antiepileptic drug). For example, digoxin intoxication in 1977

received a great deal of public attention (Schulz and Steinijans, 1991) due to inadvertent

toxicity attributed to generic drugs that were not bioequivalent to the brand name drug.

Balancing the need to protect patients from the failure of treatment or toxicity via rig-

orous evaluation methods, is the desire for safe and effective generic drugs, which are typ-

ically less expensive. As such, bioequivalence trials are of interest to many groups: phar-

maceutical companies, insurance companies, prescribing doctors, pharmacists, patient-

consumer groups, regulatory authorities, etcetera. Moreover, because their interests do

not always coincide, discussions regarding bioequivalence statistical methodology are com-

plex and even sometimes politically charged (see Metzler, 1974). In this manuscript, we

propose the use of the likelihood as a useful first step in summarizing the data as evi-

dence, regardless of the researcher’s perspective. This likelihood paradigm represents a
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unified framework for quantifying evidence regarding average and population bioequiva-

lence. Notably, the two major measures, the area under the curve (AUC)and the maximum

plasma concentration reached (Cmax) can be evaluated in the same unified framework -

without concern for adjusting for multiplicity.

This manuscript outline is as follows. In Section 2.1-2.3, we review the basic concepts

of BE while in Section 2.4 we examine problems in the current statistical practice in BE

trials. Section 3 describes the likelihood paradigm while Section 4 illustrates how this

paradigm can be applied to BE trials. Moreover, we examine important properties of profile

likelihoods using simulation. A summary and discussion follows in Section 5.

2 A Review of Bioequivalence Testing

2.1 Definition and metrics of bioequivalence

The bioequivalence of a test and reference formulation depends on the closeness of charac-

teristics of the extent and rate of absorption, generally referred to as the bioavailability of

the drug. To measure bioavailability, pharmacokinetic (PK) studies are carried out. In PK

studies, drug concentrations measured from blood samples obtained at pre-specified sam-

pling times for each subject are summarized as AUC, Cmax, and the time to reach the max-

imum concentration (tmax), all of which represent bioavailability. Comparisons between

these measures are used to determine bioequivalence. Thus BE relies on the fundamental

assumption that two formulations are therapeutically equivalent if their bioavailabilities

are the same.

The metric AUC holds a special place amongst these summaries, being the required pri-

mary metric of the extent of absorption for most countries. The Cmax is also an important

metric, being a measure of the rate of absorption, although many researchers criticized

its usage arguing that it is confounded by the amount of absorption. A number of alter-

native metrics have been suggested. For example, Cmax/AUC (Endrenyi et al., 1991) or
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partial AUC (Chen, 1992), as a better measure of the rate of absorption, but none have

been proven satisfactory (Bois et al., 1994). Sometimes tmax is employed as a measure of

rate of absorption, although its poor temporal resolution, due to the discrete nature of the

sampling times, limits its use. Despite this ongoing interest and research in other metrics,

AUC and Cmax remain the most important summaries for BE trials, and hence remain our

primary focus.

2.2 Distributional assumptions for metrics in BE trials

Before performing a statistical analysis in BE trials, AUC and Cmax are generally log trans-

formed. The three most commonly cited reasons for using the log transformed AUC are

that: i) AUC is non-negative, ii) the distribution of AUC is highly skewed, iii) PK mod-

els are multiplicative, both theoretically and conceptually. Further discussion of the third

reason is as follows.

As a conceptual rationale for the log-normal model, we note that many biological ef-

fects act multiplicatively, as well described in Limpert et al. (2001). If an outcome is the

result of many random causes, each of which produces a small proportional effect, then the

resulting distribution is often log-normal (Kenney and Keeping, 1951). Since the drug con-

centration at each time is a function of many random processes (absorption, distribution,

metabolism and elimination) that reasonably would act proportionally to the amount of

drug present in the body, this suggests that the resulting distribution is log-normal (Midha

et al., 1993).

More theoretically, the FDA guidance (2001) provides a pharmacokinetic rationale

based on Westlake (1988) which states that PK models are comprised of multiplicative

components. Assuming that the elimination of the drug is first-order and only occurs from

the central compartment, AUC can be expressed as follows:

AUC =
FD

CL
=

FD

V ke
,

where F is the fraction of drug absorbed, D is the administered dose, CL is the clearance,
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V is the apparent volume of distribution, and ke is the elimination rate constant. Notice

that AUC involves multiplicative terms of the PK parameters (F , V , and ke). A log trans-

formation of AUC results in the PK parameters entering as additively. Furthermore, if

we are willing to assume that the distributions of PK parameters are log-normal, then the

distribution of AUC is also log-normal.

