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1. INTRODUCTION

Semiparametric models are widely used to characterize the relationship between survival
time and covariates. Popular semiparametric models include the proportional hazards model
(Cox, 1972), the additive hazards model (Aalen, 1980) and the accelerated failure time model
(Kalbfleisch & Prentice, 1980). Although these semiparametric models are more flexible than
parametric models, they may still be restrictive in practice. Recently, efforts have been devoted
to relaxing assumptions on these models. One attractive extension is the transformation model,
which assumes that an unknown monotone transformation of the survival time depends on the
covariates through a linear model. Cheng et al. (1995), Fine et al. (1998) and Chen et al. (2002)
studied the case when the error has a known distribution and the transformation function is’
unspecified, and Cai et al. (2003) explored the situation of a specific parametric transformation
(Box-Cox transformation) with no parametric assumptions on the error; the former includes the
proportional hazards model as a special case and the latter includes the accelerated failure time
model as a special case. A more flexible form is the nonparametric transformation model that
makes no parametric assumptions on either the transformation function or the error. This model
includes the aforementioned models as special cases.

Several approaches have been proposed for estimating the regression parameters in the non-
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Nonparametric Transformation Survival Model 3

parametric transformation model with uncensored outcomes, including the maximum rank cor-
relation estimator (Han 1987) and the monotone rank estimator (Cavanagh & Sherman 2001).
Both estimators can be extended to the case of censored survival outcomes using the inverse
censoring probability weighting technique (Khan & Tamer 2004). However, this requires that
the censoring time is independent of the survival time and the covariates, and that the support
of censoring time contains that of the survival time. Such restrictions may be unrealistic even
for randomized clinical trials. Recently, Khan & Tamer (2004) proposed an appealing partial
rank (PR) approach that relaxes these assumptions. This approach allows the censoring time to
depend on the covariates as long as it is conditionally independent of the survival time given the
covariates, and there is no restriction on the support of the censoring time. However, like the
maximum rank correlation estimator and the monotone rank estimator, the partial rank estima-
tor is based on maximization of a discontinuous function. It is difficult to compute this estimator

when there are multiple covariates.

In this paper, based on the partial rank estimator of Khan & Tamer (2004), we propose a
new estimator, called the smoothed partial rank (SPR) estimator, for estimating the regression
parameters in the nonparametric transformation model. The proposed estimator maximizes a
smoothed partial rank objective function. Smoothing makes it feasible to adapt the rank based
approach to data with multiple covariates, without loss of asymptotic efficiency. We further pro-
pose using the weighted bootstrap for computation of the variance by analogy to that introduced

in Jin et al. (2001).

The paper is organized as follows. We give the model definition in Section 2. The estimator
is derived in Section 3. We show the asymptotic properties and propose the weighted bootstrap
method in Section 4. The finite sample properties of the estimator is assessed by simulation
studies in Section 5. We apply the approach to a real dataset in Section 6. The paper concludes

with discussions in Section 7.
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4 X.Song, S.Ma, J.JuaNG AND X.H.ZHOU

2. MODEL DEFINITION

Let T denote the survival time, C denote the censoring time, and Z be a length d vector
of covariates. Under right censoring, the observed survival data are V = min(T,C) and A =
I(T < C). Assume that the survival time depends on the covariate through the nonparametric

transformation model,

o) =FZ +e, (1)

where g(-) is an unspecified monotone function, e is the random error term with an unknown
distribution independent of Z, 3 is a length d regression coefficient, and 3’ denotes the transpose
of 3. This model is very flexible and includes many of the popular models as special cases. For
example, the proportional hazards model and the proportional odds model are two special cases
of (1) with e following the standard extreme value and logistic distributions, respectively; the
accelerated failure time model is a special case of (1) with g(-) = log(-). However, the additive
hazards model (Aalen 1980) is not a transformation model.

The nonparametric transformation model is location and scale invariant. To avoid identifia-
bility problem and without loss of generality, the first element of § is restricted to 1, that is,

B = (1,8"). Our interest focuses on estimation of .

