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1. Introduction With increasingly refined genomic knowledge and technology,

whole-genome studies are becoming a mainstay of biomedical research. Examples in-

clude expression array experiments, comparative genomic hybridization analyses and

case-control studies for detecting single nucleotide polymorphism (SNP)/disease asso-

ciations. Because of the large number of loci studied per subject and the resulting

numbers of statistics that are generated, statistical methods for controlling the number

of potentially spurious findings are needed. While the idea of controlling the False Dis-

covery Rate (FDR)(Reiner et al, 2003; Storey and Tibshirani, 2003) or Positive False

Discovery Rate (pFDR)(Storey, 2002) has become popular, existing implimentations

of these methods might be inadequate for some purposes. For example, when used in

practice, the true FDR (or pFDR) is unknown and is replaced by an estimated propor-

tion. Methods for estimating the FDR (or pFDR) are subject to varying degrees of bias

and variation (Pawitan et al, 2005; Broberg, 2005; Owen, 2005), and their behavior can

depend on the dependence stucture of the data. One popular pFDR method has been

shown to markedly underestimate the false discovery rate in the presence of a modest

number of true positives and modest correlation between test statistics (Yang et al,

2005). The development of confidence intervals for FDR estimates in the presence of

correlated data will help alleviate this uncertainty. In the meantime, the Bonferroni

correction remains a reliable method for controlling the marginal false positive rate.

This method is employed in a multi-stage design to detect SNP-disease associations in

the Women’s Health Initiative (Prentice and QI, 2006). The well-known shortcoming

of the Bonferroni correction is that it is conservative, controlling the family-wise type

I error at lower than the nominal level, though the exact level of control is unknown.

The Bonferroni correction is least conservative when applied to uncorrelated test statis-

tics. Moderate to high levels of correlation among some groups of test statistics can

be expected in most whole-genome studies. Potential statistical power is lost when this

correlation is ignored.

In this article, we show that regression methods for misspecified multivariate out-
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comes can be applied in whole-genome studies in order to gain power over methods that

model the outcome independently for each locus. (Note that regression for multivariate

outcomes should not be confused with the phrase “multivariate logistic regression” that

refers to a univariate outcome modeled as a function of more than one independent

variable. The phrase is commonly used in elementary biostatistics textbooks.) In sit-

uations such as a case-control study where the outcome usually is not regarded to be

multivariate (case versus control status), it is mathematically valid to view the outcome

as a set of (identical) repeated measurements, one associated with each genetic locus.

When applying multivariate outcome methods, it is common to regard all data collected

on one subject as a belonging to a single multivariate observation. Instead, we apply

multivariate methods to subgroups of outcome/covariate pairs. This represents an in-

termediate between determining a joint distribution for all test statistics and making

the assumption of independence among all statistics, with the latter being a special case

of the proposed method. We provide some guidelines on how to form these subgroups

below. In fact, most of the thousands of test statistics generated in genome-wide studies

can be expected to have negligible pair-wise correlations, and it is likely of little use to

estimate the entire joint distribution even if it were practically possible. For example,

in a SNP-disease association study, only test statistics for SNP locus pairs that are

close spatially or that are both related to the outcome are expected to be correlated.

Hence, effective joint modeling of such SNPs within a relatively small subgroup (“clus-

ter”) should provide much of the possible power gain that one could ideally obtain.

(For brevity, we use the terms “SNP” and “SNPs” to mean SNP locus and SNP loci,

respectively, where appropriate.)

Any multivariate estimation method that remains valid under misspecification of

the correlation structure could be applied in the manner we describe, but we focus

here on the use of generalized estimating equations (GEE) for analysis of case-control

studies. GEE can provide power gains both by taking into account correlation during the

estimation procedure to produce smaller standard errors for single SNP test statistics
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and by producing an estimated joint distribution. However, it is believed that GEE is

not statistically appropriate for whole-genome studies because the number of outcomes

far exceeds the number of subjects. This belief is not true, in general. GEE and the

General Linear Model (GLM) comprise families of models with different correlation

structures. Estimates obtained from these techniques will be valid in the setting of

many more outcomes than subjects as long as the modeled correlation between most

pairs of observations is weak and valid standard error estimates are used (c.f. Lumley

and Haegerty, 1999). For example, one particular formulation of GEE (with the identity

matrix as the working correlation matrix) is equivalent to performing logistic regression

for every SNP in a case-control study. By modeling only subgroups of data jointly, we

maintain conditions for valid estimation of test statistics.

In the rest of this paper, we provide a detailed description of how to implement the

proposed method using GEE software to analyze data from a case-control study of SNP-

disease association. This description is intended to be accessible to non-statisticians.

We then report the design and results for a large simulation study of the method’s

operating characteristics and follow with discussion.