There has been a small amount of research considering the distribution of PK param-

eters. A study with 54 healthy young subjects showed that some of the PK parameters of

triazolam (which has relatively short half-life) were more consistent with the log-normal

distribution than the normal distribution (Friedman et al., 1986). Lacey et al. (1997) in-

vestigated the distribution of PK parameters using four different compounds with 60, 69,

57 and 36 subjects, respectively. Using tests for normality (Shapiro and Wilk, 1965), they

found that the majority (51%) of the distributions of PK parameters differed markedly

from normality, whereas all were consistent with the log-normal distribution. In addition,

they observed that log-normality is more apparent for highly variable drugs with high co-

efficients of variation which agrees with the discussion in Limpert et al. (2001). Finally

Mizuta and Tsubotani (1985) looked at the distribution of PK parameters in samples from

several drug administration routes.

Based on these results and rationale, our discussion assumes that the metric (AUC or

Cmax) is log transformed.

2.3 Design and analysis of BE trials

In a typical BE trial, the test (T) and the reference (R) formulations are administered

to (12 to 30) healthy volunteers and the drug concentrations are measured over time.

Frequently cross-over designs are employed, although parallel group designs are used as

well. Cross-over designs are generally preferred, because of their ability to compare the

test and reference formulations within a subject. As such, our discussions focus on BE

trials using a 2 × 2 cross-over design.

Throughout we assume the critical assumption that there is no carry-over effect, or
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that the carry-over effect is negligible. Such carry-over effects can be due to left-over

active drug in the previous period, due to psychological effects (Jones and Kenward, 2003)

or other pharmacologic effects, such as induction of metabolism or elimination by the

previously administered drug. However, the carry-over effect is often negligible in most

BE trials (Zariffa et al., 2000; D’Angelo et al., 2001).

Design issues aside, analyses of BE trials often considers average bioequivalence

(ABE) as a primary goal. The purpose of average bioequivalence studies is to show that

the population means of the test and the reference are sufficiently close. Establishing ABE

has been the only required criteria in BE trials for more than 20 years in many countries.

The current USA FDA guidelines (2001) declare the test and the reference as average

bioequivalent if the difference in their population means is within the regulatory limit, say

θA. That is

|µT − µR| ≤ θA,

where µT and µR are the population means of the log-transformed measure for the test and

the reference, respectively, and (usually) θA = log 1.25 = − log 0.80 = 0.223. This value is

originated from the notion that the ratio of the population means in the original scale of

0.80 − 1.25 (the mean of the test is 80 − 125% of that of the reference) is considered as

sufficiently close for drugs having an average therapeutic window.

Since Anderson and Hauck (1990) raised the issue of “switchability” between the old

formulation and the new formulation, individual bioequivalence (IBE) and population

bioequivalence (PBE) garnered more attention.

When a physician wants to switch a drug from an old formulation to a new one for

her patient who has been titrated for the old formulation, she requires evidence that the

new formulation is as safe and effective as the old. This concept is called switchabil-

ity. Establishing IBE is intended to ensure switchability between two formulations within

individuals. Anderson and Hauck (1990) defined two formulations as individually bioe-

quivalent if they are sufficiently close for most subjects and proposed a method to evaluate

IBE, based on the binomial distribution.
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On the other hand, if physicians prescribe the new formulation for new patients, then

there is a need to ensure that the two formulations are sufficiently close in the popula-

tion. This concept is referred to as “prescribability”; population bioequivalence (PBE) is

intended to ensure prescribability. The two formulations are declared population bioequiv-

alent if the distributions (usually just the means and variances) of two formulations are

sufficiently close. Thus, PBE conceptually includes ABE.

The USA FDA recommended replacing ABE with PBE and IBE. However, PBE and IBE

are not required for approval of BE, perhaps because the suggested approach is not com-

pletely satisfactory from both practical and statistical viewpoints. Depending on the vari-

ability of the drug, they adopted the mixed-scaling approach for both PBE and IBE. A brief

description of the current USA FDA guidance (2001) for PBE follows.

The test and the reference are population bioequivalent if the squared difference of

their population means plus the difference in the total variances of the two formulations

relative to a bounded version of the total variance of the reference is within the regulatory

limit θP . That is:
(µT − µR)2 + (σ2

TT − σ2
RR)

max(σ2
RR, σ2

T0)
≤ θP ,

where σ2
TT = σ2

WT + σ2
BT and σ2

RR = σ2
WR + σ2

BR are the total variances of the test and

the reference. Here the subscripts W and B refer to “within” and “between” subjects. The

constants, σ2
T0 and θP , are fixed regulatory standards.

As seen above, the USA guidance currently adopts an aggregate approach, using an

aggregated test statistic for evaluating both means and variance components at the same

time. In contrast, several disaggregate approaches have been suggested where tests for

each component are performed separately. For example, Liu and Chow (1996) proposed

to use a disaggregate approach for evaluating IBE where three components (intrasubject

variability, subject-by-formulation interaction, and average) are separately tested applying

multiple times of intersection-union tests. However, as the dimension (p) of tests increases,

the power of the (1 − 2α) confidence set based approach, could decrease sharply for p > 1

as shown in Hwang (1996). Although the aggregate approach currently recommended
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by the FDA could avoid multiplicity issue, it is difficult to evaluate which component con-

tributes bioinequivalence as well as the statistical properties for the suggested statistics are

unknown.

