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Effectively Selecting a Target Population for a
Future Comparative Study

Lihui Zhao, Lu Tian, Tianxi Cai, Brian Claggett, and L. J. Wei

Abstract

When comparing a new treatment with a control in a randomized clinical study,
the treatment effect is generally assessed by evaluating a summary measure over
a specific study population. The success of the trial heavily depends on the choice
of such a population. In this paper, we show a systematic, effective way to identify
a promising population, for which the new treatment is expected to have a desired
benefit, using the data from a current study involving similar comparator treat-
ments. Specifically, with the existing data we first create a parametric scoring sys-
tem using multiple covariates to estimate subject-specific treatment differences.
Using this system, we specify a desired level of treatment difference and create a
subgroup of patients, defined as those whose estimated scores exceed this thresh-
old. An empirically calibrated group-specific treatment difference curve across
a range of threshold values is constructed. The population of patients with any
desired level of treatment benefit can then be identified accordingly. To avoid any
“self-serving” bias, we utilize a cross-training-evaluation method for implement-
ing the above two-step procedure. Lastly, we show how to select the best scoring
system among all competing models. The proposals are illustrated with the data
from two clinical trials in treating AIDS and cardiovascular diseases. Note that if
we are not interested in designing a new study for comparing similar treatments,
the new procedure can also be quite useful for the management of future patients
who would receive nontrivial benefits to compensate for the risk or cost of the new
treatment.
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1. INTRODUCTION

In comparing a new treatment with a control via a randomized clinical trial, the as-

sessment of the treatment efficacy is usually based on an overall summary measure over a

specific study population. To increase the chance of success of the study, it is important to

choose an appropriate study population for which the new treatment is expected to have

non-trivial overall benefits that compensate for its risks and/or costs. In this paper we are

interested in developing strategies which identify such a patient population with the data

from a current study for comparing similar treatments. Even when we are not interested in

designing another new study for comparing similar treatments, the new proposal provides a

systematic, efficient procedure for management of future patients with the new treatment.

As an example, one of the very first trials to evaluate the added value of a potent

protease inhibitor, indinavir, for HIV patients, was conducted by the AIDS Clinical Trials

Group (ACTG). This randomized, double-blind study, ACTG 320 (Hammer et al., 1997),

compared a three-drug combination, indinavir, zidovudine and lamivudine, with the standard

two-drug combination, zidovudine and lamivudine. There were 1156 patients enrolled in the

study. One of the endpoints was the CD4 count, measured 24 weeks after randomization.

The overall estimated mean difference between the new treatment and control over the

entire study population was 81 cells/mm3. Although the overall efficacy from the three-drug

combination group is highly statistically significant, it is not necessarily true that the new

therapy works for all future patients. Moreover, there are nontrival toxicities and serious

concerns about the development of protease inhibitor resistance mutations. Now, suppose

that having an expected treatment benefit representing a week 24 CD4 count increase of

100 cells/mm3 relative to the control would be sufficient to compensate for the costs and

risks of using the new therapy. The question, then, is how to identify such a subpopulation

efficiently via the “baseline” covariates.

Various novel quantitative methods have been proposed to deal with the problem of

heterogenous treatment effects. For cases with a single covariate, Song and Pepe (2004),
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assuming a monotone relationship between the covariate and the treatment difference, pro-

posed a procedure to obtain an optimal division of the population for determining which

future patients should receive the treatment or control. Song and Zhou (2011) generalized

this method for censored event time data. Janes et al. (2011) gave a practical guidance

on using the marker-by-treatment predictiveness curves for treatment selection. Moreover,

Bonetti and Gelber (2000, 2005) stratified patients utilizing a moving average procedure to

obtain subject-specific nonparametric estimates for the treatment difference. For cases with

multiple covariates, Cai et al. (2010) proposed a systematic two stage method for personal-

ized treatment selection using a parametric scoring system for estimating the subject-specific

treatment difference, followed by a nonparametric smoothing technique at the second stage.

However, it is not clear how to utilize their procedure to efficiently identify a group of fu-

ture patients who would have a desired overall treatment benefit. Moreover, there are no

procedures available in the literature for comparing different scoring systems for treatment

differences with multiple covariates.

