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A hidden Markov model for joint estimation of genotype and copy

number in high-throughput SNP chips

Robert B. Scharpf, Giovanni Parmigiani, Ingo Ruczinski

Abstract

Amplifications and deletions of chromosomal DNA, as well as copy-neutral loss of heterozygosity
have been associated with diseases processes. High-throughput single nucleotide polymorphism
(SNP) arrays are useful for making genome-wide estimates of copy number and genotype calls.
Because neighboring SNPs in high throughput SNP arrays are likely to have dependent copy number
and genotype due to the underlying haplotype structure and linkage disequilibrium, hidden Markov
models (HMM) may be useful for improving genotype calls and copy number estimates that do not
incorporate information from nearby SNPs. We improve previous approaches that utilize a HMM
framework for inference in high throughput SNP arrays by integrating copy number, genotype calls,
and the corresponding confidence scores when available. Using simulated data, we demonstrate how
confidence scores control smoothing in a probabilistic framework. Software for fitting HMMs to SNP
array data is available in the R package ICE.

1 Introduction

Affymetrix SNP chips were originally described as a high-throughput assay for calling genotypes at
thousands of SNPs (Kennedy et al., 2003; Di et al., 2005). Several recent algorithmic improvements to
genotyping have been described (Rabbee and Speed, 2006; Affymetrix, 2006; Hua et al., 2007; Carvalho
et al., 2006). Recently, SNP chips have been used for simultaneous estimates of copy number variants
(CN) and genotype calls (GT) (Zhao et al., 2004). Because both CN and loss of heterozygosity (LOH)
may be associated with disease (Dutt and Beroukhim, 2007; Cavenee et al., 1983; Shaw-Smith et al.,
2004; Aggarwal et al., 2005; Aguirre et al., 2004), SNP arrays provide a convenient tool for exploring
large regions of the genome for chromosomal anomalies. This paper builds on a modular approach for
the analysis of Affymetrix SNP chip data (Carvalho et al., 2006). In particular, we view the analysis
of SNP chip data as having the following four tiers: (i) appropriate adjustment and pre-processing
of probe-level data, (ii) estimation of SNP-level summmaries of probe-level data such as GT and/or
CN, (iii) statistical models that borrow strength from neighboring SNPs to infer regions of loss of
heterozygosity, amplification, and deletion from SNP-level summaries, and (iv) statistical models for
between sample variation to learn about abnormalities associated with disease processes. This paper
describes two contributions to level (iii) of this hierarchy: first we propose a HMM that incorporates
information from both genotypes and copy number and secondly we describe how confidence estimates
of SNP-level summaries can improve inference and control smoothing within a probabilistic framework.

We assume that tier (i) has been addressed by most statistical methods that provide SNP-level
summaries of probe-level data. A detailed description of the design of high-throughput Affymetrix SNP
chips is described here (Kennedy et al., 2003). We caution that, as with gene expression technologies,
pre-processing of probe-level data is an important consideration and several recent papers have described
fragment-length and sequence effects that may be introduced by the polymerase chain reaction (PCR)
used to amplify the DNA (Nannya et al., 2005; Carvalho et al., 2006). We assume that SNP-level
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summaries for each interrogated SNP have been adjusted for probe-specific biases to the extent possible.
Statistical models such as BRLMM and CRLMM that use Hapmap data for training have been shown
to provide better genotype calls when the centers of the bivariate scatterplots for the A and B allele
intensities are less well-defined. Genotype calls for most genotyping algorithms are concordant for over
99.9% of the measured SNPs in the Affymetrix 100k and 500k chips. Statistical methods that provide
an indication of the uncertainty of the genotype call, such as the single to noise ratio (SNR) and log
likelihood ratio (LLR) defined by CRLMM, can be useful for algorithms in tier (iii). Specifically, statistical
models that borrow strength from neighboring SNPs to infer loss or retention of heterozygosity should
incorporate the uncertainty of the genotype call, giving less weight to genotype calls that are measured
with high uncertainty and more weight to well-estimated genotypes. Figure 1 illustrates how estimates
of uncertainty can be helpful for genotype calls.
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Figure 1: Hapmap genotype calls (the gold standard) for a bad SNP (left) and a good SNP (right) for 269
samples measured on Affymetrix 100k SNP chips. Genotype calls are indicated by color: AA (green), AB (red),
and BB (black). Within any given sample, there is typically a mixture of separation in the genotype clusters. For
instance, the large circles with gray background in each panel are the genotype estimates from the same sample.
This figure motivates an approach that incorporates uncertainty estimates to control smoothing.