We adopt a disaggregate approach, which can highlight a source of inequivalence more

clearly.

2.4 Testing methodology

A review of the main articles in the development of BE tests reveals the (at a first glance)

odd fact that 100(1 − 2α)% confidence intervals are often used when the level of type I

error for the consumer’s risk is to be controlled at most α%. In fact, there has been much

debate among pharmaceutical scientists about which confidence interval level should be

used, 100(1 − 2α)% or 100(1 − α)%. Table 1 illustrates several examples of BE tests with

different operational confidence levels despite a constant desired nominal level of α =

0.05. Currently, the USA FDA guidance adopts the two one-sided tests (TOST) as the

standard method of ABE; hence, recommending the 100(1−2α)% confidence interval which

(discussed below) is an operational equivalent of TOST.

Consider the problem where interest lies in estimating the difference in the population

means of the two formulations, θ = µT − µR. If BE holds, one would expect the estimate

of θ to be within regulatory boundaries of 0, say between δL and δU . In this setting, the

statement “the two formulations are bioequivalent if the 100(1 − α)% confidence interval

is contained within δL and δU ” seems reasonable. On the other hand, consider casting

the problem as two one-sided hypothesis tests consisting of the hypotheses H01 : θ ≤

δL vs. Ha1 : θ ≥ δL and H02 : θ ≥ δU vs. Ha2 : θ ≤ δU . Then, the statement “the two

formulations are bioequivalent if both null hypotheses are rejected at the level α” seems

equally reasonable. However, if one accounts for the multiplicity of the two tests, then a

difference in the methods and the confusion occur.

With regard this distinction Berger and Hsu (1996) commented in Section 2.3
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... our conclusion is that the practice of defining bioequivalence tests in terms

of 100(1 − 2α)% confidence intervals should be abandoned. If both a confi-

dence interval and a test are required, a 100(1 − α)% confidence intervals that

corresponds to the given size-α test should be used.

They proved that the suggested 100(1−α)% confidence interval has the correct size. How-

ever, the suggested interval is exactly same as the classical 100(1−2α)% confidence interval

when the interval includes zero, which is typical for most BE trials unless the variances of

two formulations are very small or the two formulations are obviously bioinequivalent. Liu

and Chow (1996) showed that the conclusion for bioequivalence/bioinequivalence would

be the same from the two procedures in a variety of scenario.

These results beg the question of why these mathematically correct results defy ex-

perimental intuition. We believe that this conflict between intuition and mathematics,

indicates a defect in the logical framework. This is one of the motivations of this research.

We explore an alternative framework developed by Royall (1997), which does not suffer

from some of the fundamental flaws in the current statistical practices in this area.

3 The Likelihood Paradigm

The source of the confusion amongst the frequentist approaches in BE trials arises from

viewing the data as a decision making tool, rather than representing the data as evidence.

Such practice skips the fundamental step of evaluating what the data say.

Given a statistical model for the observed data, the Law of likelihood plays the funda-

mental role in interpreting data as evidence. It is stated in Royall (1997):

Law of the Likelihood: If hypothesis A implies that the probability that a random vari-

able X takes the value x is pA(x), while hypothesis B implies that the probability is

pB(x), then the observation X = x is evidence supporting A over B if and only if

pA(x) > pB(x), and the likelihood ratio, pA(x)/pB(x), measures the strength of that

evidence (Hacking, 1965).
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This law has the so-called Likelihood Principle as its foundation. The Likelihood Principle,

formally stated by Birnbaum (1962), suggests that under the assumption of a parametric

statistical model, experimental results are fully characterized by the likelihood function.

Therefore, two experiments resulting identical likelihood functions have the same eviden-

tial meaning.

The Likelihood Principle has far-reaching consequences for statistical practice. For ex-

ample, it implies that other potential values of the data have no bearing on its evidential

interpretation. Hence, frequency-style interpretations leading to P -values and confidence

intervals, which depend on potential other values of the data or fictitious repetitions of the

experiment, do not lead to evidential interpretations.

Royall, and other proponents of this likelihood paradigm, operationalize the Likelihood

Principle using the Law of the Likelihood and suggest representing the data as evidence

using a standardized likelihood plot. Reference lines drawn to indicate 1/k likelihood

intervals can be used to summarize likelihood ratios. In particular, the values of k = 8

and 32 correspond to the likelihood ratios obtained when observing 3 and 5 successive

heads when flipping a coin and comparing the (numerator) hypothesis that the coin is

two headed versus the (denominator) hypothesis that the coin is fair. We refer to these

values of k as “moderate” and “strong” evidence of the hypothesis in the numerator of

the likelihood ratio over that in the denominator, respectively. (Of course, by symmetry, a

likelihood ratio of 1/8, for example, represent moderate evidence of the hypothesis in the

denominator of the likelihood ratio to that in the numerator.) These values are akin to the

.05 and .01 benchmarks commonly used to interpret P -values. We promote the use of this

likelihood paradigm as an important first step in the analysis of bioequivalence trials.