2. Methods In this section we describe how one can apply GEE with assumptions

of non-independence to increase statistical power over the application of independence-

based logistic regression models to each SNP locus. We show how one may adjust

for confounding such as population structure, if desired. The utility of adjusting is

addressed in the Discussion. This section also describes the extensive simulation studies

performed for the method. For simplicity of presentation and analysis of the method’s

properties, we assume that the chosen genetic model assigns a score of either 0 or 1 to

each locus, and the goal is to find loci for which the odds of disease is elevated when

the score is 1 relative to a score of 0. (No loss of generality for the qualitative results

of this article should occur by assuming this basic model, since more complex models

can be reduced to this case.) We assume that strong control of the family-wise Type I

error rate is desired.
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2.1 Modeling and Estimation with GEE To apply GEE, one chooses a model

for each locus-outcome pair that would be appropriate if that locus-outcome were the

only one studied. In practice, the same type of model is usually employed for all

locus/outcome pairs. For our case-control example, the outcome, Yi, for the ith subject

is either case or control status (Yi = 1 or 0, respectively). In both the independence

method applied by Prentice and QI (2006) and the non-independence method proposed

here, and a logistic model of the following form is assumed for each SNP score:

Prob[Yi = 1|Sji] =
exp(αj + βjSji)

1 + exp(αj + βjSji)
(1)

where Sji is the genetic score at the jth SNP locus for the ith subject. Note that a

separate intercept, αj , and a separate association coefficient, βj , is estimated for each

SNP locus. (This has practical implications for specification of the design matrix when

fitting the models in GEE (see below)).

Details regarding estimation in multivariate regression models under misspecified

correlation structure can be found in White (1982) and Gourieroux et al (1984) with

further extensions appearing as GEE in Liang and Zeger (1986). For the purposes of

this article, the two essential ingredients for increasing power are to (1) group corre-

lated observations (within subject) into what are denoted as “clusters” in the statistical

literature; and (2) to choose a working correlation matrix structure that captures at

least part of the true correlation structure in the data. More specifically, for a cluster

of n correlated observations on subject i, the working correlation matrix, R, specifies

the pair-wise correlations between the centered observations:

cor

⎡
⎢⎢⎢⎢⎢⎢⎣

Yi1 − f(α1 + β1S1i)
Yi2 − f(α2 + β2S1i)
Yi3 − f(α3 + β3S2i)

...
Yin − f(αn + βnSni)

⎤
⎥⎥⎥⎥⎥⎥⎦

= R =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 r12 r13 · · · rnn

r21 1 r23 · · · r2n

r31 r32 1 · · · r3n
...

...
rn1 rn2 rn3 · · · 1

⎤
⎥⎥⎥⎥⎥⎥⎦

, (2)

where f is the logistic transformation used in model (1), given by f(x) = exp(x)/(1 +

exp(x)), the SNP loci assigned to this particular cluster have been numbered from S1 to

Sn, and R is a symmetric correlation matrix, so that rkl = rlk and |rjk| ≤ 1. Note that
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in our case-control example, Yij = Yik = Yi for all j and k since the case-control status

is fixed for the ith subject. In the standard GEE modeling situation, observations in

different clusters are assumed to be uncorrelated. Because designated clusters for this

method need not be independent under the true state of nature for the testing method

proposed here to be valid, we replace the term “cluster” with “subgroup” to avoid

confusion.

As shown in Gourieroux et al (1984), the correlation structure chosen for the esti-

mation procedure need not be the true correlation structure in order for the estimation

to be valid, as long as “robust” standard errors of the coefficient estimates are obtained

via a “sandwich estimator.” As the chosen working correlation matrix comes closer to

the truth, we can expect more efficient estimation of the association parameter in βj

in (1). In the setting of genomic data, non-independence working correlation matrices

will generally be closer to the truth for subgroups of data than an independent working

correlation matrix. Note that the ordering of the observations within the subgroup is

meaningful when the working correlation matrix specifies higher correlation between

observations that are placed closer together, as in the case of the AR-1 working cor-

relation matrix. The order of the observations is unimportant when the exchangeable

working correlation matrix is used.

2.2 Applying the Method We next provide a step-by-step description of the

proposed method in application. K represents the total number of SNP loci that are

tested for association with disease, and N is the total number of subjects.

1. For each subject, replicate the case or control status (the value of Y) K times to

create the observations (Yi, Sji), j = 1 . . . K, i = 1 . . . N.

2. Place the K SNPs into a smaller number of subgroups. Each subgroup of SNPs will

define a set of observations to be modeled according to (1) and (2) for each subject.

The goal is to place SNPj and SNPk in the same subgroup when it is suspected that

there may be high correlation between Yi−f(α̂j+β̂jSji) and Yi−f(α̂k+β̂kSki). In
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practice, this means that the regression method will be applied to each subgroup

of SNPs as though the SNPs in the subgroup were the only observed SNPs. This

is analogous to the application of a separate logistic regression model for each

SNP, except that now there is a separate GEE application for each subgroup of

SNPs. Note that a SNP may be placed in more than one subgroup, as described

below, if appropriate. For purposes of algorithm convergence, computational speed

and asymptotic validity, subgroups of size 6 to 20 are expected to work well

when the total sample size is 400 or more. In a statistical sense, the goal of

the subgrouping is to obtain test statistics that have little pairwise correlation in

and across subgroups.

