
UW Biostatistics Working Paper Series

10-19-2006

Statistical Analysis of Air Pollution Panel Studies:
An Illustration
Holly Janes
Johns Hopkins University, hjanes@jhsph.edu

Lianne Sheppard
University of Washington, sheppard@u.washington.edu

Kristen Shepherd
University of Washington, shepherdk@gmail.com

This working paper is hosted by The Berkeley Electronic Press (bepress) and may not be commercially reproduced without the permission of the
copyright holder.
Copyright © 2011 by the authors

Suggested Citation
Janes, Holly; Sheppard, Lianne; and Shepherd, Kristen, "Statistical Analysis of Air Pollution Panel Studies: An Illustration" (October
2006). UW Biostatistics Working Paper Series. Working Paper 300.
http://biostats.bepress.com/uwbiostat/paper300

http://biostats.bepress.com/uwbiostat


 3

 
1.  Introduction 

The panel study design is a popular tool for studying the short-term effects of air pollution on 

human health.  By observing individuals repeatedly over time, the design enables assessment of 

the health effects of within-subject changes in exposure over time.  Standard statistical methods 

for analyzing longitudinal data can be applied.  However, the literature reveals that the 

longitudinal models and statistical issues pertaining to the analysis of longitudinal data are not 

well understood by many practitioners.  In this paper, we illustrate longitudinal data methods 

using a recent air pollution panel study, and clarify issues that are sources of confusion.  In 

Section 2, we describe the Seattle, Washington panel study, which is used for illustration.  This 

data is used in Section 3 to illustrate the different approaches to the analysis of longitudinal data.  

We contrast the approaches with respect to parameter interpretation, accounting for correlation, 

and dealing with missing data.  In Section 4, we demonstrate various techniques for controlling 

for confounding, and advocate partitioning the exposure effect into between- and within-subject 

components.  In Section 5, we illustrate methods for exploring and summarizing panel study 

data.  Notes on software are included in the appendix. 

 

2.  The Seattle Panel Study 

The Seattle panel study was conducted between 1999 and 2002, and was designed to assess air 

pollution exposure and to evaluate the health effects of particulate matter (PM) and related 

pollutants among susceptible individuals (Koenig et al. 2003; Liu et al. 2003; Mar, Jansen, 

Shepherd, Lumley, Larson, and Koenig 2005; Allen et al. 2005).  We restrict attention to the data 

collected on 19 children with asthma, aged 6-13 years.  The children were recruited from a local 

allergy and asthma clinic, had physician-diagnosed asthma, and were taking asthma medications.  
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A full description of this dataset is published elsewhere (Koenig et al. 2003).  The small study 

size means that assessing data structure and fitting complex models is difficult. 

 

Each child participated in at least one 10-day monitoring session, with some sessions occurring 

in winter 2000-2001 and some in spring 2001.   During the session, the children filled out daily 

questionnaires pertaining to asthma symptoms and daily activities.  Exhaled nitric oxide (eNO), a 

measure of airway inflammation that is commonly elevated in asthmatics, was collected daily in 

the homes of the children, using a NO-inert and impermeable Mylar balloon.   Measurements 

were taken in the afternoon or early evening, and children were asked to forego food intake for 

one hour before the measurement.  The health outcomes we consider are eNO and what is called 

“overall well-being”, which is a binary variable based on whether the child reported feeling 

“better than average” on a given day.  For simplicity, we refer to this adverse health event as 

“feeling worse”.    PM2.5, measured inside the subjects’ homes using single-stage inertial Harvard 

Impactors, serves as our exposure of interest.  Indoor PM concentrations are thought to more 

closely represent personal exposures than do central-site monitoring data.   The data also include 

daily measures of relative humidity and temperature, measured at Beacon Hill, a centrally 

located site operated by the Puget Sound Clean Air Agency.   

 

The Seattle data are summarized in Table 1.  Time-varying variables are summarized both across 

subjects and sessions, and within subject-sessions.  (See Section 4.1 for the motivation for such 

partitioning.)  We find that, for most variables, the variability within-subject-session is almost as 

large as the total variability.  The total and within subject-session proportions of times subjects 
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reported feeling worse are also reported.  Observe that for many subjects, there is little within-

subject-session variability in this outcome.   

 

3.  Longitudinal Modeling 

3.1   Outcome Variables 

Longitudinal data models can be used with binary, count, and continuous outcomes.  It is 

important that the outcomes vary over time within individuals, to allow for estimation of within-

subject exposure effects. 

 

3.2   Model specification and parameter interpretation 

We consider three fundamentally different types of longitudinal models: marginal, conditional, 

and transition models.  The Seattle panel study is used to illustrate each approach.  For didactic 

purposes, we follow a somewhat non-traditional ordering: the analyses are presented in this 

section, and the data descriptives are saved for Section 5.     