An experiment needs not always produce moderate or strong evidence. For example,

it may produce “weak evidence” in the form of a likelihood ratio between 1/k and k, or

“misleading evidence” (Royall, 1997, 2000), where a likelihood of k (or 1/k respectively)

is obtained when in fact the denominator (numerator) hypothesis is correct.

Strong misleading evidence cannot occur very often. A straightforward application of
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Markov’s inequality suggests that the probability of misleading evidence cannot exceed

1/k, referred to as the universal bound by Royall (1997).

After a value for k is chosen, and after an experiment is completed, whether the data

represent weak evidence or not is known. In contrast, it is impossible to know whether or

not the evidence is misleading when the data produced strong evidence. Hence the mis-

leading evidence is more important concept in this context. Later we evaluate the proba-

bility of such undesirable results, and adherence to the universal bound in the presence of

nuisance parameters in the context of BE trials.

3.1 Likelihoods in the presence of nuisance parameters

When the likelihood function for a model is indexed by a single parameter, the likelihood

provides the evidence for the parameter in the data, as stated in the Likelihood Principle.

However, in the bioequivalence setting, the likelihood function typically has several pa-

rameters of interest, and nuisance parameters. As such, it is challenging to present the

likelihood as a function of the parameter of interest alone.

Although there is no single universally adopted solution for eliminating nuisance pa-

rameters, there are several ad-hoc methods to circumvent this difficulty. Some of these

methods include orthogonal parameterization, marginal likelihoods, conditional likeli-

hoods, estimated likelihoods, and profile likelihoods (see Royall, 1997). The definitions

for the estimated and profile likelihoods can be found in Pawitan (2001). Since marginal

likelihoods, conditional likelihoods, and orthogonal likelihoods are all genuine likelihoods,

they share the properties of likelihood, such as general results for the probability of mis-

leading evidence. When these approaches are not available, we contend that the profile

likelihood is the most promising alternative. Even though the universal bound on the

probability of misleading evidence does not technically apply to profile likelihoods, it ap-

proximately applies to profile likelihoods for a large class of useful models. In the sequel

we demonstrate, that in this setting, the profile likelihood is a good alternative and that

the universal bound on the probability of misleading evidence appears to be applicable.
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In Appendix A, we define our model without covariates and find the analytical solu-

tion for the profile likelihoods for the ratio of means and the ratio of variances of two

formulations. In the presence of covariates, the profile likelihoods cannot be solved for

analytically, but can be obtained numerically.

4 The Likelihood Paradigm: Application to BE Using Pro-

file Likelihoods

Appropriate null and alternative hypotheses can be specified as follows:

H1 : θ ≤ δL or θ ≥ δU versus (1)

H2 : δL < θ < δU

where θ, is either the ratio of means or the ratio of variances, and the outcomes of interest

are log transformed AUC and Cmax. We begin by evaluating them separately. We note

that a benefit of adopting the likelihood paradigm is that separate analyses do not require

adjustment for multiplicity.

Examples of profile likelihood plots are shown in Figures 1-4. An accurate portrait of

the evidence can be shown by a profile likelihood plot along with 1/k likelihood intervals

and the predefined limit. The 1/k likelihood interval can be interpreted as follows: the

best-supported value of the parameter θ (MLE) is at least k times better supported than all

of the values outside the interval. The 1/k likelihood interval can be used as a measure of

strength of evidence for BE versus BIE. If the 1/8 likelihood interval lies completely within

the limit, the data fairly strongly support BE. If the 1/32 one lies within the limit, the data

represent strong evidence for BE.

We illustrate how to evaluate ABE and PBE within the likelihood paradigm using data

from Chow and Liu (2000) and several modified versions of their data where variances

and period effects are modified.
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4.1 Evidence for equivalence of the ratio of means (ABE)

The left panel in Figure 1 shows the profile likelihood for the ratio of means where the

1/32 likelihood interval completely lies within the BE limit. Thus, the data provide strong

evidence that the two formulations are average bioequivalent. With the 90% and 95%

confidence intervals, two formulations are also to be concluded as BE. The 95% confi-

dence intervals in the figure are almost the same as the 1/8 likelihood intervals. There

is a straightforward reason for this agreement. Specifically, Royall (1997) showed that if

the measurements follow a normal distribution, the 1/8 and 1/32 likelihood intervals are

approximately the same as the 95% and 99% confidence intervals, respectively.

To examine the effect of the variance in evaluating ABE, we artificially modified the

data. First, the empirical standard deviation of the test formulation was increased by 70%

compared to the reference. In the middle panel of Figure 1, the 1/8 likelihood interval

does not completely fall within the limit, but the 1/5 one does. Thus, there is only weak

evidence in favor of BE over BIE, even though the TOST (equivalently the 90% confidence

interval) concludes BE.

