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1 Introduction

In this paper, we consider a specific type of correlated data that commonly
arise: multiple measurements on each of a large number of independent units.
Longitudinal data, multivariate response data and clustered data are of this
type. Analysis of correlated data has been a challenge in statistical mod-
eling because the assumption of independence of observations is violated
and because multivariate parametric models for correlated data are limited.
However, when a marginal mean regression parameter is of primary interest
and dependence structure is a nuisance, the generalized estimating equations
(GEE) model of Liang and Zeger [4] has been widely used. The GEE model is
a semiparametric moment-based estimating equations method. In the GEE
model, a mean-zero estimating equation is constructed for each measurement
under the first- and second- moment assumptions, and correlated estimat-
ing equations are combined through a “working” correlation matrix. The
working correlation matrix is simply a weight matrix which takes the inter-
correlated data feature into account when combining mean-zero estimating
equations, and it may contain a nuisance parameter.

Let Y t
i = (Yi1, · · · , Yimi

) be a vector of mi response measurements on
the i-th cluster, for i = 1, · · · , n. Suppose that each response measure-
ment Yij has a corresponding (p × 1) covariate vector Xij and that Xi =
(Xi1, · · · , Ximi

) represent a (p×mi) matrix of covariates for the i-th cluster.
The conditional mean of Yij given Xi, denoted by µij, is assumed to have the
form:

µij = E(Yij|Xi) = g(X t
ijβ),

where g(·) is a known link function and β is a marginal regression parameter
of p dimension. Let µi = (µi1, · · · , µimi

). The parameter of interest β0 is
defined by

E((Yi − µi(β0))|Xi) = 0,∀i.
The mean-variance relationship is assumed to be known up to a constant:

Var(Yij) = φv(µij),

where v(·) is a known function and φ is an unknown dispersion parameter.
Let Ai(β) = diag(v(µi1), · · · , v(µimi

)) be the diagonal matrix of marginal
variances for i-th cluster. The true correlation structure and the probability
distribution are not specified in the GEE model. Liang ang Zeger [4] defined

1

Hosted by The Berkeley Electronic Press



the GEE estimator β̂n as a solution of the following estimating equations:

U(β) = Un(β) = Un(β,α) =
n
∑

i=1

Dt
i(β)V −1

i (β,α)(Yi − µi(β)), (1)

where Di(β) = ∂µi(β)/∂β and Vi(β,α) = A
1/2
i (β)Ri(α)A

1/2
i (β) with a

working correlation matrix R(α). Here α is a working correlation parame-
ter of r dimension. Let R(αn) be the working correlation matrix R(α) in
Un(β,α). The GEE estimator β̂n depends on the working correlation matrix
R(αn).

Due to lack of likelihood function (or more generally, objective function to
be maximized), statistical inference about the GEE estimator relies on large
sample theory. When establishing asymptotic properties of β̂n, it is a key
assumption that there exists a limit of R(αn). We denote this limit by R(α∗).
Under the asymptotic setting in which the maximum cluster size and the
dimension of α∗ are finite, Liang and Zeger [4] derived asymptotic properties
of β̂n via the Taylor expansion of n−1/2Un(β,α) at (β,α) = (β0,α

∗). The
GEE estimator β̂n is asymptotically consistent and asymptotically normally
distributed. The asymptotic variance of β̂n, which indicates the efficiency of
β̂n, is minimized when Ri(αn) is the same as the true correlation matrix of Yi.
Such flexibility of working correlation matrix with regard to the asymptotic
consistency of β̂n is a strength of the GEE model. However, in order to
achieve a reasonable degree of efficiency for the GEE estimator, it is still
important to choose a plausible working correlation matrix. Furthermore, if
the working correlation matrix is poorly chosen, R(α∗) could fail to exist even
with fixed cluster size (see [1]). We note that in some cases, the estimating
equations (1) are closely related to the score equations for a multivariate
exponential family. Asymptotic results for maximum likelihood estimator
with misspecified correlation structure were also established by White [8]
and Gouriéroux, Monfort and Trognon [2].