Methods developed for estimation of CN in tier (ii) using SNP chips are even more susceptible to
the probe-specific biases described above, as CN can vary markedly. Note also that methodologies for
copy number estimation developed for aCGH and ROMA platforms are relevant, particularly if SNP-
level summaries of CN are viewed as the data for higher-level models that smooth noisy estimates.
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Procedures for CN estimation described for aCGH and ROMA, including circular binary segmentation
(Olshen et al., 2004) and hidden Markov models (HMM) for the latent number of chromosomal copies
(typically an integer) (Fridlyand et al., 2004; Shah et al., 2006), least squares regression (Huang et al.,
2005), and others, are therefore applicable.

SNP chip data differ from array CGH data in two imporant ways: a) SNP chips also provide
imformation for the genotype and b) provide a more dense coverage, currently generating genotype
information and copy number estimates at locations in excess of 500,000 SNPs. The correlation structure
between those estimates has to be an essential part of any statistical modeling approach. The most
promising methods currently available are based on hidden Markov models. In particular, to infer LOH
regions and to estimate CN changes, the dChip software and methods are the most widely used in the
literature for the analysis of SNP chip data. The dChip methods are based on separate HMMs for
copy number ((Zhao et al., 2004)) and genotype analysis ((Lin et al., 2004; Beroukhim et al., 2006)).
Correlation to CN estimates are considered in (Beroukhim et al., 2006), but not explicitly modeled.
Other appoaches for CN estimation with SNP chips have been implemented in CNAG (Nannya et al.,
2005), CARAT (Huang et al., 2006), PLASQ (Laframboise et al., 2006), and CNRLMM (Wang et al.,
2006). Notably, (Laframboise et al., 2006) and (Wang et al., 2006) provide allele-specific estimates
of CN. To our knowledge, no statistical approach has been reported yet that allows for simultaneous
analysis of LOH and CN changes. In addition, algorithms in tier (iii) that integrate information from
surrounding SNPs as well as confidence estimates of CN can augment such approaches.

We develop an HMM for the paired sequence of CN and GT observations, placing simultaneous
inference on LOH and CN within the probabilistic framework of the HMM. Additionally, we illustrate
how integrating confidence scores of the SNP-level summaries in the HMM can further improve inference
for the underlying hidden states using simulated data. These ideas are implemented in the R package
ICE.

2 Results

SNP-level summaries were obtained using a combination of real and simulated data for 9200 SNPs
measured on chromosome 1 of an Affymetrix 100k SNP chip. Because the hidden states of the Markov
model are determined by whether ĜT (example 1), ĈN (example 2), or both (example 3) are available,
we organize the results accordingly. See Section 4.5 for a description of the examples.

The simulated ĜT in example 1 are plotted in the top panel of Figure 2. Features A - C are simulated
as described in Section 4.5. Features D and E represent changes in chromosomal copy number that can
not be detected without estimates of copy number. We fit two HMM models to the data as described
in Section 4. The predicted states from the vanilla and ICE HMMs are similar, but the vanilla HMM
smooths over the two heterozygous SNPs in A. ICE only smooths over the two heterozygous SNPs in
B where the uncertainty of the ĜT is greater.