(a) Place SNPs in the same subgroup if they are known to be close spatially or

if they are known to be or suspected of being close in function. SNPs in the

same cluster could be:

i. SNPs that are linked so as to result in positive correlation between the

scores at these loci in a random sample of the population (correlation

greater than approximately .10), including SNPs in the same haplotype

block

ii. SNPs in exons for the same gene

iii. SNPs for genes in the same pathway

iv. SNPs in genes encoding proteins that are later spatially linked (as in

anti-body formation)

v. SNPs from genes that are empirically related to the outcome, say, via

segregation analyses or HLA associations

vi. Potential effect modifiers such as smoking history; these may be thought

of as “auxiliary SNPs” and placed in the same subgroup with SNPs

whose action they are thought to modify.

(b) a SNP may appear in more than one analytic subgroup, since a given SNP
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might be part of more than one functional group.

3. Choose a working correlation structure that is expected to capture at least some of

the true correlation structure in the data. Either “auto-regressive-lag-1” (AR-1) or

“exchangeable” are recommended choices (see appendix), and both are available

in all standard GEE software packages.

4. Choose the “fixed” option for the working correlation matrix. This means that

the parameters for the working correlation matrix are supplied by the user and

not estimated.

5. Organize the data for input to the GEE software. This includes ordering the

observations within a subgroup if not using the exchangeable working correlation

matrix. Also, readying the data for input to the algorithm usually also will include

the creation of an augmented matrix of independent variables in order to generate

separate intercept and regression coefficient estimates (αj and βj) for each SNPj in

the subgroup. This is necessary if the software is designed only to accomodate the

same variables for every observation. In this case, when no adjustment variables

are included, all but two entries in each row of the augmented independent variable

matrix must be made identically zero, resulting in a matrix with nN rows and 2n

columns. The “no intercept” option should be specified, since there is no intercept

common to all observations. More details on the creation of this augmented matrix

are given in the Appendix. Finally, the software will require the creation of an ID

vector of length nK that indicates which observations are from the same subject.

6. Apply GEE with the fixed working correlation matrix to each subgroup and obtain

the Wald statistic for each SNP’s coefficient and its corresponding p-value. (The

Wald statistic is the coefficient estimate divided by its standard error, β̂/s.e.(β̂) ≡
GW1, and the p-value is obtained by comparing this statistic to a standard normal

distribution. Both are provided by any software package).
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7. Apply a Bonferroni correction to the K p-values to obtain a correction for multiple

testing.

Comments:

1. SNPs with scores that are negatively correlated in the sample should not be

grouped together, as power loss can obtain in this situation.

2. We have retained the use of the Bonferroni correction to maintain control over

the false positive rate. However, when effective subgrouping is done, the Bonferroni

correction applied to the GEE-based statistics will be less conservative than using this

correction on the set of test statistics obtained by univariate modeling. This happens

because the estimation procedure produces test statistics that are more nearly uncorre-

lated than does the independence-based estimation procedures.

3. If a SNP appears in more than one subgroup, the user should choose only one test

statistic for that SNP to be the primary test statistic. This test statistic should come

from a subgroup in which the SNP is considered to have a potential main effect. The

SNP may appear in other subgroups as an effect modifier based on known/suspected

function or as an entry akin to a “precision variable” if the SNP score is correlated

(linked) to the SNP(s) of main interest in these other subgroups. The effect of the

“precision variable” is made more clear in the Results.

3. The subgroups may be of different sizes.

4. The choice of working correlation matrix can be different for different subgroups.

5. It is recommended to choose a fixed working correlation matrix in order to speed

the estimation and possibly avoid problems with convergence of the estimation algo-

rithm. This recommendation is facilitated by the fact that specifying high correlation

between observations still provides a power advantage to the GEE method even when

no correlation between SNP scores is present. However, one could choose only the form

of the working correlation matrix and not the actual values if the user finds this to be

computationally feasible for a given data set.

2.3 Simulation Study of Performance A large simulation study was performed
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to evaluate the power of this method to detect an association between disease and an

hypothetic SNP (denoted as SNP1). In each scenario, a score of SNP1=1 confers a

20% elevation in the risk of disease if no effect modifier is present in the subgroup. We

studied the power of the GEE-based method to detect the association between SNP1

and disease when: (A) SNP2 is an effect modifier in the subgroup and does not have

an independent effect on disease; (B) SNP2 is an effect modifier in the subgroup and

also has an independent effect on disease; (C) SNP2 in the subgroup affects disease

risk independenltly of SNP1 but does not modify the effect of SNP1; and (D) none of

the foregoing. In these four scenarios, the proposed method is expected to have power

greater than or equal to the power of the independence-based method. If negative cor-

relation exists between SNP scores in the subgroup, the GEE method can have less

power than the independence-based method. Scenario E was included to illustrate this

situation: (E) SNP2 in the subgroup affects disease risk as in scenario C, while SNP1=1

and SNP2=1 cannot occur simultaneously in the same individual. This produces strong

negative correlation between SNP1 and SNP2 in the case-control sample. This simu-

lates a situation where the co-occurrence is lethal. Rather than simulating data to fit a

convenient mathematical model, we simulated data according to plausible and scientif-

ically interesting biological conditions. The disease probabilities used for each scenario

are given in Table 1.