When applying large sample theory to finite-sample data, it is an interest-
ing but open question how large sample size is large enough. In the standard
large sample theory based on Taylor expansion, this question relates to the
relative size of random fluctuations in the remainder terms (e.g. [3]). In the
GEE setting of Liang and Zeger [4], this question relates to whether the clus-
ter size and the complexity of working correlation model are small enough
compared to the number of independent clusters. In particular, the relative
size of r to n is important because the size of a vector (αn − α∗) is closely
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related to the remainder terms of the Taylor expansion of n−1/2Un(β,α).
In practice we occasionally encounter the large cluster data such as dental

data (32 teeth per person) and panel time series data (e.g [6]). For exam-
ple, see the Childhood Asthma Management Program (CAMP) air pollution
ancillary study [10], the aim of which is to examine short-term air pollution
effects on asthma symptoms in children. This data set contains daily self-
reports of asthma symptoms of 133 children in Seattle area for an average of
58 days (range: 28 - 112 days) at the screening phase of the CAMP study.
Note here that the average cluster size of 58 and the maximum cluster size
of 112 are not negligibly small compared to the number of children, 133. It
is also interesting to note that there are

(

112
2

)

≈ 6200 possibly distinct pair-
wise correlation components even if a common correlation structure across
children is assumed.

When the cluster size is relatively large, it seems relevant to consider an
asymptotic setting where the maximum cluster size increases with the num-
ber of clusters. Furthermore, since the true correlation structure is likely to
be complicated for large cluster data, it seems more appropriate to consider
an asymptotic setting where both the maximum cluster size and the complex-
ity of working correlation model increase with the number of clusters. Note
that this asymptotic setting is different from that in [4]. Recently, Xie and
Yang [9] considered the large cluster GEE model and presented asymptotic
results. However, in the approach of Xie and Yang [9], the working correlation
matrix is assumed to be fixed. Although an independent working correlation
matrix satisfies this assumption, generally speaking, Xie and Yang [9] did
not address an issue of modeling and estimating a possibly high-dimensional
working correlation model in the large cluster GEE model. The asymptotic
results for large cluster GEE model with independence working correlation
matrix were independently presented by Lumley and Mayer-Hamblett [5].

This paper is concerned with the large cluster GEE with a high-dimensional
working correlation model. To be specific, under the asymptotic setting
where both the maximum cluster size and the complexity of working cor-
relation model increase with the number of clusters, we derive asymptotic
properties of the GEE estimator, using the results of empirical process the-
ory and the work of Xie and Yang [9]. The outline of this paper is as follows.
In Section 2 we introduce basic notation and regularity conditions. The
asymptotic existence and the weak consistency of the GEE estimator are
established in Section 3. We show the asymptotic normality of the GEE
estimator and the weak consistency of sandwich variance estimator in Sec-
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tions 4 and 5, respectively. In Section 6 we discuss regularity conditions on
the complexity of working correlation model and give sufficient conditions
on the number of working correlation parameters. The final section provides
concluding remarks.

2 Notation and Assumptions

Let m denote the maximum cluster size over n independent clusters:

m = m(n) = max
1≤i≤n

mi.

We note that r can be also viewed as a function of n:

r = r(n,m) = r(n,m(n)).

In order to put an emphasis on the relation of r and n, we shall hereafter
add subscript n to r. In our asymptotic setting, both m and rn can increase
with n.

To deal with a sequence of different-dimensional working parameter spaces,
we consider a single embedding space of larger dimension. Here we define
a working correlation parameter space on the ℓ2 space which is an infinite-
dimensional analogue of Euclidean space. Let a point (β0,α

∗) ∈ R
p × ℓ2 be

fixed. We define the regression parameter space T (β0) as

T (β0) = {β ∈ R
p; ||β − β0|| ≤ δβ}

with a fixed δβ > 0, and define the working correlation parameter space
T (α∗; q) as

T (α∗; q) = {α ∈ ℓ2; |α∗ − α|i ≤ ai−q}
with fixed a > 0 and q > 0. Without loss of generality, the constant a
is usually set to one. The parameter space T is then defined as a product
space of the regression parameter space T (β0) and the working correlation
parameter space T (α∗; q):

T = T (β0,α
∗; q) = T (β0) × T (α∗; q) ⊂ R

p × ℓ2.

A distance measure dT on the parameter space T is naturally defined as:

dT ((β,α), (β′,α′)) =
√

d2
1(β,β

′) + d2
2(α,α

′),
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where d1 is the Euclidean distance in R
p and d2 is the ℓ2-distance. A few

remarks on the working correlation parameter space T (α∗; q) are in order.
First, the infinite-dimensional working correlation parameter space T (α∗; q)
can be approximated to a subspace of a finite-dimensional Euclidean space
with a small margin of errors. Second, the size of the working parameter
space T (α∗; q) is controlled by q as T (α∗; q1) ⊂ T (α∗; q2) for q1 > q2 > 0.