 

Denote the binary outcome, overall well-being, for subject i at time t by itY , and let itX  represent 

indoor PM2.5 at time t.  A marginal model specifies the form of ( 1| )it itP Y X= , the probability of 

feeling worse as a function of the indoor PM2.5 level.  For example, 

0logit ( 1| ) M
it it itP Y X Xβ β= = + .                      (1) 

This is the model for the mean of Y; a model for the correlation among outcomes over time is 

specified separately, and will be discussed in Section 3.3.1.  The parameters in (1) are estimated 

using generalized estimating equations (GEE) (Liang and Zeger 1986).  The marginal 
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parameter, Mβ , represents the difference in the log-odds of feeling worse between groups of 

children with a unit difference in indoor PM2.5.   

 

In contrast, the conditional model specifies a form for ( 1| , )it itP Y X i= , the probability of feeling 

worse for subject i (Diggle, Heagerty, Liang, and Zeger 2002).  We use a random intercept 

model,   

0logit ( 1| , ) C
it it i itP Y X i b Xβ β= = + + ,                                               (2)                             

and assume that the random intercept 2~ (0, )ib N ν .  A more complex conditional model would 

also allow the slope to be random.  The parameters in (2) are estimated using maximum 

likelihood, since the distribution for the random effects induces a form for the likelihood of the 

data.  The conditional parameter, Cβ , represents a child’s expected change in the log-odds of 

feeling worse due to a unit increase in indoor PM2.5.  This is the within-subject effect of changes 

in indoor PM2.5.  Hence, the conditional model facilitates making inferences about individuals, 

rather than groups of individuals.  The random intercept ib is the ith child’s baseline level of 

overall well-being, and so 2ν  describes the heterogeneity in baseline overall well-being across 

children.     

 

A transition model specifies a form for 1 1( 1| , ...., )it it it iP Y X Y Y−= , the probability of feeling worse 

as a function of past overall well-being (Diggle, Heagerty, Liang, and Zeger 2002).  We use a 

transition model that conditions on the previous day’s overall well-being, though other previous 

outcomes could also be included.  We write 

 1 0 1logit ( 1| , ) T
it it it it itP Y X Y X Yβ β γ− −= = + + .                             (3)  
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The parameters in (3) are estimated using GEE (likelihood methods can also sometimes be used 

for estimation (Diggle, Heagerty, Liang, and Zeger 2002)).  The transition parameter, Tβ , can be 

interpreted as the difference in the log-odds of feeling worse between groups of children which 

have one unit difference in indoor PM2.5 today, but which had the same overall well-being 

yesterday.  For this reason, a transition model for a binary outcome can be thought of as a model 

for incidence, while the marginal model describes the prevalence.  The parameterγ  represents 

the transition effect, or the effect of yesterday’s overall well-being on today’s overall well-being, 

holding today’s indoor PM2.5 level constant.  In order for a transition model to be well defined, 

observations need to be equally spaced.   

 

Models (1), (2), and (3) were fit to the Seattle data (see Table 2).  In this data, the relationship 

between X and logit( ( ))E Y  is not linear, but piecewise linear (see Section 5).  Hence, we model 

exposure, indoor PM2.5, using a linear spline with one knot at the median (Greenland 1995).  In 

general, it is important that the functional form of the model be explored; a linear model may not 

be adequate.  We also include age, BMI, relative humidity, and temperature as covariates in all 

models, in order to increase precision.   

 

We estimate different PM effects using the three types of models, especially above the PM 

median.  In all three models, we see little evidence of a PM effect below the median.  Above the 

median, the conditional PM effect is much larger than the marginal or transitional effects.  The 

conditional model implies that a 10 µg/m3 increase in indoor PM2.5 above the median increases 

the odds of feeling worse by 496% for a given child (95% CI: 71% to 1973%).  According to the 

marginal model, a 10 µg/m3 difference in indoor PM2.5 above the median is associated with 
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142% greater odds of feeling worse (95% CI: 33% less to 780% greater).  Based on the transition 

model, there is an associated 153% higher odds of feeling worse in a population with 10 µg/m3 

higher indoor PM2.5 today (above the median), but the same overall well-being yesterday (95% 

CI: 7% to 495%).  The different results are a consequence of the fact that the PM parameters 

represent different quantities.  The parameter of interest should be chosen based on the scientific 

question.    

 

All three types of longitudinal models can be used with other types of outcome variables.  A 

more general form for the random intercept model, for example, is 

0( ( | , )) C
it it i itg E Y X i b Xβ β= + + , 

where g is called the link function.  We have used the logit function for g, which is appropriate 

for a binary outcome.  With a continuous outcome, it is common to let ( )g w w= , and with a 

count outcome,  ( ) log( )g w w= . 

 

Marginal, conditional (random intercept), and transitional (conditioning on yesterday’s outcome) 

models were fit for eNO, a continuous outcome collected in the Seattle panel study (see Table 3).   