SNP1 and SNP2 were placed in a subgroup of 12 SNPs such that scores for the SNPs

placed adjacent to each other in the subgroup had that same pairwise correlation, with

decreasing correlation between SNP scores that were farther apart in the subgroup. All

other SNPs in the subgroup had no relationship to disease. An AR-1 working correlation

matrix was used for all simulations. The parameter for the AR-1 matrix, ρ, was fixed

at 0.6, except for the set of simulations that study the effect of varying ρ (see below).

Results were the same for a subsample of simulations re-done with 100 SNPs in the

subgroup (results not shown).

Power was examined for the five scenarios above when SNP scores were moderately
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correlated in the population and when SNPs were uncorrelated in the population. This

provides ten basic simulation scenarios. Additionally, the effect of the working correla-

tion matrix choice was studied by varying the choice of correlation parameter under a

fixed simulation scenario, Scenario B with moderate correlation among SNPs. For this

part of the study, ρ was varied among {0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, .85}. Finally,

the performance of the method in adjusting for population structure was studied by

adding population structure at a third SNP site (SNP3), again under Scenario B with

moderate correlation among SNPs. The simulation data were created in a prospective

manner (i.e. as they would appear in the general population), and then an equal number

of cases and controls was sampled for each simulation study.

The distribution of the genetic scores was generated as follows: The marginal prob-

ability that S1=0, P[S1=0], was set to equal 0.5 so that P[S1=0]=P[S1=1]=0.5. This

facilitates the simulation by allowing a subgroup of SNPs with a given mutual pair-wise

correlation structure to be generated non-iteratively. This also maximizes power with

respect to the distribution of the genetic scores, reduing the sample sizes needed and the

sampling/computation time. In preliminary studies, P[S1=1] was set to smaller values

(0.1 and 0.2) with no apparent qualitative effect on the relative powers of the methods

(not shown).

For simulation studies with “moderate” correlation between SNPs, the probability

that S1=1 given S2=1 (P [S1 = 1|S1 = 2]) was set to 0.6, slightly higher than the

overall probability that S1=1. This corresponds to the situation where having the

deleterious polymorphism at site 2 increases the probability of having the deleterious

polymorphism at site 1. This results in a population correlation of 0.20 for the SNP

scores from adjacent SNP sites.

For the final study on adjustment for confounding, SNP3 was generated so as to be

confounded by population structure (Balding, 2006) and placed adjacent to SNP1 in the

subgroup. By placing SNP3 adjacent to SNP1 in the subgroup, the confounding effect

at SNP3 is allowed to have the largest impact on estimation of association between
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disease and SNP1 when using the AR-1 working correlation matrix. The case-control

sample was simulated such that

1. sub-population 1 has SNP3=1 80% of time, SNP3=0 20% of time

2. sub-population 2 has SNP3=1 20% of time, SNP3=0 80% of time

3. 60% of cases are from sub-population 1, 40% from sub-population 2

4. 32.5% of controls are from sub-population 1, 67.5% from sub-population 2.

This creates an apparent (marginal) odds ratio (OR) of 2.0 for association of SNP3=1

with disease when not adjusted. SNP3 was correlated with SNP1 according to the

design above for the scenarios with moderate correlation between scores at adjacent

SNP loci. To adjust for this confounding, the following (marginal) model was fitted in

lieu of model (1):

Prob[Yi = 1|Sji] =
exp(αj + βjSji + βIXIi)

1 + exp(αj + βjSji + βIXIi)
, (3)

where XIi is an indicator variable such that XIi = 1 if the ith subject is from population

1 and XIi = 0 if the ith subject is from population 2.

All GEE results are compared to the results from the independence-based logistic

regression method. In addition to the Wald statistic for individual coefficients, the GEE

method allows for joint tests of association by forming a joint Wald statistic using the

estimated covariance among coefficients. For example, the joint significance of (β̂1, β̂2)

may be tested using

GW2 = (β̂1β̂2)

[
σ̂11 σ̂12

σ̂12 σ̂11

]−1 (
β̂1

β̂2

)
(4)

where (β̂1, β̂2) are the estimated coefficients for the effects of SNP1 and SNP2, respec-

tively, σ̂j is the robust estimate of the variance for β̂j , and σ̂jk is the robustly estimated

covariance between β̂j and β̂k. The σ̂’s are obtained from the “working covariance”

matrix returned by the GEE software. A joint test for any set of elements of a subgroup
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(including the entire subgroup) can be formed in an analogous manner. We report the

power of GW2 for all simulations as well as for GW3 defined to be

GW3 = (β̂j β̂1β̂2)

⎡
⎢⎣ σ̂jj σ̂j1 σ̂j2

σ̂j1 σ̂11 σ̂12

σ̂j2 σ̂12 σ̂22

⎤
⎥⎦
−1 ⎛

⎜⎝ β̂j

β̂1

β̂2

⎞
⎟⎠ (5)

In our simulation studies, “SNP3”, corresponding to the regression coefficient β3 above,

is placed adjacent to SNP1 in the subgroup but does not affect disease. The reason

to study this particular GW3 statistic is to determine the loss in power that might be

inflicted by adding a coefficient for a truly unassociated SNP site (SNP3) to the joint

test statistic. In the simulations investigating adjustment for confounding, SNP3 in (5)

was spuriously associated with disease through confounding as described above.