3. ESTIMATION

Suppose that the observed data (V;,A;, Z;), ¢ = 1,...,n, are independent and identically
distributed as (V,A, Z). The partial rank (PR) approach (Khan & Tamer 2004) is based on
the partial ranks of the observed survival times, the event indicators and the linear predictors.
Specifically, the partial rank estimator has the form

§ = argmax {On(ﬂ) - S T AV VI (B 2> £2,) ¢, @)
i)
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where I{-) is the indicator function, and B = (1,0"Y. The objective function Oy can be considered
as generalization of Kendall’s T-correlation statistic to censored data, which is a U-statistic of
order 2. Loosely speaking 3 seeks to maximize the Kendall’s T-correlation between the survival
time and a linear combination of covariates. Under regularity conditions similar to those given
in the Appendix, Khan & Tamer (2004) proved that the partial rank estimator is /7 consistent
and asymptotically normal, using the standard U-statistic theory developed in Han (1987) and
Sherman (1993). However, we note that the objective function O,.(B) can be viewed as a weighted
sum of indicator functions and hence discontinuous. Maximization can be extremely difficult when
there are multiple covariates. In the case of d > 2, a brutal search is usually needed to obtain
the estimator, which is very time-consuming. Although the Nelder-Meader method (Nelder &
Meader, 1965) may be an alternative faster optimization method, it may even fail to reach the
local maxima, especially when d is relatively large.

To tackle this difficulty, we propose to use a continuous differentiable function to approximate
the indicator function containing 8 in (2). Then the objective function will be a smooth function
of B. Specifically, we propose using the sigmoid function s(u) = 1/{1 + exp(—u)}. For large |u|,
s(u) is a good approximation to I(u > 0). However, for u close to 0, this approximation is not
accurate and thus may lead to biased estimator of 5. An effective way to improve accuracy is to
introduce a sequence of strictly positive and decreasing numbers oy, satisfying lim, oo 0n = 0,
and using s,(u) = s(u/oy,) to approximate I(u > 0) in (2). Then the smoothed partial rank
(SPR) estimator J is given by

b= argmpx { 0nlB) = = > AV Van (92~ 0Z5) [ 3)
Here 3 = (1,6'). Following the same arguments as in Khan & Tamer (2004), we can show that
0,(f) is also a U-statistic of order 2.

The objective function Oy, is continuously differentiable. So commonly used algorithms, for
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6 X.SonG, S.Ma, J.JuaNG AND X.H.ZHOU

example the Newton-Raphson algorithm or the gradient search method, can be used to obtain
,é. Compared with brutal search as needed for maximizing O,,, those algorithms are fast and
relatively insensitive to the number of covariates.

A similar approach was proposed by Horowitz (1992) in the context of maximum score estima-
tor for the binary response model. Horowitz considered a general class of distribution-like kernel
functions for approximation of I(u > 0). Let K (u) be a differentiable distribution function on the
real line such that it is non-decreasing and satisfies limy ., oo K (u) = 0 and limy_, 400 K(u) = 1.
Then K,(u) = K(u/0y) can be used to approximate I(u > 0). Since the sigmoid function is also
the logistic distribution function, s, is a special case of K,,. Because of the good approximation

property and simplicity of s, we focus on sy, in this paper.

4. ASYMPTOTIC PROPERTIES
4.1. Consistency and asymptotic normality

We now investigate the asymptotic properties of the proposed SPR estimator. We state the
main results here and relegate the regularity conditions and the proofs to the Appendix.

THEOREM 1. Under assumptions Al—A6 given in the Appendix, if o, — 0 as n — oo, then
,3 — [y almost surely as n — oo.

Theorem 1 establishes the consistency of the proposed SPR estimator. We now investigate the
asymptotic distribution of the SPR estimator. Recall that 8 = (1,6')". To indicate that 8 is the

actual parameter, write 3(8) = (1,0'). Let X = (V, A, Z), x = (v,4, z). First we define
7(z,0(0)) = E{AI(v > V)I (8'z— f'Z > 0) + 6I(V > v)I ('Z — §'z > 0)} -

The asymptotic distribution of 6 is given in the following theorem.
THEOREM 2. Under assumptions A1-A8 given in the Appendix, if o — 0 as n — o0,

nl/2( — ) — N(0,X), where & = A~'B{A"'}, A = —E{v2r(z,B(60))}/2, and B =
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Nonparametric Transformation Survival Model 7

E{v17(z, B(60)) V1 7' (z, B(60))}-
Theorem 2 shows that the SPR estimator is asymptotically equivalent to the PR estimator.
We refer to Khan & Tamer (2004) for the asymptotic properties of the PR estimator. The results
hold generically when the sigmoid function s(-) is replaced by any symmetric distribution function

with a continuous second-order derivative.