Note that if the scoring system is built using data from the control group only, one may

not be able to effectively identify a target population which has a desirable overall treatment

benefit. For example, high-risk patients do not necessarily experience the greatest benefit

from a new treatment. Thus for the present problem, even when considering only a single

covariate, a first step is to create a scoring system for estimating the treatment difference;

one can then use this system to identify such a target population effectively. However,

unlike the prediction problem in the one sample case, none of the existing procedures in the

literature which use scores for estimating treatment differences can be utilized to directly

evaluate the performance of competing scoring systems. This difficulty arises from the fact

that each study subject was assigned to receive either the new treatment or control, but not

both. Therefore, it is not clear how to compare, at the patient level, the observed treatment

difference to its predicted counterpart.

For the case of a single treatment group, Moskowitz and Pepe (2004) generalize the idea
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of positive predictive values (PPV) and negative predictive values to accommodate a single

continuous covariate and a binary outcome, and propose a graphical method to summarize

predictive accuracy. In this paper, we generalize the notion of PPV to handle the present

problem of treatment selections with multiple baseline covariates. Specifically, we first gen-

erate various parametric scoring systems for estimating the subject-specific treatment dif-

ferences using baseline markers, and select the “best” one among all the candidate models.

Various criteria are utilized for model selection based on, for example, the concordance be-

tween the observed and expected treatment differences. We then show how to define a target

patient population, which can be used for identifying future patients who would benefit from

the new treatment for the purpose of designing inclusion/exclusion criteria for enrollment in

future clinical trials. Our procedure does not require the usage of nonparametric smoothing

techniques, which can be quite unstable when the sample size is not large. We illustrate our

methods using the data from the above HIV study and also the censored survival time data

from a large cardiovascular trial to compare the efficacy of Angiotensin-converting-enzyme

inhibitors (ACEi) to a conventional therapy for patients with stable coronary heart disease

and preserved left ventricular function (Braunwald et al., 2004).

2. SELECTING THE TARGET SUBPOPULATION VIA A SCORING

SYSTEM

Suppose that each subject in a comparative study was randomly assigned to one of the

two groups, denoted by G = 0 (control) or 1 (treatment). Let πk = pr(G = k) for k = 0, 1.

Let Z be the patient’s p-dimensional vector of baseline covariates, and Y(k) be the response

variable or a function thereof, if the subject had been assigned to Group k, k = 0, 1. For

each subject, only Y = GY(1) + (1 − G)Y(0) can potentially be observed. Assume that a

larger Y indicates a better clinical outcome. For ease of presentation, we first consider the

non-censored case that for each subject, we can observe the triplet (Y,G, Z) completely.

Now, let µk(Z) = E(Y(k)|Z) be the expected response for patients in Group k, condi-

tional on Z. Furthermore, let the treatment difference D(Z) = µ1(Z) − µ0(Z). The data,
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{(Yi, Gi, Zi); i = 1, . . . , n}, consist of n independent copies of (Y,G, Z). Suppose that D̂(Z)

is an estimator for D(Z). Let Z0 be the covariate vector for a future patient randomly

drawn from the same population of the current study. Also let Y 0
(k) be the potential response

of this patient if assigned to Group k, k = 0, 1. Consider the subgroup of subjects such

that D̂(Z0) ≥ c, where c is some fixed constant. That is, this subgroup of subjects has an

estimated treatment difference no less than c. Let AD(c) be the average treatment difference

for this subgroup of subjects:

E
((
Y 0

(1) − Y 0
(0)

)
|D̂(Z0) ≥ c

)
, (2.1)

where the expectation is with respect to Y 0
(k) and Z0, and also {(Yi, Gi, Zi); i = 1, . . . , n}.

The AD(c) can be estimated by

ÂD(c) =

∑n
i YiI{D̂(Zi) ≥ c,Gi = 1}∑n
i I{D̂(Zi) ≥ c,Gi = 1}

−
∑n

i YiI{D̂(Zi) ≥ c,Gi = 0}∑n
i I{D̂(Zi) ≥ c,Gi = 0}

, (2.2)

where I(·) is the indicator function. Note that ÂD(c) may not be stable when c is in the

upper tail of the distribution of D̂(Z0).

As a function of c, ÂD(c) can be quite useful for identifying patients who can expect

specific levels of benefit from the new treatment relative to the control. As an example,

consider the ACTG 320 study discussed in the Introduction. For simplicity, let Y be the

CD4 count at week 24 and Z be a vector consisting of two baseline covariates, log(CD4) and

log10(RNA). These two measures have been shown to be highly predictive of various clinical

outcomes relevant to HIV disease. One may obtain D̂(Z) by the difference of two estimates

µ̂0(Z) and µ̂1(Z) based on two separate additive linear regression models, as given in Table

1. The resulting score for estimating the treatment difference is given by

D̂(Z) = −120.61 + 12.57 log(CD4) + 29.13 log10(RNA).