Secondly, we modified the data so that both the standard deviations of the test and

reference formulations are inflated by 50%. The profile likelihood is shown in the right

panel of Figure 1. Notice that the interval is wide enough so that neither the 1/k likeli-

hood intervals nor the 90% confidence interval lie within the regulatory limits; the profile

likelihood plot suggests that the data does not provide enough evidence to support either

BE or BIE. In contrast, TOST concludes BIE. The width of the profile likelihoods increases

as the variability increases. The figures clearly show that the variability is large relative

to the scale of interest. These results suggest a comparison of the variances of the two

formulations.
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4.2 Evidence for equivalence of the ratio of variances (PBE)

The profile likelihoods for the ratio of variances are shown in Figure 2 for the original (left

panel) and two modified data sets (middle and right panels), respectively. The left panel

of Figure 2 shows that the data support the equivalence of the variances. Notice that the

profile likelihood for the ratio of variances is much wider than that for the ratio of the

means. Therefore, more subjects are required to estimate the ratio of variances precisely.

On the other hand, the middle panel of Figure 2 suggests that there is clear evidence

that the variance of the test formulation is larger than that of the reference. Thus, the two

formulations do not appear to be population bioequivalent, even though they do appear

to be average bioequivalent.

The right panel of Figure 2 appears to support the equivalence of the variances, though

the 1/8 interval is wide, ranging from 0.7−1.7. This suggests, along with Figure 1, that we

do not have enough information to clearly see whether the data supports bioequivalence

or not. It is worth noting that after a second stage of data collection, it is straightforward to

combine the information from the two stages within the likelihood paradigm. Specifically,

there is no need for adjustment P -value as is required for frequentist sequential trials.

Instead, one simply combines the two data sets and plots the profile likelihood for the

parameter of interest.

4.3 Evaluating AUC and Cmax jointly

In the current practice of BE trials in the USA, bioequivalence is determined using both

AUC and Cmax. Typically, these metrics are evaluated separately. Usually AUC and Cmax

are highly correlated, as they are calculated based on the drug concentrations measured

from the same subject. Thus, it is natural to treat them as a vector of four measurements

within each subject: AUC and Cmax for the test and reference formulations, respectively.

Let
(

Y
(A)
Ri , Y

(A)
T i , Y

(C)
Ri , Y

(C)
T i

)

be the log-transformed AUC and Cmax for the reference and

the test on subject i. Assume that the distribution of these measures follows a multivariate
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normal (MVN) as:
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where Ω is a covariance matrix. We reparametrize such that µ
(A)
T = µ

(A)
R + θ(A) and µ

(C)
T =

µ
(C)
R + θ(C). Hence, θ(A) and θ(C) are the mean differences between two formulations for

each outcome. Using the joint likelihood, we can find the profile likelihood with respect to

θ(A) and θ(C) one at a time. That is, we treat one of them as the parameter of interest and

consider the other as nuisance parameter along with other nuisance parameters.

Figure 3 shows the profile likelihood for θ(A) and θ(C) using a data set obtained from a

recent BE trial with 48 subjects performed at a pharmaceutical company. The data were

perturbed prior to analysis, to maintain confidentiality. The profile likelihood for θ(A)

represents strong evidence supporting BE for AUC, whereas the profile likelihood for θ(C)

does not support BE for Cmax. The Cmax of the test formulation is smaller than Cmax of

the reference. Thus, the test formulation appears to be absorbed more slowly than the

reference even though overall amounts of drug absorbed are similar.

4.4 Evaluating potential confounding effects

The profile likelihoods with and without adjusting for covariates (sequence and period)

are shown in Figure 4 using the data from Chow and Liu (2000) (left panel) and another

modified version of their data (right panel), where the values for the second period were

about 10% increased from the mean; hence in this modified data set, a period effect is

present.

The 1/5, 1/8 and 1/32 likelihood intervals along with 90% and 95% confidence intervals

are shown for comparison. When there are no period and sequence effects, the profile

likelihoods with and without adjustment are almost same (left panel). In contrast, the
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likelihood without adjustment is much flatter than the one with adjustment (right panel)

when a period effect really exists. This illustrates the point that when period or sequence

effects exist, the unadjusted profile likelihood will represent weaker evidence than the

adjusted one, because the variation explained by the period effects gets absorbed into the

error. As confounding effects, such as carry-over effects, which are indistinguishable from

treatment-period interaction or sequence effects, could be present in cross-over designs,

it is advisable to always look at the profile likelihoods, with and without adjustment. A

large discrepancy between the two suggests potential carry-over effects, treatment-period

interaction or sequence effects.

4.5 Probabilities of weak and misleading evidence

We examine the probabilities of weak and misleading evidence produced by the profile

likelihoods in the BE setting. As there is no closed form solution for calculating the proba-

bilities of weak and misleading evidence for the interval hypotheses (1) used in evaluating

BE, a simulation study using Model (3) was performed assuming that the two formulations

are marginally bioinequivalent with common error variances. We focused on the degree of

similarity to the true likelihood under parameter values that are reasonable for BE studies.

As an analogue of the probability of misleading evidence, we estimated the probability of

incorrectly presenting the data as BE using likelihood intervals (given k) obtained from

the true, profile and estimated likelihoods.