Figure 3 (top) plots ĈN in example 2 with a simulated amplification (D) and deletions (B and C).
In panel 2 of Figure 3 we plot the predicted states from a vanilla HMM that does not use confidence
scores of the ĈN. Panel 3 plots the predicted states from ICE. The vanilla HMM smooths over the two
SNPs with ĈN near 2 in regions D and A, calling the entire region an amplification (ր) or deletion (ց),
respectively. By contrast, ICE transitions from ց to → and from ր to → only when the confidence scores
of the ĈN estimates are high. When the confidences scores for the ĈN are low, ICE uses the information
from neighboring SNPs and smooths over these regions providing predictions that are comparable to
vanilla. Additionally, ICE detects the microamplification (5 SNPs) and microdeletion (3 SNPs) in region
E that each had high confidence scores.

The data plotted in Figure 4 (top) was obtained by superimposing the ĜT in example 1 on the
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ĈN in example 2. Note that by considering both GT and CN simultaneously, both HMMs correctly
distinguish deletion (Del) from copy-neutral LOH. In addition, ICE detects small aberrations in E that
are well-estimated, and smooths noisy estimates by borrowing information from neighboring SNPs.
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Figure 2: Top: simulated ĜT for chromosome 1 with four Loss features. Region A contains two Loss features
separated by a short chromosomal segment in state Rentention (Ret) containing two heterozygous genotype calls.
Region B is a single Loss region with two false calls (two SNPs called heterozygous). A spans 200 SNPs, whereas
B and C both span 100 SNPs. We assigned a high probability of a correct classification for the heterozygous
calls in A and a lower probability of correct classification for the heterozygous calls in B. Panels 2 and 3 plot the
predicted underlying states obtained from the vanilla and ICE HMMs, respectively.
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Figure 3: Top: we used ĈN from the Affymetrix CNAT tool for chromosome 1 of a normal Hapmap sample. In
features D (200 SNPs), B (100 SNPs), and C (100 SNPs), we replace the CNAT estimates with simulated data
to mimic an amplification and two deletions, respectively. For three SNP pairs in the center of D, B and C, we

assigned a ĈN of ≈ 2. For regions D and B, the confidence score was high (low standard error) and for region C

the confidence score was low (high standard error). Standard errors for the remaining ĈN were simulated from a
Gamma distribution as described in Section 4. Rows 2 and 3 plot the predictions for the hidden states deletion
(ց), normal (→), and amplification (ր) for the vanilla and ICE HMMs. Rows 5 and 6 magnify the predictions
for D and B where these algorithms differ.
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Figure 4: We superimpose the ĈN in Figure 3 onto the ĜT in Figure 2. We fit HMMs to the joint observation

sequence of ĈN and ĜT without (vanilla) and with (ICE) confidence scores of the SNP-level summaries. Simulated
in this figure are the genotype calls, copy number, and confidence scores for the features in A-E. For the remaining
SNPs, we used a combination of real (CNAT estimates of CN) and simulated (genotype calls and confidence scores)
data. The predicted states are deletion (Del), normal (Norm), LOH, and amplification (Amp).
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3 Discussion

Our paper builds on a modular approach for analysing SNP chip data, extending the functionality of
statistical algorithms that pre-process probe-level data to produce SNP-level summaries of GT and
CN. As SNP-level summaries of GT and CN are often correlated, HMMs that use information from
neighboring SNPs have the potential to improve noisy estimates. Previous approaches using HMMs have
considered GT and CN separately, but not simultaneously in a single unifying statistical model. We
develop a HMM model for SNP chips that use the joint observation sequence of ĈN and GT as input.
Using simulated data, we demonstrate that a HMM model that uses both ĈN and ĜT can distinguish
copy-neutral LOH from deletion-induced LOH. Additionally, the joint HMM should improve the ability
to identify small deletions, where both LOH and reduced ĈN are present. Finally, we demonstrate how
pre-processing algorithms that provide confidence scores of SNP-level summaries can be integrated into
the emission probabilities of the HMM to control smoothing in a probabilistic framework. In particular,
confidence estimates may help identify very small, well-estimated features that may otherwise be missed.