5
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Note that a patient with high baseline CD4 and RNA values is expected to benefit more

from the new treatment. Figure 1 provides the estimated ÂD(c) in (2.2) over a range of

values c. As discussed in the Introduction, the new treatment, a three-drug combination,

has an impressive overall efficacy benefit with regards to week 24 CD4 count. At the time,

there were concerns about the cost of the new therapy, as well as the potential for toxicity

and/or development of drug resistance. Suppose that, in order to compensate for such non-

trivial risks, one would like to treat future patients whose anticipated benefit from the new

treatment, relative to the two-drug combination, is “clinically” significant. For example,

a meaningful benefit may be defined as an overall CD4 count difference, between the two

treatments, of 100 cells/mm3 at week 24. From Figure 1, ÂD(77) = 100, thus this subset of

patients would be composed of patients with Z0 such that D̂(Z0) ≥ 77.

Now, let us consider the case that the response variable may not be observed completely.

For instance, let T be an event time and Y = I(T ≥ t0), where t0 is a specific time point

of interest. Often T may be censored by a censoring variable C, which is assumed to be

independent of T and Z given G. For each subject, the observed quantity is (X,∆, G, Z),

where X = min(T,C) and ∆ = I(T ≤ C). The data, {(Xi,∆i, Gi, Zi); i = 1, . . . , n}, consist

of n independent copies of (X,∆, G, Z). For this case, the AD(c) can be estimated by the

difference in Kaplan-Meier survival probabilities, i.e.,

ÂD(c) =

t0∏
t=0

{
1−

∑n
i=1 dN

(1)
i,c (t)∑n

i=1 Y
(1)
i,c (t)

}
−

t0∏
t=0

{
1−

∑n
i=1 dN

(0)
i,c (t)∑n

i=1 Y
(0)
i,c (t)

}
, (2.3)

where N
(k)
i,c (t) = I(Xi ≤ t, D̂(Zi) ≥ c,Gi = k)∆i, and Y

(k)
i,c (t) = I(Xi ≥ t, D̂(Zi) ≥ c,Gi =

k), k = 0, 1; i = 1, . . . , n. Note that
∏

here denotes a product integral operator.

If one is interested in a global treatment contrast measure rather than t0-year survival

rates, the standard hazard ratio estimate may be utilized for building a scoring system. When

the proportional hazards assumption is violated, however, it is not clear which parameter this

model-based estimate would converge to (Prentice and Kalbfleisch, 1981; Lin and Wei, 1989,
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Xu and O’Quigley, 2000). The overall mean survival time is generally difficult to estimate

well due to censoring. On the other hand, one may consider the restricted mean survival

time up to a specific time point (Irwin, 1949; Andersen et al., 2004), say, τ0, as an overall

measure for quantifying survivorship. Note that this mean value is simply the area under

the corresponding Kaplan-Meier curve truncated at time τ0. To this end, for the present

problem, we let Y = min(T, τ0). It is straightforward to show that the corresponding AD(c)

can be estimated by

ÂD(c) =

∫ τ0

0

[
t∏

s=0

{
1−

∑n
i=1 dN

(1)
i,c (s)∑n

i=1 Y
(1)
i,c (s)

}]
dt−

∫ τ0

0

[
t∏

s=0

{
1−

∑n
i=1 dN

(0)
i,c (s)∑n

i=1 Y
(0)
i,c (s)

}]
dt, (2.4)

using the fact that E{min(T, τ0)|D̂(Z0) ≥ c} =
∫ τ0

0
pr(T > t|D̂(Z0) ≥ c)dt.

Now, suppose that the covariate vector Z0 ∈ Ω is bounded. In addition, we assume that

D̂(Z0) converges in probability to a finite constant D̄(Z0) uniformly in Z0 ∈ Ω, as n→∞.