4.2. Inference

We can estimate the variance-covariance matrix X by the plug-in estimator
Tn = A7 Bo{A7TY,
with 2An =—-V2 On(ﬂ(é)) and Bn =n"1 Z;'l=1 {Vl'f'n(vaﬂ(é)) V1 %:L(X]7ﬂ(é))}1 where

n
(@, B(8) =1 > {Ad(v 2 Vi)sn (8'z — B'Z:) + 81(Vi 2 v)sn (B'Z: — B'2)}-
i=1
However, empirical studies show that this plug-in estimator can be unstable and sensitive to
the choice of the tuning parameter oy, especially for small sample size cases. Alternatively, we
consider using the following bootstrap by analogy to that used in Jin et al. (2001) and Cai et al.

(2005). Specifically, consider a stochastic perturbation of On(B8(6)) which has the form of

1

O¥(B(8)) = ——= D (Wi, Wj)A;1(Vi = Vj)sn (B'Z: — B'Z5),
n{n—1) oy
where W;, i =1, ...,n, are independent realizations of a positive random variable W, which has

a known distribution, and k is a known function as follows.
THEOREM 3. Assume assumptions A1-A8 hold and o, — 0 as n — oo. Let 6* be the

maximizer of O¥(3(0)). If
Cl. W has mean y > 0 and variance 4p? and h(W;, W;) = W; + Wj; or

C2. W has mean 1 and variance 1 and h(W;, W;) = W; W,
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8 X.SoNG, S.Ma, J.JuanG AND X.H.ZHOU

then conditional on the data {(Vi, A, Zy),i = 1,...,n}, nl/2(§* — §) — N(0,X).

Theorem 3 implies that the distribution of nl/? (é —6p) can be approximated by the conditional
distribution n!/2(8* — §). Thus in practice, we can generate a large sample of {W;,i=1,...,n}.
For each realized sample, compute #*. Then the asymptotic variance of 6 can be approximated
by the sample variance of 6*. To distinguish the two weighted bootstrap methods, the former
(C1) is termed type I and the latter (C2) is termed type II. The validity of the type I weighted
bootstrap follows directly from the U-statistic format of the objective function Oy, the asymptotic
normality result in Theorem 2 and Proposition A3 of Jin et al. (2001). Validity of the type II
weighted bootstrap can be proved using similar arguments as those in Cai et al. (2005). It can
be shown that these weighted bootstrap methods can be applied to the PR estimator as well,

due to the U-statistic format of O, (3) and the asymptotic normality of the PR estimator.

5. SIMULATION STUDIES

Extensive simulation studies are conducted to assess the performance of the SPR estimator.
First, we compare the performance of the SPR estimator and the PR estimator in the case of two
covariates with one estimable regression parameter. We consider this simple setting to save com-
putational cost for the PR estimator, which demands computationally expensive brutal search.
We assume that the two covariates follow a bivariate normal distribution with mean (1,0-5),
variance 1 for each covariate and covariance —0-2 between the two covariates. The survival time
T depends on Z; and Z, through a proportional hazards model with the regression coefficients
equal to (—1, —1) and the baseline hazard equal to 1. This model corresponds to the transforma-
tion model (1) with § = 1. The censoring time C is generated from an exponential distribution
with mean 4, leading to a censoring rate of 52%. The SPR and PR estimates are computed for
100 datasets with sample size n = 200. The standard errors are estimated using the sandwich

method and the two weighted bootstrap methods with 100 samples of {W;,i=1,...,n}. The
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Nonparametric Transformation Survival Model 9

95% Wald confidence intervals are calculated correspondingly. For the two weighted bootstrap
methods, W; are generated as follows: W;/10 follows Beta(0-125,1-125) for the type I weighted
bootstrap, and v2W;/(v/Z — 1) follows Beta(v/2 — 1,1) for the type II weighted bootstrap. The
sandwich variance estimator of the PR estimator depends on the selection of the smoothing pa-
rameters, say &1 for A and & for B, respectively (Sherman 1993). The SPR estimator depends
on the choice of the smoothing parameter o,,. To assess the impact of the smoothing parameters
on the performance of the estimators, we conduct simulations with o, = en™1/2, £, = en~1/4 and
& = en~1/6, where c takes the values 1/9, 1 and 3. The results are shown in Table 1. Both the
PR and the SPR estimators show negligible biases. The weighted bootstrap methods perform
well for both estimators: the standard errors track the sampling standard deviation reasonably
well with better performance for the type I method, and the coverage probabilities are close to
the nominal level. In contrast, the sandwich method is sensitive to the choices of the smoothing
parameters: it performs well when ¢ = 3, but when ¢ = 1/9, the standard errors seriously under-
estimate the standard deviations and the coverage probabilities are well below the nominal level;

the performance for ¢ = 1 lies between those for ¢ = 1/9 and 3.