Our results are a proof of principle that HMMs can (i) effectively incorporate multiple sources of
SNP-level summaries and (ii) that confidence estimates of SNP-level summaries may help identify small
regions of gain in copy number, deletion, or LOH. We used CRLMM estimates of confidence scores for
ĜT in our HMM, but confidence scores from other algorithms could easily be incorporated.

The tools we provide are helfpul for identifying chromosomal alterations, including deletions and long
stretches of homozygosity. We do not currently prescribe a method for ranking alterations detected by
the HMM. In part, this reflects our view that LOH and copy number variation are prevalent in many
phenotypically normal individuals. Identifying features that may be associated with a phenotype are
better handled by statistical models for between-sample variation in studies with phenotypically normal
and diseased populations. Such models reside in the next tier of our modular approach to the analysis
of SNP chip data and are an extension of the ideas presented here. Finally, while our analysis focuses
on methods for Affymetrix SNP chip data, these ideas are portable to other high throughput platforms
such as Illumina.

4 Methods

4.1 Hidden Markov Models

The hidden states are governed by the available data, which may depend on the pre-processing software.
The hidden states for copy number HMM are hemizygous or homozygous deletion (ց), normal (→), and
amplification (ր). For GT, our interest lies in whether a SNP is in a neighborhood where heterozygosity
is retained (G#) or not (#). Specifically, we define the state # as an unusually long sequence of
homozygous calls. The HMM for the joint GT and CN observation sequence has the following four
hidden states: Deletion (�), Normal ( G#), copy-neutral LOH (�), and Amplification ( G#). Again, we define

state �as an unsually long sequence of homozygous genotype calls with no evidence of decreased ĈN.
Note that whether the absence of heterozygosity in a region is induced by a deletion or a copy-neutral
mechanism is distinguished by the hidden states �and �, respectively. For each of the three examples
(see Section 4.5), we fit two HMMs: a vanilla HMM that uses only the SNP-summary estimates and
allows options for updating parameters by EM and a HMM that integrates confidence estimates (ICE )
of GT and/or CN.
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4.2 Genotype calls

The observation sequence for the genotype HMM is a string of homozygous (AA or BB) and het-
erozygous (AB) genotypes. The vanilla HMM for the hidden states Retention (G#) and Loss (#) (of
heterozygosity) require specification of the initial state probability distribution, the emission probabil-
ities, and the transition probability between the true states. Commonly employed in the literaure for
the latter is the “instability-selection” model for LOH analysis (Newton et al., 1998; Beroukhim et al.,
2006) that describes the dependencies between the underlying states of adjacent SNPs as a function of
distance. The model assumption is as follows. For any two adjacent SNPs, let θ be the probability that
the state of the first marker is not informative (denoted by Ic) for the state of the second marker. As
the distance between SNPs affects this probability, it is modeled as θ(d) = (1 − exp(−2d)), where d

is the physical distance (usually in 100Mb units) between the SNPs. We assume that with probability
1− θ(d), SNP(i) is informative (denoted by I) for SNP(i+1) and that no change in state occurs between
the adjacent SNPs. For example, this leads to

τ
#/#

(d) = P (#i+1|#i, d)

= P (#i+1, I|#i, d) + P (#i+1, I
c|#i, d)

= P (#i+1|I,#i, d) × P (I|#i, d) + P (#i+1|I
c, #i, d) × P (Ic|#i, d)

= 1 − θ(d) + P (#) × θ(d) (4.1)

as the probability that the state of SNP(i+1) is Loss, given that the state of SNP(i) with distance d was
Loss. It follows that

τ
G#/#

(d) = P (G#i+1|#i, d) = 1 − P (#i+1|#i, d) = θ(d) × P (G#). (4.2)

P (G#) and P (#) refer to the initial probabilities for Retention and Loss, respectively. These initial
probabilities can be set as fixed constants using knowledge from previous experiments, or alternatively,
learned via the EM algorithm (Dempster et al., 1977). Emission probabilities for states # and G# are
estimated as

β
#

(ĜT) ∼ Binomial(p = 0.99) and β
G#

(ĜT) ∼ Binomial(p = 0.7), where

p is the probability of a homozygous genotype call. Efficient computation of the probability of the
observation sequence given the model is computed using the forward algorithm as described in (Rabiner,
1989). The most probable state sequence given the model is calculated via the Viterbi algorithm (Viterbi,
1967; Rabiner, 1989).