Also note that each summand in (1) needs to be modified accordingly:

gnα,i(β) = gnα(n),i(β) = Dt
i(β)V −1

i (β, α̃(n))(Yi − µi(β)),

where α(n) = (α1, · · · , αrn , 0, 0, · · · ) ∈ ℓ2 and α̃(n) = (α1, · · · , αrn) ∈ R
rn

with α = (α1, α2, · · · ) ∈ ℓ2. This redefinition is only for notational as it is
governed only by β ∈ R

p and the first rn elements of α ∈ ℓ2. The sum of n
estimating equations is now defined as

gnα(β) =
n
∑

i=1

gnα,i(β) =
n
∑

i=1

Dt
i(β)V −1

i (β, α̃(n))(Yi − µi(β)).

Similarly as in Xie and Yang [9], we denote

Mnα(β) = Cov(gnα(β)),

Hnα(β) =
n
∑

i=1

Dt
i(β)V −1

i (β, α̃(n))D
t
i(β),

Dnα(β) = −∂gnα(β)

∂βt .

To alleviate the notation, we suppress the argument of β0 when β = β0. For
example, gnα = gnα(β0). Also, for a fixed α∗ ∈ ℓ2, we denote

γ(D)
n = max

i=1,··· ,n
λmax(H

−1/2
nα∗ Dt

iV
−1
i (α∗)DiH

−1/2
nα∗ ),

cn = λmax(M
−1
nα∗Hnα∗),

λ̃n = max
i=1,··· ,n

λmax(R
−1
i (α∗)).

Note that cn is related to the discrepancy between the working correlation
matrix at α = α∗ and the true correlation matrix, and that λ̃n is related to
the eigenvalues of the working correlation matrix at α = α∗. It is interesting
to notice that cn = 1 when Hnα∗ = Mnα∗ and that λ̃n = 1 with independent
working correlation matrix. We also follow the matrix notations used in
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[9]. Therefore, λmin(A) and λmax(A) represent the minimum and maximum
eigenvalues of the matrix A, respectively. The ordering between two square
matrices A1 and A2 is defined as: A1 ≥ A2 if and only if λTA1λ ≥ λTA2λ for
all vectors λ with ||λ|| = 1.

In this paper, the following regularity conditions will be always assumed:

A.1 (β,α) ∈ T = T (β0,α
∗; q) ⊂ R

p × ℓ2 for some q > 1.

A.2 Hnα and Mnα are positive definite.

A.3 ∂2

∂β2 gnα(β) exists at β = β0.

The condition A.3 is about the smoothness property of the estimating equa-
tions with respect to β. Additional smoothness conditions of the estimating
equations with respect to β and α will be presented later.

3 Asymptotic existence and weak consistency

of the GEE estimator

For existence and consistency of β̂n, we present the following conditions:

B.1
sup

α∈T (α∗;q)

τnα

λmin(Hnα)
→ 0,

where τnα = maxi=1,··· ,n λmax(R
−1
i (α)R̄i) with the true correlation ma-

trix R̄i.

B.2 For any given r > 0 and η > 0,

Pr( sup
α∈T (α∗;q)

sup
β∈Bnα(r)

||H−1/2
nα Dnα(β)H−1/2

nα − I|| < η) → 1,

where Bnα(r) = {β ∈ R
p : ||H1/2

nα (β − β0)|| ≤ r
√
τnα}.

REMARK 1. When a single fixed α is considered, the conditions B.1 and
B.2 are equivalent to the conditions of Xie and Yang [9].
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When none of the n independent summands of gnα dominates the rest, Hnα

increases at least at the rate of n. Hence the condition B.1 is typically met
as τnα is determined by a single summand in gnα. Also note that

Bnα(r) ⊂ {β : ||β − β0|| ≤ r

√

τnα

λmin(Hnα)
}.

Combined with the condition B.1, the radius of the sphere Bnα(r) becomes
small for large n. Based on a simple observation that

EDnα = Hnα = Hnα(β0),

the condition B.2 is about the law of large numbers for the random matrices
Dnα(β) and the uniform continuity of Hnα(β) at β = β0.

The following theorem asserts that there exists a consistent sequence of
roots of the estimating equations.