Next we consider the case of three covariates with two estimable parameters. The covari-
ates are generated from a multivariate normal distribution with mean (0,1,0-3), variance 1 for
each covariate and covariance 0.2 between any two covariates. The survival time T depends on
the covariates through a proportional hazards model with the regression coefficients equal to
(~1,0-5,—0-5) and baseline hazard equal to 1. This model corresponds to the transformation
model (1) with 8 = (6;,602) = (=0-5,0-5). The censoring time C is generated as above, leading
to a censoring rate of 36%. We fit the model using only the SPR approach because it is very dif-
ficult to implement the PR method in this case. Table 2 presents the results from 100 simulated
datasets with n = 200 and the smoothing parameter o = en~2 =1 /9,1,3. The performance

of the SPR estimator is similar to that observed for one estimable parameter except that the
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10 X.SonNg, S.Ma, J.JuaNG AND X.H.ZHOU

type II bootstrap method performs worse for ¢ = 1/9 and 1 with the coverage probabilities for

0, reaching 1.

We have also conducted simulations under other survival models such as the accelerated failure
time model and observed similar results. The type I bootstrap method outperforms the type II
method in all the cases. We note that as sample size increases, the performance of the type
1I method improves and is able to provide satisfactory inference results with moderate to large
sample size cases. We also note that the bootstrap distribution may be skewed if the sample size is
not large and there may exist some “outliers” due to the failure of reaching the global maxima for
some bootstrap samples. In contrast, the normalized median absolute deviation of the estimates
obtained from the bootstrap datasets are relatively stable and close to the empirical standard
deviation (see Tables 1 and 2). We suggest using the normalized median absolute deviation from

the type I bootstrap method to estimate the standard error.

The accuracy of approximation depends on the tuning parameter ¢,,. Theoretically speaking,
the smaller the o, is, the better the sigmoid approximation is. Extensive simulation studies
show that as long as oy, is small enough, the SPR estimate is insensitive to the choice of oy.
However, numerical studies also show that for extremely small o,, the maximization procedure
may be unstable. In data analyses, a rule of thumb for choosing o, is to guarantee a majority
of |68/(Z; — Zj)/on| > 5 (Gammerman, 1996). We propose the following approach for choosing
0. Initialize 00 = a,, where a, is user-specified and data-independent, satisfying a, — 0 as
n — oo. In our data analysis, we use a,, = 1/+/n. Construct the SPR estimate B with ¢, under
the identifiability constraint. Theoretically speaking, the estimator with 6% = a, is consistent.
Denote o, as the largest constant such that 95% of the |B'(Z; — Z;)/on| is greater than 5. Set
o, = min(o2,0l). With the proposed procedure, the asymptotic requirement o, = o(1) is met;
meanwhile the rule of thumb for choosing oy, is also satisfied. Extensive simulation studies show

that the estimation and inference results are relatively not sensitive to the choice of a,, as long
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as it is small enough.

6. REAL DATA EXAMPLE

As illustration, we apply the proposed approach to the Veterans Administration lung cancer
data described in Kalbfleisch & Prentice (2002, pp.71-2), which includes data from a clinical
trial of 137 patients with advanced inoperable lung cancer. The patients were randomized to
either a standard or test chemotherapy. The survival time was time to death. There were 128
events. We consider five covariates: Z; = age/100, Z; = diagtime/100, Z3 = I(treatment =
test chemotherapy), Z4 = karno/10, and Zs = prior/10. The nonparametric transformation
model is fitted using the SPR approach with the regression parameter of Z; fixed at 1. The
standard errors are computed using the type I resampling method as suggested at the end of
Section 5. Since the sample size is small, the standard errors are large. For the purpose of
comparison, we also fit the Cox proportional hazards model and the accelerated failure time
model with the same covariates. If the Cox model fit the data well, we would expect the ratios of
the corresponding coefficients from the two models to be close to a constant. However, the results
given in table 3 indicate that the proportional hazards assumption may not hold. This is further
confirmed by the testing method in Therneau & Grambsch (Ch. 6.2, 2000) with the p-value
being 0.0008. The results from the accelerated failure time model are also given for comparison.