Integrating confidence estimates When confidence estimates are available, we observe a pair of
observations: the genotype call ĜT and the uncertainty measure (i.e. score) ScGT

. The joint distribution

of ĜT and ScGT
depends on the underlying state. For example, if the state for a particular SNP is Loss,

the emission probability is

β
#

{
ĜT, ScGT

}
= f

{
ĜT |#

}
× f

{
ScGT

| ĜT, #
}

. (4.3)

Note that the first of the two terms on the right hand side of equation (4.3) is simply the emission
probability when estimates of uncertainty are not available. The second term can be understood as a
weight for the former term that depends on the confidence with which the call is made. The second
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term can be approximated using a density estimate of the ScGT
where the gold standard is available. From

the 269 HapMap samples, we know the distributions of the uncertainty measures for all four possible
combinations of called (HOM or HET) and true (HOM or HET) genotypes measured on the Affymetrix
100k SNP chips. We use kernel based density estimates to obtain

f
{

S dHOM
| ĤOM,HOM

}
, f

{
S dHOM

| ĤOM,HET
}

, f
{

SdHET
| ĤET,HOM

}
, f

{
SdHET

| ĤET,HET
}

.(4.4)

The first term in (4.4), for example, denotes the density of the scores when the genotype is correctly

called homozyous, i.e. the called genotype is homozygous (ĤOM), and the true genotype is homozygous
(HOM). If the underlying state is Loss, then the true genotype is always HOM and we can use kernal-
based estimates of the above densities to estimate the emission probabilities, assuming only that

f
{

S dHOM
| ĤOM,#

}
≈ f

{
S dHOM

| ĤOM,HOM
}

and f
{

SdHET
| ĤET,#

}
≈ f

{
SdHET

| ĤET,HOM
}

.(4.5)

If the underlying state is Retention (G#), then the true genotype can be HET or HOM. We therefore
estimate the emission probabilities for state G# as

βG#

{
ĜT,ScGT

}

= f
{

ĜT | G#

}
f

{
ScGT

| ĜT,G#
}

= f
{

ĜT | G#

} (
f

{
ScGT

,HOM | ĜT,G#
}

+ f
{

ScGT
,HET | ĜT,G#

})

= f
{

ĜT | G#

} (
f

{
ScGT

| HOM, ĜT,G#
}

f
{

HOM | ĜT,G#
}

+ f
{

ScGT
| HET, ĜT,G#

}
f

{
HET | ĜT,G#

})

= f
{

ĜT | G#

} (
f

{
ScGT

| HOM, ĜT
}

f
{

HOM | ĜT,G#
}

+ f
{

ScGT
| HET, ĜT

}
f

{
HET | ĜT,G#

})
. (4.6)

The unknown terms in Equation 4.6, f
{

HOM | ĜT, G#
}

and f
{

HET | ĜT, G#
}

, are also estimated

from the HapMap samples.

4.3 Copy number.

The hidden states for autosomal CN are hemi- or homozygous deletion (ց), two copies (→), and more
than two copies (ր). A typical, and from practical experience, a reasonable model assumption when
only copy number is considered (applied to aCGH and SNP chip data) is that the logarithm of the
copy number estimate, after normalization, is roughly normally distributed around the true log copy
number (see for example (Zhao et al., 2004)). However, it is assumed in general that the variability is
constant across SNPs, which is not necessarily the case. If the variance is assumed to be constant, this
parameter can be learned via the EM algorithm (Dempster et al., 1977), or estimated for example in a
robust manner using quantiles from the observed data. In the examples presented here, we obtained a
robust estimate for the standard deviation of the ĈN by averaging the 16th and 84th percentiles of the
log2 transformed CN. For state S, the mean µ