Note that D̄(Z0) could be different from D(Z0) when the working model is misspecified. Let

ĀD(c) = E
(

(Y 0
(1) − Y 0

(0))|D̄(Z0) ≥ c
)

. In Appendix A, we show that

sup
c∈(−∞,c0)

|AD(c)− ĀD(c)| = o(1), (2.5)

for any c0 such that pr
(
D̄(Z0) ≥ c0

)
> 0. Furthermore, for ÂD(c) defined in (2.2) to (2.4),

sup
c∈(−∞,c0)

|ÂD(c)− ĀD(c)| = op(1), (2.6)

i.e., ÂD(c) is uniformly consistent for ĀD(c), for c ∈ (−∞, c0).

Given a particular scoring system, a plot like Figure 1 is useful for identifying the target

patient population who would benefit from the new treatment at various levels of interest.

However, it is likely there are other scoring systems using baseline variables which could be

better than the present one. In the next section, we discuss how to compare different scoring

systems.

7
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3. COMPARING SCORING SYSTEMS

For a reasonably good scoring system, one expects that the curve ÂD(c) is increasing over

c, as in Figure 1. In general, different scoring systems D̂(·) will group patients differently.

In order to compare two systems, say D̂1(·) and D̂2(·), we need to modify the scale of the

x-axis for the plot in Figure 1. Specifically, we convert the conditional event D̂(Z0) ≥ c

in (2.1) to H(D̂(Z0)) ≥ q, where H is the empirical cumulative distribution function of

D̂(Z0). The resulting estimate corresponding to (2.2) is denoted by ÃD(q). Note that

ÃD(q) = ÂD(H−1(q)). Given 0 ≤ q ≤ 1, ÃD(q) is simply an estimated average treatment

difference for subjects with scores exceeding the qth quantile. For example, with this new

scale for the x-axis, the curve in Figure 1 becomes the solid curve ÃD1(q) in Figure 2. The

subgroup of patients with an average CD4 count treatment difference of 100, as described in

Section 2, represents the patients with scores in the top 52%. Now, since RNA is relatively

expensive to measure in resource-limited regions, one question is whether we can use the

baseline log(CD4) only to construct a scoring system D̂2(·) (see Table 2). The resulting score

is D̂2(Z) = 40.57 + 8.27 log(CD4). Note that this new score indicates that a patient with a

large baseline CD4 value tends to benefit more from the new treatment. The corresponding

ÃD2(q) is given in Figure 2 (dashed curve). This new curve is not an increasing function.

Moreover, this curve is uniformly lower than ÃD1(q), indicating that the addition of baseline

RNA allows for substantial improvement in selecting the subgroup of patients with a desirable

level of overall treatment benefit. In general, the higher the curve ÃD(·) is, the better the

scoring system is. It is interesting to note that if we were able to use the score D̂(Z) =

D(Z), the true treatment difference, the resulting curve ÃD(·) would be uniformly the best

among all working models for treatment differences based on Z (see Appendix B for details).

However, when the dimension of Z is greater than one, it is difficult, if not impossible, to

estimate D(Z) well nonparametrically.

It is likely that the treatment difference curve ÃD(·) resulting from one model may not

dominate that from another model over the entire interval of interest. If we are interested

8
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in identifying a subpopulation with a specific treatment difference, one may choose a model

which gives us the largest subset of patients satisfying this criteria among all candidate

models. If there is no specific level of treatment difference that is of particular clinical

interest, one may use a summary of the curve to select the “best” model. For example, a

possible metric is the area under the curve (AUC) of ÃD(·). Let H̄(·) denote the cumulative

distribution function of D̄(Z0). In Appendix C, we show that the AUC is a consistent

estimator for

E
(
D(Z0) log

{[
1− H̄(D̄(Z0))

]−1
})

, (3.1)

which is the expected value of the product of the true subject-specific treatment difference

D(Z0), given the individual patient’s covariate vector Z0, and a strictly increasing transfor-

mation of the rank of the patient’s limiting score D̄(Z0). The quantity (3.1) is a measure of

the concordance between the true treatment difference and its empirical estimate. Therefore,

a higher AUC indicates a better fit of the working model. Furthermore, the area between

the curves (ABC) of ÃD(·) and the horizontal line y = ÃD(0), estimates the corresponding

covariance of two random quantities in (3.1). Note that this covariance is ρσ0, where ρ is the

correlation of the two terms in (3.1) and σ0 is an unknown constant which does not depend

on any specific scoring system. It follows that to compare two scoring systems, one may use

the ratio of two ABCs to examine the relative improvement from one model to the other.