The standard practice for investigating the joint effect of two or more variables on

the disease outcome is to include both variables as covariates in a univariate outcome

logistic regression. Specifically, to investigate the joint effect of SNP1 (S1) and SNP2

(S2) on disease, the following model is usually fitted:

prob[Yi = 1|S1i, S2i] =
exp(α12 + β1S1i + β2S2i)

1 + exp(α12 + β1S1i + β2S2i).
(6)

Hence, GEE results and logistic regression based on model (1) were also compared to

logistic regression results based on model (6). Model (6) is often termed “multivariate

logistic regression” in elementary biostatistics text books, with the “multivariate” aspect

referring to the independent variable rather than the outcome.

To make all results comparable across scenarios, we determined the total number of

SNP sites tested, K, that would result in 50% power for the independence-based logistic

regression method with model (1) after a Bonferroni correction to obtain a family-wise

Type I error rate of 0.05. We then applied this K to all results from a given simulation to

determine the corresponding power for the remaining test statistics. The reported power

for the remaining test statistics is then the proportion of test statistics that are more

extreme than the median (absolute value) of the independece-based test statistics. This

provides a direct comparison of the distributions of two test statistics (a test statistic
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with a distribution shifted further from zero than another will provide more power.)

Also, for powers near 50%, the percent increase or reduction in power relative to the

independence-based result is approximately the percent decrease or increase in sample

size, respectively, that one would need to obtain the same power as that attained by the

independence-based method. Five hundred data sets were simulated for each reported

result; sample sizes were 600 cases and 600 controls for Scenarios A-C, and 2000 cases

and 2000 controls for scenarios D-E. Simulations were run using a function written by

the author in the statistical computing language R (www.r-project.org) and may be

obtained by writing the author at emond-at-u.washington.edu.

— Scenario
SNP Scores A B C D E
S1=0 & S2=0 0.10 0.10 0.10 0.10 0.10
S1=1 & S2=0 0.10 0 .12 0.12 0.10 0.12
S1=0 & S2=1 0.12 0.12 0.12 0.12 0.12
S1=1 & S2=1 0.24 0.24 0.12 0.12 NA

Table 1: Probabilities of Disease in Simulation Studies The right portion of the
table shows the simulated probabilities that Y=1 (disease is present) in the population
for the four possible configurations of genetic scores at SNP locus 1 (S1) and at SNP
locus 2 (S2)(left portion of the table).

Results Results are summarized in Tables 2 and 3. In Scenarios A and B, the

GEE-based test statistic GW1 = β̂G
1 /se(β̂G

1 ) achieved 35% greater power than the

corresponding statistic from independence-based logistic regression, L1 = β̂L
1 /se(β̂L

1 ),

when modest correlation was present between SNP scores in the population. (The

superscripts G and L have been added to make clear that the estimates are obtained

from the different estimation procedures.) In these two scenarios, SNP2 was an effect

modifier for SNP1 as described in Table 1. In scenario C, the effects of the deleterious

SNP scores are not synergistic as they are in scenarios A and B, but the GW1 statistic

still has 8.4% greater power to detect the assocation between SNP1 and diseas as long

as correlation is present between SNP1 and SNP2 in the population. There was no

power gain in scenario C when no correlation is present between SNP1 and SNP2. In
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scenario D, where SNPs is completely unrelated to disease, there was no appreciable

power gain for GW1 rleative to L1 in scenario D for either SNP correlation structure.

The statistic ML from independence-based logistic regression using model (6) to

account for the affect of SNP2 performed very poorly relative to L1 except in the cases

where no positive correlation between SNP scores was induced in the sample (scenarios

C and D with no correlation between SNPs in the population).