S
and variance σ2

S
of the Gaussians used to estimate the

emission probabilities can be fixed at starting values or updated by EM. Here, we assumed a constant
σ2 and estimated the emission probabilities for state ց, for instance, as

β
ց

(ĈN) ≡ f(ĈN|ց)

= N
(
log2(ĈN)|µ

S
= 0, σ2

)
. (4.7)

A distance-weighted transition probability for the copy number HMM is as described above for GT.
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Integrating confidence estimates Standard errors for the ĈN, ScCN
, were simulated from a shifted

Gamma: Γ(2, 2) + 0.4. The emission probabilities for the HMM retains the same location parameters

for the Gaussian, but with SNP-specific standard errors for the ĈN. For instance, in the normal state
the emission probability at a particular SNP (omitting subscripts for SNPs) is

β→

{
ĈN, ScCN

}
∼ N

(
1, (σ × ScCN

)2
)
. (4.8)

The scalar σ can be estimated from the sample at hand, or set equal to one if ScCN
measures the actual

variability of the copy number estimate around the true copy number.

4.4 Copy number and genotype

For the joint analysis of CN and GT, we again extend the transition probabilities in Equations 4.1 and
4.2 to the hidden states G#, G#, �, and �.

For the emission probabilities, we assume conditional independence between the copy number esti-
mates and the genotype calls:

f(ĈN, ĜT|S) = f(ĈN|S) × f(ĜT|S).

This equation can be further simplified, as the copy number distribution only depends on the true copy
number, and the genotype distribution only depends on the true underlying state being Retention or
Loss. For example,

f
{

ĈN, ĜT | �

}
= f

{
ĈN | �

}
× f

{
ĜT | �

}
= f

{
ĈN | ց

}
× f

{
ĜT | #

}
. (4.9)

The terms in Equation 4.9 can be estimated as described above for GT and CN. Emission probabilities
for states Deletion �, Amplification G#, and LOH � can be obtained similarly.

4.5 Examples

The 100k Affymetrix SNP chip data for the samples used in this analysis are publicly available
(www.affymetrix.com). The three datasets discussed in Section 2 were generated as follows.

Example 1 We simulated 9200 genotypes (comparable to the number of SNPs in the 100k SNP chip)
from a binomial distribution with probability 0.7 of a homozygous genotype. For a region spanning 200
SNPs and 2 regions each spanning 100 SNPs, we inserted homozygous calls. We refer to these regions
as A, B, and C. We replaced two SNPs in the center of A and B with heterozygous calls. In truth
region A is comprised of two # features separated by a chromosomal segment in state G#. By contrast,
region B is a single LOH region with 2 falsely called heterozygotes. To add confidence scores to the
simulated GC we took random draws from the empirical distributions of the probability that the ĜT was
correct given the true genotype obtained from 269 Hapmap samples. In particular, confidence scores for
heterozygous calls were sampled from the distribution of probabilities when HET was the correct call,
and confidence scores for homozygous calls were sampled from the distribution of probabilities when
HOM was the correct call. The false calls in B were assigned low confidence scores, whereas the true
HET calls in A are assigned a high confidence score.

11

Hosted by The Berkeley Electronic Press



Example 2 The Affymetrix CNAT tool was used to obtain ĈN for chromosome 1 of a sample in the
CEPH trios dataset. Features B, C, and D in Figure 3 were simulated as described in Section 4. For
D, two amplified segments are separated by a chromosomal segment with ĈN ≈ 2 that contains two
SNPs. For B, two deletions are separated by a chromosomal segment with ĈN ≈ 2 that contains two
SNPs. The two SNPs in B and D with ĈN ≈ 2 both have high confidence scores (low standard errros).
A microdeletion of 3 SNPs and a microamplification of 5 SNPs were simulated in the distal q-arm. The
ĈN for the microdeletions and amplification were assigned high confidence scores. Confidence scores
for the remaining SNPs were simulated from a Gamma distribution as described above.

Example 3 For example 3, we superimpose the ĜT in Example 1 onto the ĈN in Example 2.
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