Theorem 1. Suppose the conditions (B.1 - B.2) hold. Then, for every se-
quence {αn ∈ T (α∗; q)}, there exists a sequence of random variables β̂n, such
that

Pr(gnαn(β̂n) = 0) → 1

and
β̂n → β0 in probability.

Proof. See Appendix A.

4 Asymptotic distribution of the GEE esti-

mator

In this section, we derive the asymptotic distributional properties of β̂n of
Theorem 1 from the asymptotic properties of the corresponding class of es-
timating equations indexed by (β,α). Let us define Gn as:

Gn = {M−1/2
nα gnα(β) : (β,α) ∈ T}.

Under suitable conditions on the size of the class Gn, we first show that Gn is
a Donsker class. To measure the size of the class Gn, we follow the notation
and terminology of van der Vaart and Wellner [7]. For example, for a class
F equipped with a metric || · ||, we define the covering number N(ǫ,F , || · ||)
and the bracketing number N[ ](ǫ,F , || · ||) as in [7].

The following conditions will be assumed later in this section:

7
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C.1 Let Y ∗
i = (Y ∗

i1, · · · , Y ∗
imi

)t = A
−1/2
i (Yi − µi(β0)). Then, there exists

δ0 > 0 such that E|Y ∗
ij |2+2/δ0 is uniformly bounded above and that

(cnλ̃nm)1+δ0γ
(D)
n → 0.

C.2 For every n and i, there exists an mi ×mi matrix Wni such that

|M−1/2
nα gnα,i(β)−M−1/2

nα′ gnα′,i(β
′)| ≤ dT ((β,α), (β′,α′))M

−1/2
nα∗ DT

i (β0)Wni(Yi−µi(β0)),

for all (β,α), (β′,α′) ∈ T . Further, the following moments conditions
hold:

• Cov
(

M
−1/2
nα∗

∑n
i=1D

T
i (β0)Wni(Yi − µi(β0))

)

= O(1),

• ∑n
i=1 E|M−1/2

nα∗ DT
i (β0)Wni(Yi − µi(β0))|2+δ = o(1) for some δ > 0.

REMARK 2. As n→ ∞, γ
(D)
n will typically decrease at the order of n−1 (i.e.,

γ
(D)
n = O(n−1)), whereas cn and λ̃n are either bounded above or divergent to

infinity (as a function of m). Therefore, the condition C.1 essentially places
a restriction on the increasing rate of m versus n:

m = o(n1−δ′),

where δ′ depends on the moment conditions of response measurements Y .

REMARK 3. The Lipschitz property in the condition C.2 implies the exis-
tence of envelope function Gn for Gn, where Gn =

∑n
i=1Gni with

Gni = M
−1/2
nα∗ |gnα∗,i| + diam(T ) ×

(

M
−1/2
nα∗ DT

i (β0)Wni(Yi − µi(β0))
)

.

The following three lemmas will be useful in showing the Donsker property
of Gn in Theorem 2.

LEMMA 1. Suppose the condition C.2 holds. Then,

N[ ](4ǫ||Gn||P,2,Gn, L2(P )) ≤ N(2ǫ, T, dT ).

Proof. See Theorem 2.7.11 in [7].

LEMMA 2. For any q > 0.5,

logN(2ǫ, T, dT ) ≤ (p− q

2q − 1
) log

(

1

ǫ

)

+ q

(

1

ǫ

)
1

q−0.5

+ C,

where C is a constant depending on p and q.
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The proof of Lemma 2 is given in Appendix B. The key idea is to cover
the ball of radius of ǫ in the parameter space by the Cartesian product of
the ball of radius ǫ/

√
2 in the regression parameter space (in R

p) and the
ball of radius ǫ/

√
2 in the working correlation parameter space (in ℓ2). Then

the working correlation parameter space is approximated into a subspace in
a finite-dimensional Euclidean space R

k(ǫ).

LEMMA 3. Suppose the conditions (C.1 - C.2) hold. Gn satisfy the Linde-
berg condition.