Exploratory analyses suggested that X be modeled linearly (see Section 5).  The models are 

written as 

0( | ) M
it it itE Y X Xβ β= +  

0( | , ) C
it it i itE Y X i b Xβ β= + +  

1 0 1( | , ) T
it it it it itE Y X Y X Yβ β γ− −= + + . 
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The covariates age, gender, BMI, relative humidity, and temperature are also included as 

predictors.  We find that the conditional and marginal parameter estimates are nearly identical, 

and differ slightly due to differences in estimation procedures. In fact, with an identity link 

function, the conditional and marginal parameters will always agree.  With a certain 

parametrization of the transition model, this parameter will also be the same (Diggle, Heagerty, 

Liang, and Zeger 2002).  According to the conditional model, we estimate that each 10 µg/m3 

increase in indoor PM2.5 is associated with a 4.10 ppb increase in the child’s eNO (95% CI: 1.89 

ppb to 6.32 ppb).    

 

The scientific question of interest should dictate the type of longitudinal model that is used.  A 

marginal model is used to estimate the effect of exposure on population average outcomes.  

Suppose, for example, that we want to assess the impact of increasing PM on rates of asthma-

induced hospital visits.  Since our interest is in a population mean, a marginal model should be 

used.  If individual-level exposure effects are desired, a conditional model is more appropriate.  

Such a model can be used, for instance, to assess the effect of PM on individuals’ immune 

system biomarkers, accounting for heterogeneity in baseline levels of the biomarkers.  Finally, a 

transition model is a marginal model which controls for outcome history.  This type of approach 

is useful, for example, for determining the effect of increasing PM on rates of asthma symptoms, 

accounting for the fact that individuals who experience symptoms on one day are more likely 

than those who did not to have symptoms on the following day.  These examples illustrate the 

technique of choosing a model which corresponds most closely to the scientific question of 

interest. 
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An aggregated analysis has historically been a popular approach to analyzing panel data.  All 

outcomes on the same day are collapsed into a total, called the panel average (or panel attack rate 

for binary outcomes) (Korn and Wittemore 1979).  The panel average is then regressed on 

exposure.  This approach is subject to many of the problems associated with ecological studies 

(Sheppard, Prentice, and Rossing 1996; Sheppard 2002).  In addition, inference from a linear 

model which assumes that outcomes on successive days are independent and have constant 

variance may be incorrect.  Finally, bias may be incurred due to the fact that subject-specific 

missing data patterns are not taken into account (Dominici, Sheppard, and Clyde 2003).  For 

these reasons, aggregated analyses have been discouraged since 1979 (Korn and Wittemore 

1979). 

 

In our illustration, we specified exposure to be today’s indoor PM2.5.  However, longitudinal 

models can incorporate other exposure measures, such as particular exposure lags, cumulative 

exposure, or different exposure components (see Section 4.1).  Distributed lag exposure models 

can also be used (Schwartz 2000; Diggle, Heagerty, Liang, and Zeger 2002; Goodman, Dockery, 

and Clancy 2003).  These models allow the health effects of air pollution to extend over time.  

Exposure is modeled as a linear combination of exposure lags, say 0 ....it t q it qX Xη η − −+ + , where 

the coefficients, sη , can be constrained to have a specific functional form.   The sum of the 

coefficients, 
0

q

s
s
η

=
∑ , is interpreted as the net effect of exposure on the outcome.   

 

3.3   Accounting for correlation 

3.3.1  Modeling the correlation structure 
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In the Seattle panel study, outcomes for each child are correlated, as measurements taken on the 

same child are likely to be more similar than those on different children.  All longitudinal studies 

have correlation due to repeated measures.  This is what makes using special longitudinal models 

necessary.  But the Seattle panel study has additional correlation structure due to the fact that 

some children were observed for more than one session.  Observations in the same session are 

likely to be more similar than those in different sessions.  Multiple levels of correlation, due to 

observation times or measurement error, are common in longitudinal studies. 

 

Correlation among outcomes is typically of two types: exchangeable and serial.  An 

exchangeable structure implies that any pair of outcomes has the same correlation, while serial 

correlation decreases with the time elapsed between the two observations.  There may be both 

serial and exchangeable correlation in an outcome if, for example, correlation decreases with 

time separation, but there is still long-term correlation between observations that are far apart.   

 

In longitudinal models, correlation is accounted for by specifying the “clustering” variable, or 

the independent unit of observation.  This specification indicates that observations within-cluster 

are correlated, and those between-clusters are independent.  The three types of longitudinal 

models deal with the clustering variable in different ways.  With conditional and transition 

models, the mean model specifies the correlation structure among observations in the same 

cluster.  In conditional models, observations in the same cluster are correlated because they share 

the random effects.  With a transition model, the mean model specifies that the outcome at time t 

depends on outcomes at earlier times, and this induces correlation among outcomes in the same 

cluster.    
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With a marginal model, the correlation structure is specified separately from the mean model, 

using a “working correlation matrix” (Diggle, Heagerty, Liang, and Zeger 2002).  Common 

working correlation choices are independence (observations in the same cluster are assumed to 

be independent), autoregressive, and exchangeable structures.  With a transition model, as well, 

additional correlation structure can be added using a working correlation model.  