Power (%)
Risk pop. sample AR-1 Test Statistic

Scenario cor(S1, S2) cor(S1, S2) ρ L1 GW1 GW2 GW3 ML
A 0.20 0.27 0.60 50.0 67.4 81.0 78.2 11.2
B 0.20 0.26 0.60 50.0 67.4 91.0 89.2 8.6
C 0.20 0.18 0.60 50.0 54.2 73.2 75.2 37.2
D 0.20 0.20 0.60 50.0 51.2 48.4 46.4 46.4
E 0.20 -0.42 0.60 50.0 36.0 91.8 93.0 81.8
A 0.00 0.08 0.60 50.0 57.4 85.0 79.8 40.4
B 0.00 0.06 0.60 50.0 54.2 93.8 93.2 37.4
C 0.00 -0.02 0.60 50.0 49.2 78.8 84.2 51.6
D 0.00 0.00 0.60 50.0 50.6 47.6 44.2 50.6
E 0.00 -0.52 0.60 50.0 30.2 96.4 95.6 87.6
B 0.20 0.26 0.00 50.0 50.0 91.4 89.4 8.6
B 0.20 0.26 0.10 50.0 54.6 91.4 89.6 8.6
B 0.20 0.26 0.20 50.0 59.4 91.4 89.8 8.6
B 0.20 0.26 0.30 50.0 62.8 91.4 89.8 8.6
B 0.20 0.26 0.40 50.0 65.0 91.4 89.6 8.6
B 0.20 0.26 0.50 50.0 66.6 91.0 89.4 8.6
B 0.20 0.26 0.60 50.0 67.4 91.0 89.2 8.6
B 0.20 0.26 0.70 50.0 67.6 91.0 89.0 8.6
B 0.20 0.26 0.80 50.0 66.8 91.0 88.8 8.6
B 0.20 0.26 0.85 50.0 66.8 90.6 88.8 8.6

Table 2: Simulation Results The power to detect the association between disease
and a genetic score of 1 at SNP locus 1 is given in the right portion of the table
for 5 test statistics and the 5 disease probability scenarios described in the Methods.
L1 = β̂1/se(β̂1) from the independence-based logistic regression method using model (1);
GW1 = β̂1/se(β̂1) from GEE using (1) as the (marginal) model; GW2 and GW3 are joint
test statistics given by equations (4) and (5); and ML = β̂1/se(β̂1) from independence-
based logistic regression using model (6); pop. cor(S1, S2) is the correlation between
scores at loci 1 and 2 in the population; sample cor(S1, S2) is the correlation between
socres at loci 1 and 2 in the case-control sample; ρ is the fixed value used in the AR-1
working correlation matrix.

The joint test of assocation between disease and SNPs 1 and 2 (given by GW2,

Table 2) performed very well except in scenario D where SNP2 was not associated with
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disease in any way (neither as an effect modifier alone nor via a main effect). GW3 was

always less powerful than GW2, except in scenario C.

When the AR-1 working correlation parameter for the GEE method varied from 0

to 0.85 in scenario B, the greatest power was attained when ρ = 0.70. This optimal

value of ρ is related to both cor(S1, S2) and the combined effects of SNP1 and SNP2

on disease. The power for GW2 and GW3 did not change appreciably as ρ varied.

When ρ = 0, the GEE method reduces to the independence-based method. Note that

no power is lost (relative to the independence method) by assuming ρ = 0.6, even in

the scenario where SNP2 is unrelated to disease and SNPs are uncorrelated (Table 2,

row 9).

For the case when confounding through population structure was present to give

SNP3 an apparent assocation with disease (Table 3), the power for both L1 and GW1

was increased relative to the results when no confouding was present (Table 2). This

is because the score at SNP1 is correlated with the score at SNP3, resulting in some

degree of confounding of the association between disease and SNP1. After adjustment

for confounding, GW1 still attains a 34% increase in power relative to L1, though the

power is reduced relative to the unconfounded, unadjusted case in Table 2.

Power (%)
Test Statistic

Adjusted sample sample SNP1 SNP3
Fit cor(S1, S3) cor(S1, XI) L1 GW1 GW2 GW3 ML L1 GW1
no 0.22 0.16 85.6 97.6 99.4 100 37.4 79.2 85.6
yes 0.22 0.16 38.6 55.8 85.8 82.8 7.0 0 0

Table 3: Confounding Simulation Results The right portion of the table shows
powers for test statistics when the relationship between the SNP3 score (S3) and disease
is confounded by population structure. SNP3 is placed adjacent to SNP1 in the subgroup
under disease scenario B with moderate correlation between SNPs, as described in the
Methods. The unadjusted results are obtained by fitting (marginal) model (1) for either
independence-based logistic regression or GEE to obtain the test statistics L1, GW1,
GW2, GW3 and ML as described in Table 2. Adjusted results are obtained analogously
by fitting (marginal) model (3) for each SNP in the subgroup. Powers for all five test
statistics are given for the tests of association involving SNP1 either singly or jointly;
powers are given for testing association between disease and SNP3 singly.
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In the case where SNP1 and SNP2 had strong negative correlation in the sample

(scenario E), GW1 performed poorly. The relative descrease in power for GW1 is less

when the magnitude of the negative correlation is less.

Theoretical results by Gourieroux et al (1984) show that test sizes should be at the

nominal levels. As a check, we computed test sizes on data simulated under the global

null hypothesis. All test sizes were between 0.02 and 0.04.