Proof. Let λ be a fixed p×1 vector with ||λ|| = 1. Let Zni,A = λtM
−1/2
nα∗ |gnα∗,i|

and let Zni,B = λtM
−1/2
nα∗ DT

i (β0)Wni(Yi − µi(β0)). In the proof of Lemma 2
in Xie and Yang [9], it is shown that

∑n
i=1 EZ2

ni,AI(|Zni,A| > ǫ) → 0 for any
ǫ > 0. The Linderberg condition for the double arrays Zni,B follows from the
Lyapounov condition in C.2. Therefore, for Zni = Zni,A + diam(T )Zni,B, we
have

∑n
i=1 EZ2

niI(|Zni| > ǫ) → 0 for any ǫ > 0.

Lemmas 1 and 2 give a bracketing entropy condition:

∫ τ

0

√

logN[ ](ǫ,Gn, L2(P ))dǫ <∞, (2)

for any τ > 0 and q > 1. This condition (2) is crucial in asserting that the
class Gn is Donsker. Lemma 3 gives the Lindeberg condition for the envelope
functions Gn, which is also essential in asserting that the limit process is the
Gaussian process.

Theorem 2. Suppose the conditions (C.1 - C.2) hold. Then, Gn is a Donsker
class.

Proof. By Theorem 2.11.9 in [7], the proof of this theorem follows from (2)
and Lemma 3.

The following is an immediate consequence of Theorem 2.

Theorem 3. Let all the assumptions of Theorem 2 be fulfilled. Then, for
any consistent estimator (β̂n, α̂n) of (β0,α

∗) with Pr((β̂n, α̂n) ∈ T ) → 1,

M
−1/2
nα̂n

(

gnα̂n(β̂n) − Egnα̂n(β̂n)
)

−M
−1/2
nα∗ (gnα∗ − Egnα∗) = op(1).

9
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Note thatM
−1/2
nα∗ (gnα∗ − Egnα∗) asymptotically follows a standard p-dimensional

normal distribution. Combined with differentiability of a map β 7→M
−1/2
nα Egnα(β)

with respect to β uniformly in α, the asymptotic normality of the GEE es-
timator β̂n can be established. For notational simplicity, we define φn(β,α)

and φ̇n(β,α) as M
−1/2
nα Egnα(β) and ∂

∂β
M

−1/2
nα Egnα(β), respectively.

Theorem 4. Suppose the conditions (B.1 - B.2) and (C.1 - C.2) hold. Fur-
ther, assume that

sup
n

sup
β:||β−β0||<η

| ∂
2

∂β2φn(β,α
∗)| <∞, (3)

for small η > 0. Then, given any sequence {αn ∈ T (α∗; q)} with ||αn −
α∗|| = o(1), the corresponding consistent GEE estimator β̂n = β̂n(αn) has
the following asymptotic distribution:

φ̇n(β0,α
∗)(β̂n − β0)

d−→ Np(0, Ip).

Proof. Note that

M−1/2
nαn

gnαn(β̂n) −M−1/2
nαn

Egnαn(β̂n)

= −φn(β̂n,αn) + op(1)

= −
(

φn(β̂n,αn) − φn(β0,α
∗)
)

+ op(1)

= −
(

φn(β̂n,αn) − φn(β̂n,α
∗)
)

−
(

φn(β̂n,α
∗) − φn(β0,α

∗)
)

+ op(1)

= O(||αn − α∗||) −
(

φ̇n(β0,α
∗)(β̂n − β0) +O(||β̂n − β0||2)

)

+ op(1)

= −
(

φ̇n(β0,α
∗)(β̂n − β0)

)

+ op(1).

The first equality above follows from the definition of the GEE estimator β̂n

and the second equality above follows from the definition of the true param-
eter β0. The last second equality follows from the smoothness of φn(β,α)
in the parameter (β,α) as in the condition C.2 and the second-order Tay-
lor expansion of p-dimensional function φn(β,α

∗) at β = β0. The proof is
completed by applying Theorem 3.
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5 Weak consistency of the sandwich variance

estimator

Let us define An(β,α), Bn(β,α) and Ξn(β,α) as:

An(β,α) = M−1/2
nα

(

n
∑

i=1

∂

∂β
gnα,i(β)

)

,

Bn(β,α) = M−1/2
nα

(

n
∑

i=1

gnα,i(β)gtnα,i(β)

)

M−1/2
nα ,

Ξn(β,α) =

(

n
∑

i=1

∂

∂β
gnα,i(β)

)−1( n
∑

i=1

gnα,i(β)gtnα,i(β)

)(

n
∑

i=1

∂

∂β
gnα,i(β)

)−1

= A−1
n (β,α)Bn(β,α)A−1

n (β,α).