 

In the Seattle data, we specify subject-session as the clustering variable.  This structure assumes 

that observations within the same subject-session are correlated, while observations in the same 

session but different subjects, or the same subject but in different sessions, are uncorrelated.  We 

chose this model for simplicity and consistency with the literature.  An alternative would be to 

cluster on both subject and session.  This stipulates that observations in the same subject and the 

same session are correlated, as are those across subjects in the same session, and those across 

sessions for the same subject.  But with many subjects having only one session, and others only 

two or three sessions, the data would not allow us to estimate the within-subject, between-session 

correlation precisely.  Hence, in our notation, the i subscript refers to subject-session 

(i.e., itX represents exposure for subject-session i at time t).   

 

3.3.2  Modeling correlation structure in marginal models 

With marginal and transition models (estimated using GEE), if the parameters in the mean model 

are the primary interest, correct specification of the mean model is essential.  However, even if 

the correlation structure is incorrectly specified, the mean model parameter estimates and 

standard errors are still valid if so-called “robust” standard error estimates are used (White 1982; 
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Liang and Zeger 1986; Royall 2005).  Robust standard errors are reported by most statistical 

packages, though the number of individuals must be large in order to ensure their validity.  If, 

instead, the variance model is of interest, perhaps for studying the variation in within-subject 

outcomes, correctly specifying the correlation structure is also necessary.   

 

Regardless of which parameters are of primary interest, correct specification of the correlation 

structure will lead to gains in efficiency (Diggle, Heagerty, Liang, and Zeger 2002).   But Pepe 

and Anderson (1994) showed that, if the appropriate exposure lags are not included in the mean 

model, the parameter estimates will be biased unless a working independence correlation 

structure is used.  Therefore, researchers face a dilemma: specify an appropriate working 

correlation, and risk bias in the parameter estimates, or specify working independence, report 

robust standard errors, and risk a loss of efficiency.   

 

Schildcrout and Heagerty (2004) have provided some guidance in choosing between these two 

strategies.  Their advice is based on the assumption that a marginal model with one exposure lag 

is the model of interest, since interpretation of a one-lag model is simplest.  First, they suggest 

that the exposure lag of interest be chosen carefully.  The degree to which other lags are 

associated with the outcome should also be determined.  If there are other large lag effects, an 

independence working correlation matrix should be used, since the bias associated with the 

incorrectly specified mean model will be large.  On the other hand, if the other lag effects are 

small, non-independence working correlation should be used.  Exploratory analyses can be used 

to select the working correlation (see Section 5.2). 
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In the Seattle data, we use a working independence correlation structure and report robust 

standard errors to guard against bias in the parameter estimates. 

 

3.4  Missing data 

In the Seattle panel study, there is a substantial amount of missing data.  The variables overall 

well-being, eNO, indoor PM2.5, and relative humidity are intermittently missing.  Of a total of 

330 observations, 68 (21%) are missing.  The sources of missingness, according to our best 

judgment, are tabulated in Table 4.   

 

With longitudinal data, missing data is a common problem.  Subjects may have observations 

missing intermittently, or they may drop out at some point.  Missing observations are those that 

are missing unintentionally; measuring subjects at different pre-specified time points results in 

unbalanced, but not missing, data.   

 

Fortunately, all of the longitudinal models we have discussed allow researchers to use the 

available observations for each subject.  That is, subjects need not be dropped from the analysis 

if they have missing data.  However, each of the models makes certain assumptions about the 

reasons for missingness.   

 

Missingness is frequently partitioned into three categories, following the characterization 

proposed by Little and Rubin (1987).  Data is said to be missing completely at random (MCAR) 

if missingness is independent of both observed and unobserved data.  Hence, observations are 

missing simply due to random chance, as if on the basis of a coin toss.  In contrast, if data is 
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missing at random (MAR), missingness depends only on the data that is collected.  Finally, if 

data is informatively missing, the missingness mechanism depends on both observed and 

unobserved data.   

 

Determining the type of missing data at hand is difficult.   There are some ad-hoc procedures for 

using the data to distinguish between MCAR and MAR (see Diggle, Heagerty, Liang, and Zeger 

(2002)).  However, it is impossible to determine from the observed data whether missingness is 

informative.  In general, the type of missingness is determined by carefully considering the 

sources of missing data in the particular study.  In the Seattle data, missingness is a consequence 

of equipment problems, and children not being home for the visit, eating within one hour of the 

eNO measurement, or leaving questions blank on the questionnaire (see Table 4).  First, it is 

reasonable to assume that missingness due to equipment problems is true measurement error 

(and not measurements below the limit of detection).  We assume that this data is MCAR, but 

this is certainly debatable, and should be mentioned as a limitation of our analysis.   Data that is 

missing due to the behavior of the study subjects is more worrisome.  There is a possibility that 

children who are not home for a visit, who neglect to answer the symptom questions on the 

questionnaire, or who eat within one hour of the eNO measurement, are not feeling well.  Since 

this type of missingness may be associated with the outcome (an observed variable), we classify 

it as MAR.  We assume that the missingness mechanism can be explained entirely by the 

observed data, and hence is not informative, but again this is debatable. 