The probability of incorrectly presenting the data as BE (“misleading probability”) is

calculated as the number of times the entire 1/k likelihood interval is contained within the

regulatory limits divided by the number of simulations. Figure 6 shows the estimated prob-

abilities of misleading evidence as functions of k and the sample size n for ρ = (0.5, 0.7)

and σ = (0.1, 0.2, 0.3). The type I error probability for TOST and a reference line 0.05

are shown for comparison. Notice that the probabilities of misleading evidence from the

true and profile likelihoods are almost the same, regardless of the sample size, parame-

ter values and choice of k. This small difference diminishes as the sample size increases.
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In contrast, the probability of misleading evidence from the estimated likelihood is much

larger than those from the true and profile likelihoods.

Interestingly, the probabilities of misleading evidence from the true and profile like-

lihoods always achieve the maximum possible values for a given k, for a wide range of

sample sizes and model parameters. It is interesting to contrast this observation from

what is known for point hypotheses, whose probability of misleading evidence goes to

zero with the sample size. A reason for this phenomenon can be explained as follows. For

point hypotheses, where ∆ (the difference in the two hypothesized means) is fixed, the

maximum probability of misleading evidence is reached at n = (2 log k)(σ/∆)2 (see pages

90-93 in Royall (1997)). In contrast, for interval hypotheses in this BE setting, ∆ is vary-

ing and hence there are many sample sizes where the maximum probability of misleading

evidence can be reached. Thus, the probability of misleading evidence persists for a wide

range of sample sizes. Notice, however, that the probabilities of misleading evidence for

the profile likelihood does not go beyond that maximum value, suggesting that the uni-

versal bound is applicable. Also of note is that it does not appear to be applicable to the

estimated likelihood.

Another simulation was performed using the same model, but the two formulations

were assumed to be bioequivalent. We examine the probability of failure to present evi-

dence for BE, an analogue of the probability of weak evidence. This is akin to the Type

II error probability. However, we present this property in terms of the probability of pre-

senting evidence for BE when the two formulations are truly bioequivalent (the analogue

of power), as shown in Figure 7. The profile likelihood represents the data as BE less

often than it should, but eventually becomes close to that of the true likelihood as either

σ decreases or the sample size increases. Because the discrepancy between the pseudo-

likelihoods and the true likelihood tend to zero (with probability one) as n → ∞, eventu-

ally the probabilities of presenting evidence for BE based on all three likelihoods also tend

to one as the sample size increases (regardless of k).
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5 Summary and Discussion

In this manuscript we explored an alternative method for presenting and interpreting bioe-

quivalence data as evidence, using likelihood methods. Motivated by simulations studies

and prior theoretical development, we recommend the use of the profile likelihood as the

relevant measure of evidence in the presence of nuisance parameters. In particular, the

simulations results suggest that the profile likelihood behaves similarly to the true like-

lihood, as long as the sample size is moderate. For example, with 14 subjects in each

treatment sequence and σ = 0.2 (a moderate error variance in BE trials) the probability

of presenting fairly strong evidence (k = 8) using the profile likelihood is more than 0.95,

which is similar to that of the true likelihood. In addition, regardless of the parameter val-

ues and the sample size, the probability of misleading evidence is very small, about 0.02,

which is very similar to that of the true likelihood, suggesting that the universal bound for

the probability of misleading evidence is applicable.

We also presented a straightforward extension of likelihood analysis to evaluate popu-

lation bioequivalence and similarly considered ABE via likelihood analysis jointly for AUC

and Cmax. Our likelihood paradigm also can be extended easily to evaluate IBE if the

three components (intrasubject variability, subject-by-formulation interaction, and aver-

age) would be sufficient. However, it requires higher order cross-over design which is un-

favorable design from both statistical and study subjects’ viewpoints. Finding a good metric

for evaluating IBE without relying on higher order cross-over design would be promising

research area.

The standard method in the current practice of BE trials, TOST, is based on the Neyman-

Pearson testing theory. Likelihood theory and Neyman-Pearson testing theory have much

in common, in that they both explicitly compare two hypotheses and depend on likelihood

ratios. The simulation studies suggested that the overall properties of TOST are similar

to those of the profile likelihood with k = 4.5, which only represents weak evidence.

However, with TOST, it is difficult to see how much the data support BE or BIE, because
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of the emphasis on decision making rather than evidential interpretation. On the other

hand, the likelihood plot gives the most direct and complete representation of the data as

evidence.

Finally, we would also note that the decision for declaring BE or BIE is ultimately in the

hands of the regulatory authorities and clinical pharmacologists. After examining what the

data say, the regulatory authorities can decide BE or BIE depending on the characteristics

of drug. For example, if the therapeutic index of a drug is narrow, they might want to use

a more strict criteria. In contrast, if the therapeutic index of a drug is wide and the vari-

ability of a drug is large, then a less stringent criteria might be applied, or additional data

required. In this manuscript, we clarified the distinction between evidence and decision

making in the BE setting and hence proposed a new paradigm to represent bioequivalence

data as evidence.
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A Profile Likelihoods

A.1 Profile likelihood for the ratio of means in evaluating ABE

When there is no sequence or period effects, the measures for the test and the reference

formulations from a 2 × 2 cross-over BE trial can be assumed to be bivariate log-normal.