The sandwich variance estimator for β̂n in Theorem 4 is then given by
Ξn(β̂n,αn). In the following theorem, we show the weak consistency of
Ξn(β̂n,αn) to the asymptotic variance of β̂n by using the consistency of
(β̂n,αn) to (β0,α

∗) and the Glivenko-Cantelli property. The Glivenko-
Cantelli property of a class of functions refers to the law of large numbers
uniformly over the class. For a class to be Glivenko-Cantelli, finite bracketing
number of the class and law of large numbers for each function are sufficient.

Theorem 5. Suppose all the assumptions in Theorem 4 hold. We also as-
sume that, for all (β,α), (β′,α′) ∈ T ,

|An(β,α) − An(β
′,α′)| ≤ dT ((β,α), (β′,α′))Ãn (4a)

|Bn(β,α) −Bn(β
′,α′)| ≤ dT ((β,α), (β′,α′))B̃n, (4b)

for some Ãn and B̃n with supn EÃn <∞ and supn EB̃n <∞. Then we have

sup
(β,α)∈T

|An(β,α) − EAn(β,α)| P→ 0,

and
sup

(β,α)∈T
|Bn(β,α) − EBn(β,α)| P→ 0.

Consequently, for (β̂n,αn) in Theorem 4, Ξn(β̂n,αn) is consistent for the
asymptotic variance of β̂n.
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Proof. See Appendix C.

REMARK 4. The assumption (4) is closely related to the condition C.2 and
condition (3), but slightly stronger than those.

6 Complexity of working correlation model

In the preceding sections, a restriction of the increasing rate of rn is implicitly
imposed through

Pr(α̂n ∈ T (α∗; q)) → 1,

where α̂n has rn components to be estimated from the data. Note that

Pr(α̂n 6∈ T (α∗; q))
= Pr( max

1≤j≤rn
jq|α̂n − α∗|j ≥ 1)

≤ Pr( max
1≤j≤rn

|α̂n − α∗|j ≥
1

rqn
). (5)

In this section, by using a maximal inequality (Lemma 2.2.2 of [7]), we present
more explicit sufficient conditions on rn with suitable moments assumption
on α̂n. Throughout this section we assume the following assumption:

D.1 Each element of α̂n is estimable individually at
√
n rate:

√
n(α̂n − α∗)j = Op(1),

for j = 1, 2, · · · .
Here we restate Lemma 2.2.2 of [7].

LEMMA 4. Let ψ be a convex, nondecreasing, nonzero function with ψ(0) =
0 and
lim supz1,z2→∞ ψ(z1)ψ(z2)/ψ(cz1z2) <∞ for some constant c. Then, for any
random variables Z1, · · · , Zm,

|| max
1≤i≤m

Zi||ψ ≤ Cψ−1(m) max
i

||Zi||ψ,

for a constant C depending on ψ.

Examples of ψ in Lemmma 4 include ψk(z) = zk for any k ≥ 1 and
ψ∞(z) = ez − 1. In the following two theorems, we give sufficient conditions
on rn by applying Lemma 4 with either ψk(·) or ψ∞(·).
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Theorem 6. Let k ≥ 1 be fixed. Suppose that

lim sup
n

max
1≤j≤rn

E(|α̂n|j)k <∞.

Then, for rn = o(n
1

2(q+1/k) ), we have

Pr(α̂n ∈ T (α∗; q)) → 1.

Proof. By (5), it suffices to show that Pr(max1≤j≤rn |α̂n − α∗|j ≥ r−qn ) → 0.
By Markov’s inequality,

Pr( max
1≤j≤rn

|α̂n − α∗|j ≥ r−qn ) ≤ 1

ψk(r
−q
n /||max1≤j≤rn |α̂n − α∗|j||ψk

)
= (rqn × || max

1≤j≤rn
|α̂n − α∗|j||ψk

)k (6)

By Lemma 4 with ψk(·) ,

|| max
1≤j≤rn

|α̂n − α∗|j||ψk
≤ Cr1/k

n max
1≤j≤rn

||(α̂n − α∗)j||ψk
= r1/k

n Op(1/
√
n). (7)

Therefore, Theorem 6 follows from combination of (6) and (7).

Theorem 7. Suppose that

lim sup
n

max
1≤j≤rn

Ee(α̂n)j <∞.

Then, for rn = o(n
1
2q

−η) with any small η > 0, we have

Pr(α̂n ∈ T (α∗; q)) → 1.