Note that for the Cox model, the accelerated failure time model and the nonparametric trans-
formation model, the estimated linear combination of the covariates $'Z may be used as a
predictor for survival. The predictive capacity may be assessed using the areas under the sur-
vival ROC curve (AUC) proposed by Heagerty et al. (2000). Figure 1 shows the AUCs for the
estimated linear combinations for these three models over a range of times. The AUCs from
the nonparametric transformation model are greater than those from the Cox model and the

accelerated failure time model except at a few times before 30 days. Thus the nonparametric

http://biostats.bepress.com/uwbiostat/paper3o2



12 X.SoNG, S.Ma, J.JuanNGc anD X.H.ZHOU

transformation model appears to provide a better fit to this dataset.

7. DISCUSSION

We have proposed a smoothed partial rank estimator for the nonparametric transformation
model for survival data with no parametric assumptions on both the transformation function
and the error distribution. The proposed estimator is asymptotically equivalent to the partial
rank estimator, but is much easier to compute in the case of multiple covariates. The idea of
smoothing the objective function can be extended to estimate the transformation function and

will be investigated in our future research.

Using a smooth function as an approximation of the indicator function has been extensively
used in machine learning and neural network studies (Gammerman, 1996). Gammerman (1996)
noted that such an approximation may lead to multiple local maxima in neural network studies.
The global maximum may be detected by varying starting values. Although empirical studies

show this does not pose a serious problem for our study, future investigation will be pursued.

A more general model is T = g{h(8'Z,¢)}, where h is a strictly increasing function of each of
its components. This model included the additive hazards model as a special case, which does
not belong to the framework of model (1). The estimation and inference procedure in this paper

can be extended to this general model.
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APPENDIX

Technical Details

We note that the only special properties of the sigmoid function we use in the proof of Theorems

1 and 2 are its symmetry, s(u) + s(—u) = 1, and that it is smooth and has a continuous second

derivative. Therefore, the proofs below are valid when we use any scaled symmetric distribution

function with a continuous second derivative as an approximation to the indicator function I{(u >

0).

Regularity Conditions. Let R be the support operator, for example, R(Z) denotes the support

of Z. Denote Fg = (1,6)" as the true value of 3. Let x denote the last d — 1 components of the

covariate vector Z, let g%(w|r) denote the conditional density of W = )Z given x = r, and let

p°(6,y, w|r) denote the conditional density of (A,Y, W) given x = r. We assume the following

conditions.

Al

A2.

A3.

A4,

A5.

A6.

AT

The set {Z € R(Z) : Pr(A = 1|Z) > 0} has a positive measure.
The random error ¢ is independent of C and Z.

The first component of Z has everywhere positive Lebesgue density, conditional on other

components.

The parameter space B containing fy is a compact subset of R<.
R(Z) is not contained in any proper linear subspace of R¢.

T and C are conditionally independent given Z.

(a) For each z, the function 7(z,3(6)) is twice differentiable with respect to # in a neigh-
borhood of 8y with the k** derivative 7x7(x,3(8)), k = 1,2. The second derivative
Va27(z, B(6)) satisfies the Lipschitz condition. (b) The partial derivatives of ¢g°(w|r) and

p°(d, y, w|r) with respect to ¢ exist and are bounded.

http://biostats.bepress.com/uwbiostat/paper3o2



14 X.SoNG, S.Ma, J.JuanG AND X.H.ZHOU
A8. E||v17(z,B(00))||* and E||727(z, 8(60))| are finite, and E{v27(x,5(60))} is nonsingular.

Assumptions A1-A6 are relatively mild and close to their counterparts in Khan & Tamer
(2004). Particularly, assumptions Al, A2 and A6 are usually made for semiparametric models
with censored survival data; assumptions A3—-A5 are needed for identifiability. Assumptions A7
and A8 are made to guarantee the \/n consistency and asymptotic normality of the partial rank
estimator in Khan & Tamer (2004).

Proof of Theorem 1. Since it has been proved in Khan & Tamer (2004) that the partial rank
estimator is consistent, it suffices to prove that supgcp |On(8) - On(B)] =5 0.