   

Likelihood based methods, such as conditional models, are valid so long as data is MAR (or 

MCAR).  However, non-likelihood based analyses, such as marginal and transitional models (fit 

Hosted by The Berkeley Electronic Press



 16

using GEE), require that the data be MCAR, a stronger assumption.  Hence, the type of 

missingness should be seriously considered when choosing a statistical analysis.  A number of 

methods have been proposed for using GEE with MAR (Heyting, Tolboom, and Essers 1992; 

Robins et al. 1995; Scharfstein, Rotnitzsky, and Robins 1999), and for analyzing data with 

informative missingness (Wu and Bailey 1989; Little 1993; Diggle and Kenward 1994; Diggle, 

Heagerty, Liang, and Zeger 2002; Wu and Carroll 2005), but each depend on making additional 

assumptions, in particular about the missingness mechanism.   

 

4.  Controlling for Confounding 

4.1   Between- and within-subject effects 

Consider the marginal model for the Seattle eNO data: 

 0( | ) M
it it itE Y X Xβ β= + ,      (4)                                    

where itY  represents eNO and itX denotes indoor PM2.5, for subject-session i at time t.  (For 

simplicity, here we ignore the other covariates included in the model.)  This model implies that 

the effect of increasing PM on eNO is the same, regardless of whether the difference is in the 

same subject-session, or comparing across subject-sessions.  In fact, given the design of the 

study, the exposure can be partitioned into three components: the between-subject effect; the 

within-subject, between-session effect; and the within-subject, within-session effect.  These three 

effects may be very different, due to confounding (Palta and Yao 1991; Diggle, Heagerty, Liang, 

and Zeger 2002).  The between-subject effect is the difference in average eNO associated with a 

unit increase in indoor PM2.5, comparing subjects.  This is potentially confounded by time-

independent confounders, such as the region in which the subject lives.  The within-subject, 

between-session exposure effect is the difference in average eNO associated with a unit increase 
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in indoor PM2.5, when comparing across sessions for the same subject.  Since sessions are often 

in different seasons, and season is strongly associated with exposure and outcome, this exposure 

effect is confounded.  The within-session, within-subject effect of exposure is the real parameter 

of interest; it represents the difference in average eNO associated with a unit increase in indoor 

PM2.5, when comparing across days in the same session for the same subject.  In (4), Mβ  

represents a combination of these three exposure effects.  In order to allow them to differ, we 

should partition exposure into the three components, and include each as an independent term in 

the model.   

 

We rewrite the marginal model, allowing the three exposure effects to have different magnitudes.  

In this section, we use new subscripting notation.  Let i index subject, j session, and t time.  

Denote the average of a variable Z by Z .  We partition the exposure, ijtX , into three components: 

 iX :   the average exposure for subject i (the between-subject component) 

 ij iX X− :  for subject i, the average exposure in session j minus the overall average  

  exposure (the within-subject, between-session component)  

ijt ijX X− :  for subject i and session j, the exposure on day t minus the average  

 exposure in the session (the within-subject, within-session component) 

We write 

0( | ) ( ) ( )M M M
it it bs i wsbs ij i wsws ijt ijE Y X X X X X Xβ β β β= + + − + − .                  (5) 

The parameters , ,andM M M
bs wsbs wswsβ β β are the between- subject; within-subject, between-session; 

and within-subject, within-session effects of exposure. The parameter of interest is M
wswsβ , the 

effect of day-to-day variation in indoor PM2.5 on average eNO, for a given individual in a given 
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session.  This parameter corresponds with the component of exposure variation that is least likely 

to be confounded. 

 

If, by design, each subject has only one observation period, partitioning with respect to session is 

unnecessary.  In this case, the two components of exposure are the between-subject and within-

subject components.  Alternatively, if the exposure is shared and all subjects are observed at the 

same times (as in a traditional panel study design), partitioning is impossible and unnecessary.   

 

The within-subject, within-session exposure component is “mean balanced”, since it has mean 

zero for all subjects.  Schildcrout and Heagerty (2004) suggest that mean balanced covariates 

behave more favorably in terms of the bias/efficiency tradeoff associated with marginal models 

(discussed in Section 3.3.2).  That is, for such covariates, the use of independent working 

correlation is less inefficient, and use of non-independence working correlation is associated 

with less bias.   