Proof. The proof of Theorem 7 is almost same as the proof of Theorem 6,
except for the use of ψ∞(·) instead of ψk(·). By Markov’s inequality and
Lemma 4,

Pr( max
1≤j≤rn

|α̂n − α∗|j ≥ r−qn ) ≤ [exp(
1

rqn log(1 + rn)Op(1/
√
n)

) − 1]−1 = op(1).

This concludes the proof.

It is noted that the assumption D.1 of elementwise
√
n-consistency of α̂

is critical in Theorems 6 and 7. Since any shrinkage parameter q of slightly
greater than 1 can be chosen, the conditions on rn may be viewed as rn =
o(n

1
2
−∆), where ∆ indicates how many finite moments (α̂n)j has.
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7 Concluding Remarks

In this paper we consider the asymptotic setting for GEE in which both
m and r increase with n and present large cluster asymptotics for GEE.
The standard inference approaches for GEE models (such as the normal
approximation and the use of sandwich variance estimate) are shown to be
valid unless the working correlation model is extremely overparameterized.
Also we obtain the following sufficient conditions on the increasing rates of
m and r:

m = o(n1−δ∗),

r = o(n
1
2
−∆),

where δ∗ depends on the moment conditions of response measurements Y
and ∆ indicates how many finite moments (α̂n)j has.

APPENDIX

A Proof of Theorem 1

The proof is based on that of Theorem 2 in [9]. Let

En = {ω : ||H−1/2
nαn

gnαn|| ≤ inf
β∈∂Bnαn (r)

||H−1/2
nαn

(gnαn(β) − gnαn)||},

where ∂Bnαn(r) is the boundary of the sphere Bnαn(r). When considering a

sequence of injective functions H
−1/2
nαn gnαn(β) of β, we notice that there exists

a β̂n ∈ Bnαn(r) on the set En such that gnαn(β̂n) = 0. We first show that,
for any small ǫ > 0, Pr(En) > 1− ǫ for large n. Then the proof is completed
by showing that, for large n, on En we have Pr(||β̂n(ω) − β0|| < ǫ) > 1 − ǫ.

By Taylor’s expansion around β0,

H−1/2
nαn

(gnαn(β)−gnαn) = H−1/2
nαn

Dnαn(β̄)(β−β0) = H−1/2
nαn

Dnαn(β̄)H−1/2
nαn

H1/2
nαn

(β−β0),

where β̄ lies between β and β0. In particular, when β ∈ ∂Bnαn(r),

||H−1/2
nαn

(gnαn(β) − gnαn)|| ≥ √
zn,λ ||H1/2

nαn
(β − β0)|| = r

√
zn,λ

√
τnαn ,
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with zn,λ = zn,λ(ω) = λmin(H
−1/2
nαn Dt

nαn
(β̄)H−1

nαn
Dnαn(β̄)H

−1/2
nαn ). By the con-

dition B.2, we can choose c0 > 0 such that Pr(zn,λ > c0) > 1 − ǫ/2 for large
n. Therefore,

Pr(En) ≥ Pr(||H−1/2
nαn

gnαn|| ≤ r
√
zn,λ

√
τnαn)

≥ Pr({zn,λ > c0} ∩ {||H−1/2
nαn

gnαn|| ≤ r
√
c0
√
τnαn})

≥ Pr(zn,λ > c0) + Pr(||H−1/2
nαn

gnαn|| ≤ r
√
c0
√
τnαn) − 1

≥ Pr(zn,λ > c0) + 1 − E||H−1/2
nαn gnαn||2
τnαnc0r

2
− 1

= Pr(zn,λ > c0) −
tr(H−1

nαn
Mnαn)

τnαnc0r
2

≥ Pr(zn,λ > c0) −
p

c0r2

Note that the last inequality above follows because Mnα ≤ τnαHnα.

Thus, by taking r = r(ǫ) =
√

2p
c0ǫ

, we have Pr(En) > 1− ǫ for sufficiently

large n. The weak consistency of the GEE estimator β̂n ∈ Bnαn(r) on the
set En follows immediately, since the condition B.1 implies

Bnαn(r) ⊂ {β : ||β − β0|| ≤ r

√

τnαn

λmin(Hnαn)
} ⊂ {β : ||β − β0|| ≤ ǫ},

for large n.