Since the tail part of the curve ÃD(·) may not be stable, one may use a partial AUC

(by integrating the curve up to a specific constant η) as a metric for model evaluation and

comparison. For the two models in Figure 2, with η = .90, the aforementioned AUCs are 97.8

and 75.4 for the models with and without baseline RNA, respectively. The corresponding

ABCs are 17.3 and -5.1, respectively. Note that the ABC using the scoring system with

baseline log(CD4) alone is negative, indicating that the overall performance of this scoring

system is worse than a scoring system which groups the patients at random.

Now, if one considers the area under a weighted version of the curve, (1− q)ÃD(q), this

9
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quantity consistently estimates

E
(
D(Z0)H̄(D̄(Z0))

)
. (3.2)

The expected value given in (3.2) directly measures the concordance of the subject-specific

true treatment difference and the rank of the limiting score. This quantity may be easier

to interpret heuristically than (3.1). Note that the performance of a scoring system only

depends on the ranks of its scores. Moreover, the corresponding area between this curve and

the straight line y = (1−q)ÃD(0) is the covariance associated with the quantity given in (3.2)

(see Appendix C for details). Also note that there are no existing procedures in the literature

which can estimate such concordance measures at the patient level. Furthermore, if we could

use the true treatment difference D(Z) as the score, each of these concordance scores would

attain its maximum value among all possible models derived from Z (see Appendix B for

details).

When the dimension of the covariate vector Z is not small, it may not be appropriate

to use the same data set to build a score via a complex variable selection algorithm and

then use the same set to obtain ÃD(·) for model evaluation. Rather, one may randomly

divide the data set into two independent pieces, the training and the evaluation sets, to

avoid potential bias in assessing the adequacy of the model. When the data set is not large,

an alternative approach is to use a random cross-validation procedure. Specifically, consider

a class of models for the response Y and covariate vector Z. For each variable selection and

estimation algorithm for this class of models, we randomly split the data set into two pieces,

use the training set to obtain the scoring system D̂(Z), and construct the corresponding

estimate ÂD(·) using the evaluation set. We repeat this process M times.

Now, for the mth iteration, m = 1, · · · ,M , let D̂m(Z), ÂDm(c) and Hm(c) be the corre-

sponding aforementioned D̂(Z), ÂD(c) andH(c), respectively. Let D̂a(Z) = 1
M

∑M
m=1 D̂m(Z),

ÂDa(c) = 1
M

∑M
m=1 ÂDm(c), and Ha(c) = 1

M

∑M
m=1 Hm(c). Then ÃDa(q) = ÂDa(H

−1
a (q)).
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The comparisons among all the candidate models can be made via ÃDa(q). We then use the

corresponding ÂDa(c) of the best model to select the desirable subpopulation. Note that

the score of a future subject with the covariate vector Z0 is D̂a(Z
0). This cross-training-

evaluation averaging process is similar to bagging (Breiman, 1996).

We have conducted a large simulation study to examine the performance of the above

cross-training-evaluation process. We find that under various practical settings, for each

fitted model to create the scoring system, the empirical average of ÂDa(·) is almost identical

to AD(·). Therefore, one can select the model using ÂDa(·). Moreover, the average score

D̂a(Z
0) to be utilized for selection of future study subjects gives us, for example, almost the

same average treatment difference E
(

(Y 0
(1) − Y 0

(0))|D̂a(Z
0) ≥ c

)
as AD(c). More details of

our numerical study results are given in the Remarks Section.

4. CREATING SCORING SYSTEM CANDIDATES

In this section, we discuss various models and variable selection procedures to build mod-

els for creating the scoring systems, for example, using the training data set for each iteration

of the above cross-training-evaluation process. We first consider the case that (Y,G, Z) is

completely observed. A general approach for modeling the subject-specific treatment differ-

ence parametrically is to model the mean for each treatment group:

µk(Z) = gk(β
′
kh(Z)), (4.1)

where h(Z) is a known vector function of Z with the first component being 1, βk is an

unknown vector of parameters, gk is a given link function, and k = 0, 1. To estimate βk, one

may minimize a loss function Lk(β), which may be based on a likelihood or a residual sum

of squares.