 

The parameter estimates for model (5) and the Seattle eNO data are displayed in Table 5.  The 

covariates age, BMI, relative humidity, and temperature are also included as predictors.  The 

between-subject and within-subject, between-session exposure effects are potentially confounded 

by season and are not of primary interest.  Note that the within-subject, between-session 

exposure effect has a very large standard error, due to the fact that only 13 children participated 

in more than one session, and these children had only two or three sessions.   We estimate that 

the within-subject, within-session effect of a 10 µg/m3 increase in indoor PM2.5 is an associated 

increase of 3.90 ppb in eNO (95% CI: 0.74 ppb to 7.06 ppb).  All three exposure effects are 
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consistent with this value.  As expected, the effect of unpartitioned indoor PM2.5 in the marginal 

model (Table 3) is a weighted average of the coefficients of the three exposure components 

considered here. 

 

4.2   Time-independent confounding 

Factors such as the region in which a subject lives may be important time-independent 

confounders in panel studies.  One of the uses of partitioning exposure is to control for such 

confounding.  In particular, the inclusion of the between-subject exposure component controls 

for static differences between individuals.  Such partitioning is useful in marginal, conditional, 

and transition models. 

 

In a conditional model, the use of a random effect for each subject (or for each subject-session) 

will help control for differences between subjects.  In a transition model, conditioning on 

previous outcomes controls for a large amount of time-independent and time-dependent 

confounding, since the exposure effect represents the association between exposure and outcome 

among observations with the same outcome history.   

 

In any model, time-independent confounders can be further controlled by including them as 

covariates.  Typically, this is done to gain efficiency in estimating the effect of exposure.  For 

example, in the Seattle panel study, age and BMI, factors which are not confounders, are 

included in all models in order to increase efficiency.  Such adjustment also allows for 

assessment of effect modification. 
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4.2   Time-dependent confounding 

Air pollution is highly influenced by time-varying factors such as season and temperature, many 

of which are also associated with health outcomes of interest.  The most common method of 

controlling for time-varying confounders is by including them in the regression model.  (See, for 

example, Yu, Sheppard, Lumley, Koenig, and Shapiro (2000))  This approach requires selecting 

a functional form for the covariates, as well as choosing the appropriate lags to be included.  

Model selection concerns arise, as researchers select from among candidate models which 

control for different confounders in different ways.  Lumley and Sheppard (2000) have shown 

that model selection bias can be of the same magnitude as the health effects themselves.   In 

order to avoid this bias, the method of controlling for confounding should be chosen a priori.  

 

Partitioning exposure will control for a certain amount of time-dependent confounding.  

However, confounders which vary within an individual’s period of observation will not be 

controlled.  For example, if the subject-session is long, there may be residual confounding due to 

season.  Further partitioning could be employed to enable estimation of the within-subject, 

within-season effect of changes in exposure.   

 

5.  Exploring and Summarizing Longitudinal Data 

5.1  Summarizing data and graphical displays 

In any longitudinal study, the most fundamental data descriptives relate where the data lie (e.g.,  

in time, across individuals, across sessions) (Kunzli and Schindler 2005).  Missingness should be 

described as intermittent or dropout, and tabulated (see Tables 1 and 4 for examples). 
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A plot of the exposure and outcome trends over time is a simple and useful first descriptive (see 

Figure 1).  This is especially informative if both exposure and outcome are continuous and 

measured over a long time period.  Lines should connect observations within the same subject-

session.  Such a plot displays the within and between subject-session patterns and variability in 

exposure and outcome, and can be used to assess whether exposure and outcome series have 

peaks at similar times.  In Figure 1, eNO and indoor PM2.5 are plotted as a function of time.  

Observe the large amount of variability in both exposure and outcome series over time, and 

within subject-session.  As is typical in the air pollution setting, where exposure effects are very 

small, it is difficult to see an association between exposure and outcome in this figure.  The 

figure can also be misleading because any association observed may be attributable to 

confounding.  

 

In order to observe the relationship between exposure and outcome apart from confounding, it is 

useful to plot exposure and outcome residuals from models that include the confounders.  In 

Figure 2, we plot eNO residuals against indoor PM2.5 residuals, each from linear models which 

include age, BMI, relative humidity, and temperature.   A smooth curve fit to the residuals is 

overlaid.  We see a modest, linearly increasing trend in eNO as a function of indoor PM2.5, and 

note that much of the variation in eNO is not explained by the exposure. 

 

The drawback of a plot such as Figure 2 is that it displays the association between overall (un-

partitioned) exposure and outcome.  In fact, the three exposure components should be modeled 

separately (see Section 4.1).  Therefore, it is appropriate to examine three plots: within-

subject/within-session outcome residuals versus within-subject/within session exposure 
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residuals; within-subject/between-session outcome residuals versus within-subject/between-

session exposure residuals; and between-subject outcome residuals versus between-subject 

exposure residuals.  These plots are not shown for the Seattle data because they look very similar 

to Figure 2. 