B Proof of Lemma 2

Since T is defined as the Cartesian product T (β0)×T (α∗; q) with the metric

dT ((β1,α1), (β2,α2)) =
√

d2
1(β1,β2) + d2

2(α1,α2),

we have

logN(2ǫ, T, dT ) ≤ logN(
√

2ǫ, T (β0), d1) + logN(
√

2ǫ, T (α∗; q), d2). (8)

A bound for the first term in the right hand side of (8) is given as:

N(
√

2ǫ, T (β0), d1) ≤ C1 × (
1

ǫ
)p, (9)
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with a constant C1 depending only on p and the diameter of T (β0).
A bound for the second term in the right hand side of (8) is obtained by

approximating T (α∗; q) into a finite-dimensional Euclidean space. Note that

logN(
√

2ǫ, T (α∗; q), d2) ≤ logN(ǫ, Tk0(ǫ)(α
∗; q), d2),

where k0(ǫ) = inf{k ∈ Z
+;
∑

i>k i
−2q < ǫ2}, and Tk(α

∗; q) is the projection

of T (α∗; q) onto Rk × {0} × {0} × · · · . Also note that k0(ǫ) ≈ ǫ−
1

q−0.5 . Since
a maximum length of hypercube in R

k contained in a ball of radius ǫ is 2ǫ√
k
,

we have

N(ǫ, Tk0(ǫ)(α
∗; q), d2) ≤

k0(ǫ)
∏

i=1

i−q

ǫ/
√

k0(ǫ)

=
1

{k0(ǫ)!}q
× {

√

k0(ǫ)

ǫ
}k0(ǫ)

≈ { 1
√

2πk0(ǫ)
}q × { e

k0(ǫ)
}q·k0(ǫ) × {

√

k0(ǫ)

ǫ
}k0(ǫ)

= {2πk0(ǫ)}−q/2 × { eq

ǫ · k0(ǫ)q−0.5
}k0(ǫ)

≈ {2πk0(ǫ)}−q/2 × (eq)k0(ǫ)

≈ {2π}−q/2 × (
1

ǫ
)−

q
2q−1 × exp{q(1

ǫ
)

1
q−0.5}. (10)

Stirling’s approximation to the factorial is used in (10). The proof is com-
pleted by combining (8), (9) and (10).

C Proof of Theorem 5

We work with An(β,α) and Bn(β,α) separately.
We first consider An(β,α). Let An be the class of functions {An(β,α) :
(β,α) ∈ T}, and let Ān be the corresponding envelope function in the
form of sum of n independent, but not necessarily identically distributed,
functions (i.e., Ān = M

−1/2
nα∗

∑n
i=1Ani). From the condition C.2, we can

assume that EĀ2+δ
n = o(1) for δ > 0 in the condition C.2, which immedi-

ately yields the weak convergence of An(β,α) for each (β,α) ∈ T . Note
that, by the same arguments as in Lemma 1, the condition (4a) implies that
supnN[ ](ǫ,An, L1(P )) < ∞. It then follows from the standard proof of the
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Glivenko-Cantelli theorem (Theorem 2.4.1 in [7]) that

sup
(β,α)∈T

|An(β,α) − EAn(β,α)| P→ 0.

Since the condition (4a) also implies the uniform equicontinuity of EAn(β,α),
we have

|An(β̂n,αn) − EAn(β0,α
∗)| P→ 0. (11)

Note that

EAn(β0,α) = EM−1/2
nα

(

∂

∂β
gnα(β)

)

β=β0

=

(

∂

∂β
M−1/2

nα Egnα(β)

)

β=β0

= φ̇n(β0,α),

where the interchange of differentiation and integration is justified by the
integrability of the envelope function Ān.
We now considerBn(β,α). In a manner analogous to the above, we define the
corresponding class Bn = {Bn(β,α) : (β,α) ∈ T} and the envelope function

B̄n for Bn. Note that EB̄
1+δ/2
n = o(1) for δ > 0 in the condition C.2, and hence

that |Bn(β,α) − EBn(β,α)| P→ 0 for each (β,α) ∈ T . Under the condition
(4b), Bn is Glivenko-Cantelli and EBn(β,α) is uniformly equicontinuous.
Therefore, we have

|Bn(β̂n,αn) − EBn(β0,α
∗)| P→ 0. (12)

Note that EBn(β0,α) = Ip.
The proof is completed by combining (11) and (12).
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