We assume that the distribution of log transformed test and reference measures on the ith

subject, YRi = log Y ∗

Ri and YT i = log Y ∗

T i, follows a bivariate normal as:





YRi

YT i



 ∼ BVN





( µR

µT

)

,
( σ2

R ρσRσT

σ2
T

)



 . (3)

Let yRi and yT i be log transformed observations for the reference and the test formulations

on the ith subject, i = 1, . . . , n, and yR and yT be the associated vectors. The likelihood
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function for µR, µT , σR, σT , ρ can be written as:.

L(µR, µT , σR, σT , ρ | yR, yT ) (4)

=

n
∏

i=1

1

2πσRσT

√

1 − ρ2

× exp
{

−
1

2(1 − ρ2)

[(yRi − µR)2

σ2
R

− 2ρ
(yRi − µR)(yT i − µT )

σRσT
+

(yT i − µT )2

σ2
T

]}

,

where σR > 0, σT > 0 and −1 < ρ < 1.

After exponentiating, the difference of means in the log transformed scale is the ratio

of the means in the original scale. Note that this equivalence relationship is only true

in the instance of equal variances for the two formulations. More precisely, the ratio of

medians in the original scale is equivalent to the exponentiated difference of medians in

the log transformed scale. Regardless, we focus entirely on the difference of means in

the log scale even though we allow non-constant variance across the two arms. This is

because we are interested in whether or not the central tendency of the two formulations

are sufficiently close.

We reparametrize θ = µT − µR and γ = µR, and reexpress the likelihood function for

θ, γ, σR, σT , ρ as:

L(θ, γ, σR, σT , ρ | yR, yT ) (5)

∝
( 1

σ2
Rσ2

T (1 − ρ2)

)n/2

exp
{

−
1

2(1 − ρ2)

×
[

∑n
i=1(yRi − γ)2

σ2
R

− 2ρ

∑n
i=1(yRi − γ)(yT i − θ − γ)

σRσT
+

∑n
i=1(yT i − θ − γ)2

σ2
T

]

}

.

The profile likelihood of θ and γ for the likelihood function (5) can be written as:

LP (θ, γ | yR, yT) = max
σR,σT ,ρ

L(θ, γ, σR, σT , ρ | yR, yT ) = L(θ, γ, σ̃R, σ̃T , ρ̃ | yR, yT ) (6)

∝
{

n
∑

i=1

(yRi − γ)2

n
∑

i=1

(yT i − θ − γ)2 −
[

n
∑

i=1

(yRi − γ)(yT i − θ − γ)
]2}−n/2

,
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where

σ̃2
R =

∑n
i=1(yRi − γ)2

n
,

σ̃2
T =

∑n
i=1(yT i − θ − γ)2

n
and

ρ̃ =

∑n
i=1(yRi − γ)(yT i − θ − γ)

√
∑n

i=1(yRi − γ)2
∑n

i=1(yT i − θ − γ)2
.

Then the profile likelihood of θ is:

LP (θ) = LP (θ | yR, yT ) = max
γ

LP (θ, γ | yR, yT ) = LP (θ, γ̃ | yR, yT )

∝
{

n
∑

i=1

(yRi − γ̃)2
n
∑

i=1

(yT i − θ − γ̃)2 −
[

n
∑

i=1

(yRi − γ̃)(yT i − θ − γ̃)
]2}−n/2

,

where

γ̃ =

P

yRi

[

P

(yT i)
2−

P

(yRiyTi)

]

+
P

yTi

[

P

(yRi)
2−

P

(yRiyTi)

]

−θ
P

yRi

(

P

yTi−
P

yRi

)

−nθ

[

P

(yRi)
2−

P

(yRiyTi)

]

n
P

(yT i−yRi)2−
(

P

yTi−
P

yRi

)

2 .

A.2 Profile likelihood for the ratio of variances in evaluating PBE

The parameter of interest is the ratio of variances σT /σR while the means µR and µT and

ρ are the nuisance parameters. Using the reparameterization θ = σT /σR and γ = σR, the

likelihood function (4) for µR, µT , σR, σT , ρ can be reexpressed as:

L(µR, µT , θ, γ, ρ | yR, yT ) (7)

=
n
∏

i=1

1

2πγ2θ
√

1 − ρ2
exp
{

−
1

2(1 − ρ2)

×
[(yRi − µR)2

γ2
− 2ρ

(yRi − µR)(yT i − µT )

γ2θ
+

(yT i − µT )2

γ2θ2

]

}

,

where −1 < ρ < 1.
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The profile likelihood of θ for the likelihood function (7) can be written as:

LP (θ) = LP (θ | yR, yT ) = max
µR,µT ,γ,ρ

L(µR, µT , θ, γ, ρ | yR, yT ) (8)