 

In order to explore the transition model, it is useful to plot outcome residuals against previous 

lags of outcome residuals.  This is shown in Figure 3 for the Seattle eNO data, where residuals 

come from linear models including the covariates: indoor PM2.5, age, BMI, relative humidity, 

and temperature.  We see that there is a strong association between eNO today and eNO 

yesterday, even after accounting for PM and other covariates. 

 

With a binary outcome, it is useful to summarize the outcome cross-sectionally as well as within-

individuals.  See Table 1 for an example.     

 

Exploring the association between a binary outcome and a continuous exposure is difficult, due 

to the fact that plotting the outcome is not very informative.  A plot of the outcome residuals as a 

function of the exposure residuals can be useful.  The residuals for overall well-being (from a 

logistic model) are plotted as a function of indoor PM2.5 residuals (from a linear model) in Figure 

4.  Both models are adjusted for age, BMI, relative humidity, and temperature.  The plot is still 

difficult to interpret, since the residuals cluster into two groups.  We can, however, determine 

with a smoothed curve overlaid that the association between exposure and outcome does not 

appear to be linear.  This figure suggests that indoor PM2.5 be modeled piecewise-linearly in the 

overall well-being models.  As with a continuous outcome, plots of partitioned exposures and 
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outcomes should also be examined.  Plots of outcome residuals versus previous lags of outcome 

residuals can also be examined to determine the necessity of controlling for outcome history. 

 

5.2  Exploring correlation structure 

In order to correctly specify the correlation structure of the data, we must explore the dependence 

among outcomes in the same cluster.  We are interested in the correlation that exists after the 

mean structure has been taken out.  With a continuous outcome, the correlation structure can be 

summarized using a variogram (Diggle 1990; Diggle, Heagerty, Liang, and Zeger 2002).  For 

residuals ijr , the differences 2)(
2
1

ikijijk rrv −= are plotted against the corresponding time 

differences ikijijk ttu −= .  Such a plot is shown in Figure 5 for the eNO residuals in the Seattle 

data.  A smooth curve is overlaid to aid viewing of the trend (the y-axis is truncated at 300).  A 

solid line is also added at the level of the total estimated variance in the eNO residuals.   We find 

that the differences between observations tend to increase with time lag, corresponding to a serial 

correlation structure.  The variogram increases all the way to the overall variance, indicating that 

the correlation decays to zero, and has no long-term component.   At larger time lags, the 

variogram actually moves slightly above the overall variance, a consequence of the instability of 

the estimates at these large lags.  We conclude that a serial correlation model seems to be 

adequate.   

   

With a binary outcome, correlation is not a useful measure of association.  A more meaningful 

summary of the relationships among binary observations over time is the odds ratio.  Heagerty 

and Zeger (1998) suggest plotting a lorelogram, or the log-odds ratio for pairs of observations in 

the same cluster as a function of time separation.  We show an example in Figure 6 for the 
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overall well-being outcome.  The log odds ratios for pairs of observations in the same subject-

session do not appear to decrease with time separation, and remain extremely high.  Children 

who report feeling worse (better) than average on one day are likely to feel worse (better) than 

average on all other days in the same subject-session.  This high degree of “correlation” persists 

when the data are stratified by various covariates.  An exchangeable correlation structure seems a 

reasonable assumption.   

 

6.  Discussion 

The panel study design is a powerful tool for assessing the short-term association between air 

pollution and health outcomes over time, within individuals.  We reviewed here the existing tools 

for exploring and quantifying this association.  The various modeling approaches differ primarily 

with respect to the scientific questions that they answer, but also with respect to how they model 

correlation, deal with missing data, and control for confounding.  We have advocated 

partitioning of the exposure, in order to focus on the exposure effect that is least likely to be 

confounded.   

 

The sample size of the panel study is an important attribute of the design.  In the Seattle panel 

study, the small sample size makes it difficult to distinguish between different types of data 

structures and to fit complex models.  The validity of our robust standard errors is also 

questionable with just 33 subject-sessions.  An important future research topic is the derivation 

of sample size calculations to facilitate design of efficient studies with specified operating 

characteristics.   
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Appendix  

GEE can be fit in STATA using xtgee, in Splus using gee, or in SAS using proc genmod.  In 

Splus, robust standard errors are always reported, while STATA requires the robust option and 

SAS the covb option to request robust standard errors.  Linear random effects models can be fit 

in STATA using xtgee, in Splus using lme, and in SAS using proc mixed.  Logistic random 

intercept models can be fit in STATA using xtlogit, and general non-linear random effects 

models can be fit in SAS using proc glimmix.  
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Table 1   The Seattle panel study.  A total of 19 subjects were studied for one to three 10-day 

monitoring sessions each (mean 1.7), for a total of 330 observations. 