Discussion The method proposed here provides power gains that have practical

potential to provide better discovery of associations between subject status and risk

factors measured via high throughput gene-based assays. The method is easy to apply,

and GEE-derived tests are known to have good behavior, at least when the subgroup size

is small relative to the sample size ( 1:20 ratio or less). Examination of formulas for the

variance of GEE-based parameter estimates in multivariate models indicates that the

proposed power boosting method can be expected to have greater power when SNPs

in the same subgroup either have positive sample correlation between scores and/or

increase the probability of disease. The exception to this rule is the situation where co-

occurrence of the deleterious SNP scores is reduced enough among cases that negative

correlation is induced between SNP scores as in simulation scenario D. Placing SNPs

with negatively correlated scores in the same subgroup can potentially reduce power.

A suggested use for this method is to base the sample size calculations on consider-

ations such as those discussed in Prentice and QI (2006), where it is assumed that an

independece-based analysis will be done. The multivariate analysis can then be sub-

stituted for the former for potential power gains. It might be tempting to try to use

this method to reduce the sample size needed to obtain a specified power. However,

we don’t currently recommended this as a general strategy. One reason to avoid this

strategy is that the nature of this method makes analytic power formulas intractable

at this point in time. Hence, one must resort to simulation studies to estimate power.

While simulations were used by Prentice and QI (2006) to estimate power, it is much

easier to specify the magnitude of a biologically interesting marginal odds ratio in a
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simulation than it is to specify the underlying sample correlation structure of the cho-

sen subgroups. In cases where the joint distribution of interesting SNP scores is known,

power simulations for this multivariate method could be done.

While we believe it is of interest to report our power results for GW2 and GW3, the

(markedly) superior performance of these statistics is limited to the situation where at

least two of the SNP loci in the joint test are associated with disease. Hence, in order

for a joint test to be superior to GW1, one would need to be reasonably sure in advance

that the majority of SNPs involved in the joint test are truly associated with disease

– a rather unlikely scenario. A possible use for these statistics is for joint testing of

very tightly linked SNPs, rather than discarding some of these tightly linked SNPs to

provide a “tag” SNP set for testing. This suggestion needs further research, however.

A nice feature of this method is that it provides extra power to detect a main ef-

fect when effect modifiers are included in the subgroup. In this sense, including effect

modifiers in a subgroup is analogous to including “precision variables” in a linear re-

gression model. This feature could also help elucidate the effect modifiers. With the

independence-based method, one would need to add many more tests in the form of

additional test coefficents from a model that includes interaction terms to identify ef-

fect modification (epistasis), with a possibly dramatic reduction in power. Power loss

would occur for two reasons: due to a substantial increase in the multiplicity of tests

performed and due to lower power attained when using models with multiple correlated

covariates. The latter is the well-known problem of “collinearity.” In addition, it is

infeasible to model all potentially synergistic combinations of SNPs. The method pro-

posed here could help narrow the candidate field in a search for effect modification: one

could identify significant genes from a testing phase using model (1), and then perform

additional tests for potential effect modification by other SNPs in the same subgroup

as the candidate SNP. One could allow for a relatively small number of new tests to

be performed in this second phase when planning the multiple testing corrections that

should be taken into account in the Bonferroni correction.
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We have shown that the suggested subgrouping can result in increased power in

biologically interesting scenarios. Admittedly, subgrouping based on considering every

the location and/or possible functional implications for every SNP locus in the study

would be impractical to apply. However, it is quite worthwhile to apply the subgrouping

in a careful manner just for those SNPs for which the investigator has some a priori

knowledge or suspicion of relationship to each other, either spatially or functionally.

This is especially true when these SNPs are considered most likely a priori to have an

association with disease. Placing SNPs in the same subgroup when they act indepen-

dently on disease risk (i.e. no interaction/epistasis effects) will also increase power in a

case-control design. Functional groups of genes have been published that can make the

task easier when the investigator’s loci can be matched to genes within these groups

(Subramania et al., 2005). For other SNPs, one can subgroup based solely on location.

Alternatively, SNPs that cannot be placed into a natural subgroup in via a practical

procedure can be grouped randomly. It is worth re-iterating that SNPs with negatively

correlated scores should not be placed in the same subgroup, since this can result in

power losses. SNPs of known interest could be screened for negative correlation prior

to the subgrouping. The risk of including negatively correlated SNP scores in the same

subgroup by accident is probably quite low, and the impact would only be meaningful

if these SNPs were associated with disease.

The reader may have noted that model (1) does not specify the true relationship

between the outcome and the covariates of interest for any of the Scenarios except D.

When using GEE it is usually considered important to correctly specify the model for

the mean. For a logistic model, the mean is the formula for Prob[Y = 1]. Correct

mean specification is not needed here where we are interested in the test statistics

β̂/s.e.(β̂) and not explicitly interested in correct estimation of β̂. In a one-stage study,

the independence-based logistic regression technique will provide unbiased estimates

of the marginal effect of SNP1 (that is the average effect of SNP1, averaging over

the effects of all other SNPs), while GEE-based estimates using a non-independence
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working covariance matrix do not (Pepe and Anderson, 1994; Emond et al, 1997).