An alternative approach is to utilize a single model for both treatment groups:

E(Y |Z,G) = g(β′h(G,Z)), (4.2)

11
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where h(G,Z) is a known vector function of (G,Z) with the first component being 1, β is

an unknown vector of parameters, and g is a given link function. Note that h(G,Z) may

include G, Z, and G×Z interaction terms. In the presence of G×Z interaction terms, the

results of variable selection procedures can change depending on how one codes the treatment

indicator G. To this end, we code treatment group 0 and treatment group 1 using -1 and

+1, respectively. Under this setting, D̂(Z) = g(β̂′h(1, Z))− g(β̂′h(−1, Z)). Again, one may

obtain an estimator β̂ for β by minimizing a loss function L(β).

For Model (4.1) or (4.2), one may also use an estimation procedure for β with a built-in

variable selection algorithm. For instance, for (4.2), let β̂λ be a minimizer of

L(β) + λ ‖ β ‖d, (4.3)

where L(β) may be the negative log of the likelihood function for (4.2) or the residual sum

of squares, and λ > 0 is the regularization parameter. Note that for the lasso procedure

(Tibshirani, 1996), d = 1 and for ridge regression (Hoerl and Kennard, 1970), d = 2. One

may select the regularization parameter λ̂ based on the standard cross-validation procedure

(Tibshirani, 1996). With the resulting β̂λ̂, let D̂(Z) be the score.

Note that with a procedure using (4.3), it can be shown that, when the dimension of

the covariate vector p is fixed and λ̂ = o(n), β̂λ̂ converges to a constant vector as n → ∞

(Knight and Fu, 2000). This is an important property to guarantee that we will have a

unique, well-defined limiting working model when repeating the algorithm with different

training sets, as discussed in the previous section. Similarly, we may use the above variable

selection algorithms with the model described in (4.1) separately for each treatment group.

Similar to the Ld penalized estimator, the regression parameter estimator based on the

standard stepwise variable selection procedure also has this stabilization property under

more rigorous regularity conditions.

Now, consider the case that Y may not be observed completely due to censoring of the
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event time T . A common approach is to relate the event time to the covariates with a Cox

proportional hazards model. For example, one may combine the data from two treatment

groups and consider a working model:

pr(T > t|Z,G) = g(log Λ(t) + β′h(G,Z)), (4.4)

where g(x) = e−e
x
, h(G,Z) is a known vector function of (G,Z), Λ(·) is an unknown baseline

cumulative hazard function, and β is an unknown vector of parameters. Again h(G,Z)

may include G, Z, and G × Z interaction terms. To estimate β, one may use the partial

likelihood estimate. Here the loss function L(β) is the negative log of the partial likelihood.

An alternative is to utilize a corresponding (4.3) to obtain β̂λ̂. Now, suppose Y = I(T ≥ t0),

where t0 is a given time point. Then one may use

D̂(Z) = g(log Λ̂(t0) + β̂′
λ̂
h(1, Z))− g(log Λ̂(t0) + β̂′

λ̂
h(−1, Z)), (4.5)

where

Λ̂(t) =
n∑
i=1

∫ t

0

dNi(s)∑n
j=1 Yj(s)e

β̂′
λ̂
h(Gj ,Zj)

, (4.6).

with Ni(t) = I(Xi ≤ t)∆i and Yi(t) = I(Xi ≥ t), i = 1, . . . , n.

If we are interested in the restricted mean event time, that is, Y = min(T, τ0), the

resulting score from Model (4.4) is

D̂(Z) =

∫ τ0

0

{
g(log Λ̂(t) + β̂′

λ̂
h(1, Z))− g(log Λ̂(t) + β̂′

λ̂
h(−1, Z))

}
dt. (4.7)

Note that one may also fit a separate Cox model for each treatment group to create D̂(·).

5. EXAMPLES

First, we illustrate our proposal using the data from the ACTG 320 HIV study described

in the Introduction, using the nine baseline covariates listed in Table 1 of Hammer et al.
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(1997). This set of covariates includes the baseline CD4 and RNA values. There are 838

patients who had complete information with respect to these 9 covariates. Again, we used

week 24 CD4 value as the response variable Y , as in Section 2. Here, we consider two classes

of models to construct various scoring systems. The first one, as in (4.1), uses an additive

linear model for each treatment group with all nine of the covariates. The second one, as in

(4.2), uses a single model with main covariate effects and interactions between the treatment

indicator and other covariates. For each of the two classes of models, we used four variable

selection procedures to build candidate scoring systems. For the first procedure, we used the

full model with all the baseline covariates. For the second one, we used a stepwise variable

selection based on Akaike information criterion (AIC) (Akaike, 1973). We then used lasso

and ridge regression as the third and fourth variable selection procedures, respectively. The

tuning parameters were selected by the standard cross-validation procedure built in the R

package glmnet. For comparison, we also considered the two-variable model, discussed in

Section 2, which uses only baseline CD4 and RNA.