For any 7 > 0, we have

0n(8) = On(6)] = =gy [ ATV 2 VOHI(B (2= Z5) > 0) = 50l = Z3)))
1#7
< Tn1 + Tha, ’
where
Toy = ———— 3" AGI(V; 2 V;) [1(8(Zi — Z5) > 0) — sa(B(Z: — Z)]
nl n(n—l) pore '] 1= Vj i g n i 7
I(8(Z; - Z;) > 1),

T = e S ATV 2 V) U(B(Zs ~ 2) > 0) = 6ul(8'(Z: - Z,)

i#j
I(8(Z: ~ Z;) <)

On the set {|u| > n}, we have |s,(u) — I(u > 0)| < exp(—|u|/o,) < exp(—n/oy)- Thus when
gn — 0, sp(u) — I(w > 0) uniformly on the set {|u] > n}. Therefore, T, converges to 0
uniformly over 6. The second term Ty, < {n(n — 1)}~! iz 1(18'(Zi — Z;)| < m)- Since the
class of indicator functions {I(|8'(Z; —Z;)| < n) : § € B} is manageable, by uniform convergence
of U-processes (Theorem 7, Nolan & Pollard 1987), the right-hand side converges almost surely
to P(|8'(Z; — Z,)| < n) over B. However, under assumption (A2), it can be proved in a similar
way as in Lemma 4 of Horowitz (1992), P(|3'(Z; — Z;)| < 1) converges to 0 uniformly over B as

1 — 0. This completes the proof of consistency.
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Proof of Theorem 2. Theorem 2 can be proved following the method of Sherman (1993). Using
the same notations as those in Section 4.1, we first define
f(zlv T2, 13(0)) = f*(wla $2,ﬂ(0)) - f*(zly T2, ﬂ(eo)),
fn(mlvz%ﬂ(e)) = f-y,:(xlvw%ﬂ(a)) - fr:(wlax% ﬂ(o()))a

where

F*(@1, 22, 8(8)) = 21 (vy > v2)I (B'21 — B'22 > 0) + 611 (v2 2 v1)I (822 — f'21 > 0),
Fr(@1, 22, 8(0)) = 821(v1 > v2)sn (B'21 — B'22) + 611(v2 2 v1)sn (B'22 — B'z1) -

Note that f, is the smooth approximation of the function f. In Section 4.1, we defined
7(z, B(8)) = E{f*(x,X,5(6))}. We now consider its smoothed counterpart E{7,(z,5(f))} with
(z, 8(6)) = E{f%(z,X,B(8))} and the expectation is over X. Denote P, as the empirical
measure and U,, as the U-process operator as in Sherman (1993). Consider the function I'n(f) =
On(8) — On(6o)-

First, we have

V17a(z, B(0)) = v17(z, B(6)) + O(0s) and T2 Tu(, B(6)) = Vor(z, B(6)) + O(on)  (A.1)

These equations can be proved based on condition (A7) and by noting that s,(u) + sn(—u) =1,
rewriting 7, as an integral, changing variables in the integral, and using the Taylor expansion.

We can write I',(6) = Tno(8) + Pagn(-,0) + Unhn(:,+,8), where

Fno(o) = Efn('7 ',0)7
gn(,8) = Efn(z,,0) + Efn(:,2,0) — 2Tno(0) = (z,8) — Tn(z,00) — 2T'n0(6), and

hn(21,22,8) = falz1,%2,0) — Efn(z1,-,0) — Efn(:,22,6) + Tno(8)-
Next we show that

Tag(6) = (6 — 60 A( — ) + O(aul6 — bal) + (6 — B0l), (A.2)

http://biostats.bepress.com/uwbiostat/paper3o2



16 X.SoNG, S.MA, J.JUANG AND X.H.ZHOU
Prgn(-8) = n7Y2(8 — 80)' Gy + O(0n]0 — 8o]) + 0(10 — 60]*), (A.3)
where G, = VnP, v1 7(-,00) —4 N(0, B), and
Uphn(:y,0) = 0p(n71) (A4)

uniformly in an 0,(1) neighborhood of 6.

To prove (A.2), we first note that
1
Tno(6) = 5(9 — 80)' An(6 — 80) + O(cn|0 — 65]) + o(160 — 60[?), (A.5)

where A, = —3E{Vama(z,5(0))}. This can be proved by following Theorem 4 of Sherman
(1993). We then conclude (A.2) by noting (A.1) and the assumption that o,, — 0.
Equation (A.3) can also be proved following Theorem 4 of Sherman (1993) and (A.1).