= L(µ̃R, µ̃T , θ, γ̃, ρ̃ | yR, yT ) ∝

(

1

γ̃2θ
√

1 − ρ̃2

)n

exp
{

−
1

2(1 − ρ̃2)

×
[

∑n
i=1(yRi − µ̃R)2

γ̃2
− 2ρ̃

∑n
i=1(yRi − µ̃R)(yT i − µ̃T )

γ̃2θ
+

∑n
i=1(yT i − µ̃T )2

γ̃2θ2

]

}

,

where

µ̃R =

∑n
i=1 yRi

n
= ȳR,

µ̃T =

∑n
i=1 yT i

n
= ȳT ,

ρ̃ =

∑n
i=1(yRi − ȳR)(yT i − ȳT )

√
∑n

i=1(yRi − ȳR)2
∑n

i=1(yT i − ȳT )2
and

γ̃2 =
1

2n(1 − ρ̃2)

[

n
∑

i=1

(yRi − µ̃R)2 − 2ρ̃

∑n
i=1(yRi − µ̃R)(yT i − µ̃T )

θ
+

∑n
i=1(yT i − µ̃T )2

θ2

]

.

Notice that only γ̃ depends on the parameter of interest.
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Paper Operational Method

Metzler (1974); Kirkwood (1981) 100(1 − α)% confidence interval

FDA guidance (2001) 100(1 − 2α)% confidence interval

Westlake (1976) 100(1 − α)% symmetric confidence interval

Anderson and Hauck (1983) P -value (level α)

Locke (1984) 100(1 − α)% confidence interval

Schuirmann (1987) two one-sided tests (level α for each test)

Table 1: The comparison of operational methods and the nominal level of α among several

proposed BE tests.
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90% CI ( −0.258 , 0.222 )
95% CI ( −0.308 , 0.271 )

Figure 1: The profile likelihood, 1/8 (upper solid line) and 1/32 (lower solid line) like-

lihood intervals for the difference of means of log AUC using the data in Chow and Liu

(2000) (left panel), the modified version of Chow and Liu’s data (2000) where the stan-

dard deviation of the test drug is 1.7 times greater than the standard deviation of the

reference drug (middle panel), and the modified version of Chow and Liu’s data (2000)

where the standard deviations of the test drug and the reference drug are both inflated

by 50% (right panel). The horizontal dotted lines represent the 90% (upper) and 95%

(lower) confidence intervals estimated by a random effects model without covariates and

the vertical lines represent the regulatory lower (δL) and upper (δU ) limits.
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Figure 2: The profile likelihood, 1/8 (upper solid line) and 1/32 (lower solid line) like-

lihood intervals of the ratio of variances of the test drug and the reference drug using

the data in Chow and Liu (2000) (left panel), the modified version of Chow and Liu’s

data (2000) where the standard deviation of the test drug is 1.7 times greater than the

standard deviation of the reference drug (middle panel), and the modified version of

Chow and Liu’s data (2000) where the standard deviations of the test drug and the ref-

erence drug are both inflated by 50% (right panel). Notice that there are no regulatory

limits available for the ratio of variances.
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Figure 3: The profile likelihood, 1/4.5 (upper solid line), 1/8 (middle solid line) and

1/32 (lower solid line) likelihood intervals of θ(A) (left panel) and θ(C) (right panel). The

horizontal dotted lines represent the 90% (upper) and 95% (lower) confidence intervals

estimated by a random effects model without covariates and the vertical lines represent

the regulatory lower (δL) and upper (δU) limits. The joint likelihood for AUC and Cmax

are profiled one at a time.
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Figure 4: The profile likelihoods with and without covariates, 1/5 (upper solid line), 1/8

(middle solid line) and 1/32 (lower solid line) likelihood intervals for the difference of

means of log AUC using the data in Chow and Liu (2000) (left panel) and the modified

version of Chow and Liu’s data (2000) where the values for the second period are inflated

so that period effect exists (right panel). The horizontal dotted lines represent the 90%

(upper) and 95% (lower) confidence interval estimated by a random effects models with

and without covariates and the vertical lines represent the regulatory lower (δL) and upper

(δU) limits.
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Figure 5: The legend used for Figures 6 and 7.
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Figure 6: The probability of producing evidence for BE using the true, profile and estimated

likelihood intervals when the two formulations are marginally bioinequivalent (θ = θL) as

a function of k = 4, 5, 8, 16, 32 for ρ = 0.5 (left panel), ρ = 0.7 (right panel), σ = 0.1 (top

panel), σ = 0.2 (middle panel) and σ = 0.3 (bottom panel). The type I error for TOST and

the line for (α = 0.05) is shown for comparison.
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Figure 7: The probability of correctly concluding BE using the true, profile and estimated

likelihood intervals when the two formulations are truly bioequivalent as a function of

k = 4, 5, 8, 16, 32 for ρ = 0.5 (left panel), ρ = 0.7 (right panel), σ = 0.2 (top panel) and

σ = 0.3 (bottom panel). The power for TOST is shown for comparison.
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