Hence, the proposed procedure is not intended for estimation, only testing. If the

estimates themselves are of interest, these can be obtained via independence-based

logistic regression after the testing step is completed. In general, one cannot hope to

specify the correct relationship between probability of disease and all SNP sites that

might affect risk.

The proposed method performs well relative to the independence-based procedure

for removing confounding effects. However, when adjustment variables are correlated

with the variables of interest, adding these adjustment variables to the model reduces the

power to detect true effects relative to omitting them. Hence, we suggest that potential

confounding be investigated after significant associations have been identified using the

non-adjusted model (1) in a testing phase. This would be akin to identifying patients

who meet inclusion criteria for a study and then assessing for specific exclusion criteria

in a second step. This procedure provides more power for finding true associations than

simultaneous testing and adjustment using model (3).

Use of multivariate modeling for power boosting is not limited to whole genome

SNP-disease association studies. The method can be applied to numerous kinds of mul-

tiple outcome data types, including those that result from the multiplicity of genes in an

organism. As a second example, consider the case of a two-sample paired RNA microar-

ray expression study, where RNA samples from diseased and non-diseased subjects are

competitively hybridized on the same array to obtain expression ratios for thousands of

genes. Let Yij denote the log expression ratio for the ith pair and the jth oligonucleotide.

It is common to use a paired t-test to obtain a p-value for the test of no difference in

expression for every outcome. This is equivalent to testing αj = 0 in the simple model

Yij = αj , a regression model with only an intercept term. The multivariate power boost-

ing method can be applied here by subgrouping oligonucleotides and applying GEE to

the subgroups. A coefficient must be estimated for each oligonucleotide in the subgroup,

which usually will require the use of dummy variables in the design matrix as in the
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main example. Note the that sampling method in this “two-sample” experiment is a

case-control design as in our main example, so analogous considerations hold.

A few methods have been proposed for potentially increasing the power over the Bon-

ferroni method in genome-wide studies. These include the truncated product method

for combining p-values when the test statistics are uncorrelated (Zaykin, et al, 2002),

resampling (Reiner et al, 2003; Pollard and van der Laan, 2005), and estimation of ana-

lytic distributions for combined evidence (Dudbridge and Koeleman, 2004). In addition,

a new approach for defining significance in the multiple testing situation is proposed

by Storey (2006). Each of these methods is a “post-processing” method for the test

statistics or p-values and any can be applied in addition to multivariate power boosting

when their conditions are met. Among the methods listed, resampling is the most stud-

ied. Resampling provides potentially more power by preserving the correlation structure

within individuals during the resampling process. This is similar in principle to multi-

variate power boosting, and it is not clear whether much is to be gained by applying

both methods. The operating characteristics of combined methods is a topic for further

study.

In summary, the proposed method of employing multivariate modeling with robust

estimation is a relatively easy method for increasing statistical power in high-throughput

studies if effective subgrouping can be done. The method can be implemented using

readily available software.
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Appendix A.1 Working correlation matrix forms The AR-1 working corre-

lation matrix has the form:

R =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 ρ ρ2 · · · ρn−1

ρ 1 ρ · · · ρn−2

ρ2 ρ 1 · · · ρn−3

...
...

ρn−1 ρn−2 ρn−3 · · · 1

⎤
⎥⎥⎥⎥⎥⎥⎦

The exchangeable working correlation matrix has the form:

R =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 ρ ρ · · · ρ
ρ 1 ρ · · · ρ
ρ ρ 1 · · · ρ
...

...
ρ ρ ρ · · · 1

⎤
⎥⎥⎥⎥⎥⎥⎦

When using the “fixed” working correlation matrix option with GEE software, the user

will usually need to supply an actual matrix with numerical values. Otherwise, the

parameter ρ (and other parameters, if applicable for other forms of working correlation

matrix) will be estimated by the software procedure. The user should consult the manual

for details specific to the software.

A.2 Creating the matrix of independent variables GEE software generally

assumes that the coefficients to be estimated are common to all elements of the subgroup.

This is not the case for this approach. Hence, in order to estimate the unique intercept

and coefficient term for each SNP locus (αj and βj , respectively), dummy variables must

be added to the independent variable matrix. For a subgroup with n elements (loci),

this matrix will have 2n columns corresponding to the n sets of (αj , βj)s. Suppose we

number the elements of the subgroup from 1 to n. To reformulate the model in terms of

covariates that are common to all elements of the subgroup, the linear predictor term

in (1) can be re-written as

α1 + β1S1i + α2 + β2S2i + α3 + β3S3i + . . . + αj + βjSji + · · · + αn + βnSni,

where all Sjs are identically zero except for Sji. The independent variable matrix

will have nN rows corresponding to the n observations from each of N subjects. For
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example, if n = 3, the 3 rows of the independent variable matrix for the ith subject will

be
1 S1i 0 0 0 0
0 0 1 S2i 0 0
0 0 0 0 1 S3i

where the actual observed values are substituted in place of the Sj’s. If adjustment vari-

ables (potential confounding variables) are fitted, an additional column will be included

for each adjustment variable.
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