To prove (A.4), consider the function

h(z1, 22, B(6),0)

= f(.’El,!Ez,ﬂ(o),O') - Ef(xla ',16(9)’0') - Efn('vz% ﬂ(g)ag) + Efn('; '1[3(0)10)'

Since o, — 0, it suffices to show that Unh(:,-,8(8),0) = op(n~!) uniformly over an o,(1)

neighborhood of (8g,0). First, by assumption A3 and using the dominated convergence theorem,
Ehi(.’l},X, 0) —0 as (0301&) - (0030)

Consider S = {h(z, X, 8(0),0,) : B € B,o, € (0,1]}. Note that S is Euclidean by Lemma 22 (ii)
of Nolan & Pollard (1987) and it is bounded by 4. Therefore, (A.4) follows from Theorem 3 of
Sherman (1993) or Corollary 8 of Sherman (1993).

Finally, based on (A.2), (A.3), (A.4), and the assumption that o, — 0, by Theorem 1 of
Sherman (1993), § — 8y = Op(n~'/2). The asymptotic normality now follows from Theorem 2 of

Sherman (1993). See also Theorem 3.2.16 of Van der Vaart & Wellner (Ch. 3.2, 1996).
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Table 1. Simulation results in the case of one estimable regression parameter.
Sandwich Resampling I Resampling II

c B SD SE CP MAD SE CP MAD SE (0334

1/9 PR 0-031 0-186 0-036 0-23 0-189 0-213 0-96 0203 0-229 096

SPR 0-031 0-184 0-013 0-09 0-176 0-208 0-96 0-198 0-226 0-96

1 PR 0-031 0-186 0-155 0-89 0-189 0213 0.97 0203 0-226 0-96

SPR 0-030 0-170 0-172 0-87 0-176 0-202 0-96 0-218 0218 098

3 PR 0-031 0-186 0-182 092 0-189 0214 097 0203 0-231 0-96

SPR 0-077 0-177 0-191 094 0-187 0199 097 0-196 0-212 095
Resampling I, type I resampling method with h(W;, W;) = W; + W;; Resampling II, type II resampling
method with h(W;, W;) = WiW;; B, bias; SD, empirical standard deviation across simulated data sets;

SE, average of estimated standard errors; CP, coverage probability of the 95% Wald confidence interval;
MAD, normalized median absolute deviation.

Table 2. Simulation results in the case of two estimable regression parameters.
Sandwich Resampling I Resampling II
c B SD SE CP MAD SE CP MAD SE CP

1/9 6, —0-015 0-132 0-009 011 0-125 0139 096 0-135 0-148 0-98
02 0-008 0-131 0-011 0-07 0-147 0-154 0-98 0-151 0-167 1-00

1 6 —-0.012 0-123 0-119 0-80 0-120 0-130 0-95 0-129 0-139 097
02 0-013 0-122 0-129 0-88 0-138 0-145 0-98 0-141 0-157 1-00
3 6 —-0-035 0-122 0-125 0-96 0-122 0-129 0-96 0-128 0-135 096

02 0-0564 0-127 0-140 095 0-139 0145 095 0-144 0-152 097

Resampling I, type I resampling method with h(W;, W;) = Wi + W;; Resampling II, type II resampling
method with h(W;, W,) = W;W;; B, bies; SD, empirical standard deviation across simulated data sets;
SE, average of estimated standard errors; CP, coverage probability of the 95% Wald confidence interval;
MAD, normalized median absolute deviation.
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Table 3. Results for the Veterans Administration data.
age/100 diagtime/100 treatment karno/10 prior/10
Model Est SE Est SE Est SE Est SE Est SE
Cox —0-388 0-925 0-172 (-900 0-193 0-186 —0-341 0053 —0-078 0-222
AFT 0479 1-104 0-142 1.018 —0-133 0-203 0-364 0-054 0-065 0-248
NT 1 —_— 3-627 13-549 —1-874 4-930 8-428 6-927 6-343 7-490

AFT, accelerated failure time model; NT, nonparametric transformation model. protime, pro-
thrombin time.
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Fig. 1. Estimated AUC for the Veterans Administration data. Solid line, nonparametric transformation
model; dotted line, Cox model; dashed line, accelerated failure time model.
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