(a)  Subject Characteristics 

 Na Mean (SD) 

Age (years) 19 9.01 (2.01) 

BMI 19 19.78 (3.27) 

a out of 19 total subjects 

(b)  Time-varying variables 

 Nb  Overall mean (SD) Within-subject,  

within-session SDe

Relative humidity (%) 313 79.03 (10.24) 7.79 

Temperature (F) 313 44.32 (6.27) 3.63 

Indoor PM2.5 (µg/m3) 296 9.08 (5.87) 3.96 

Overall well-being 314 0.59c 0.60 (0.30, 1.00)d 

eNO (ppb) 288 15.74 (9.98) 9.59 

b out of 330 total observations 

c proportion “positive” 

d mean and interquartile range of the within-subject, within-session proportions “positive”  

e summarizing the within-subject, within-session component of this variable, which has mean 

zero by definition; see Section 4.1 for motivation. 
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Table 2    The Seattle panel study: the association between indoor PM2.5 levels and overall well-

being, for three different types of longitudinal models.  Indoor PM2.5 is modeled using a spline 

with one knot at the median (7.46 µg/m3).  The odds ratio (OR) relates to a 10 µg/m3 increase in 

indoor PM2.5.   All models include age, BMI, relative humidity, and temperature.     

 

 OR below 

median 

95% CI p- 

value 

OR above 

median 

95% CI p- 

value 

Marginal modela  

 

0.16 (0.01, 2.37) 0.180 2.42 (0.67, 8.80) 0.179 

Random intercept 

model 

0.22 (0.01, 6.89) 0.389 5.96 (1.71, 20.73) 0.005 

Transitional modela 

 

0.22  (0.02, 2.64) 0.233 2.53  (1.07, 5.95) 0.034 

aEstimated using GEE with independent working correlation, and robust standard errors are 

reported. 
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Table 3    The Seattle panel study: the association between indoor PM2.5 levels and eNO, for 

three different types of longitudinal models. The coefficient relates to a 10 µg/m3 increase in 

indoor PM2.5, and all models include age, BMI, relative humidity, and temperature.     

 

 Coefficient 95% CI p- value

Marginal modela 4.15 (1.06, 7.24) 0.008 

Random intercept model 4.10 (1.89, 6.32) < 0.001 

Transitional modela 3.28 (1.00, 5.57) 0.005 

aEstimated using GEE with independent working correlation, and robust standard errors are 

reported. 
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Table 4    Missing data in the Seattle panel study.  The number of observations, variables 

missing, reason given, and type of missingness are listed. 

 

No. of 

obs. 

missing 

Variables 

missing 

Reason 

given 

Type of 

missingness

55 
eNO,  indoor PM2.5, and/or relative 

humidity 
Equipment problem MCAR 

5 eNO 
Meal w/in 1 hour of 

measurement 
MAR 

3 Overall well-being 
Subject left blank on 

questionnaire 
MAR 

5 All 
Child not home 

 
MAR 
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Table 5    The Seattle panel study: the marginal association between indoor PM2.5 levels and 

eNO, when exposure is partitioned into between-subject; within-subject, between-session; and 

within-subject, within-session components.  The coefficient relates to a 10 µg/m3 increase in 

indoor PM2.5, and the model also includes age, BMI, relative humidity, and temperature.   

Independent working correlation was used, and robust standard errors are reported.    

 

 Coefficient 95% CI p- value 

Indoor PM2.5, Between-subject  3.82 (0.59, 7.05) 0.021 

Indoor PM2.5, Within-subject, between-session 10.77 (-7.79, 29.33) 0.255 

Indoor PM2.5, Within-subject, within-session 3.90 (0.74, 7.06) 0.016 
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Titles and Legends to Figures 

 

Figure 1    The Seattle panel study: indoor PM2.5 and eNO as a function of time.  Lines connect 

observations within the same subject-session. 

Figure 2    The Seattle panel study: eNO residuals as a function of indoor PM2.5 residuals.  

Residuals are generated from linear models with covariates age, BMI, relative humidity, and 

temperature.  A smoothed curve is overlaid. 

Figure 3   The Seattle panel study: eNO residuals plotted against eNO residuals, lagged one day.  

Residuals come from a linear model with covariates: indoor PM2.5, age, BMI, relative humidity, 

and temperature.  A smoothed curve is overlaid. 

Figure 4    The Seattle panel study: overall well-being residuals as a function of indoor PM2.5 

residuals.  Residuals are generated from a logistic model for overall well-being, and a linear 

model for indoor PM2.5, each with covariates age, BMI, relative humidity, and temperature.  A 

smoothed curve is overlaid. 

Figure 5   Sample variogram for the eNO residuals in the Seattle data, as a function of time 

separation, in days.  A smooth curve is overlaid (solid line).  The dotted line represents the total 

sample variance for the eNO residuals.  Residuals come from a linear model including the three 

indoor PM2.5 exposure components, age, BMI, relative humidity, and temperature.   

Figure 6    The lorelogram for overall well-being in the Seattle data: log-odds ratios for pairs of 

observations in the same subject-session, as a function of time separation, in days. 
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Figure 1 
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Figure 2 
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Figure 3 
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Figure 4 
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Figure 5 
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Figure 6 
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