Figure 3 summarizes the treatment difference curves ÃDa(·) based on the averages over

M = 500 replications of a cross-validation procedure, where each replication resulted from

the random selection of 4/5 of the data as the training set. The results from these two

classes of models are quite similar, except when using the lasso variable selection procedure.

The model using only CD4 and RNA without variable selection performs well. On the other

hand, the scoring systems using 9 covariates with the standard variable selection algorithms

do not perform as well.

Now, if one wants to identify a subpopulation with an average CD4 count treatment

difference of 100 cells/mm3, then clearly the scoring system built with CD4 and RNA, which

gives us the largest target subset of patients among all the candidate models, is the most

favorable. In fact, using the two-variable model, 52% of the patients meet this criteria, while

no more than 30% of the patient population is identified via any of the other candidate

models. If this specific level of treatment difference is not of particular clinical interest, one
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may use the AUC and ABC discussed in Section 3 to compare the scoring systems. For

example, with two separate models and η = .90, the ABC for the scoring system built using

nine covariates with the lasso procedure is 9.1, compared with 17.3 for the simple model

built using only CD4 and RNA.

As a second example, we considered a recent clinical trial “Prevention of Events with

Angiotensin Converting Enzyme Inhibition” (PEACE) to study whether the ACE inhibitors

(ACEi) are effective for reducing certain future cardiovascular-related events for patients

with stable coronary artery disease and normal or slightly reduced left ventricular function

(Braunwald et al., 2004). In this study, 4158 and 4132 patients were randomly assigned to

the ACEi treatment and placebo arms, respectively. The median follow-up time was 4.8

years. One main endpoint for the study was the patient’s survival time. By the end of the

study, 334 and 299 deaths occurred in the control and treatment arms, respectively. Under a

proportional hazards model, the estimated hazard ratio is 0.89 with a 0.95 confidence interval

of (0.76, 1.04) and a p-value of 0.13. Based on the results of this study, it is not clear whether

ACEi therapy would help the overall patient population with respect to mortality. However,

with further analysis of the PEACE survival data, Solomon et al. (2006) reported that ACEi

might significantly prolong survival for the subset of patients whose kidney functions at the

study entry time were not normal (for example, those with estimated glomerular filtration

rate, eGFR, < 60). This finding could be quite useful in practice. On the other hand, such

a subgroup analysis has to be executed properly and the results of such analysis have to be

interpreted cautiously (Rothwell, 2005; Pfeffer and Jarcho, 2006; Wang et al., 2007).

For this example, we considered the time-to-event endpoint, T , the time to all-cause

mortality. To build a candidate scoring system, we first used the 7 covariates previously

identified as statistically and clinically important predictors of the overall mortality in the

literature (Solomon et al., 2006). These covariates are eGFR, age, gender, left ventricular

ejection fraction (lveejf), history of hypertension, diabetes, and history of myocardial in-

farction. For comparison, we also used two scoring systems built using eGFR alone and
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lveejf alone, which are two conventional predictive markers for cardiovascular diseases. In

addition, we considered the scoring systems built with various variable selection procedures

using the baseline covariates listed in Table 2 of Braunwald et al. (2004). However, we did

not use three of the variables listed: race, country, and serum creatinine, which were not

available in our database from the US National Institutes of Health. Moreover, we omitted

four binary variables due to lack of variability (i.e., over 95% of patients exhibited the same

covariate value). These excluded variable are: use of Digitalis, use of antiarrhythmic agent,

use of anticoagulant, and use of insulin. On the other hand, an extra variable eGFR, which

is a function of age, gender, race, and serum creatinine, was available in our database. To

this end, we considered the remaining 20 variables from Table 2 of Braunwald et al. (2004)

in addition to eGFR, resulting in a total of 21 covariates. In our analysis, we included all

patients (n = 7460) who had complete information concerning these 21 covariates. To esti-

mate the score for the treatment differences, we considered two classes of models: a separate

Cox model for each of the two treatment groups, and a single Cox model which includes

treatment-covariate interaction terms. For each of the two classes of models, we used the

same four variable selection procedures as in the previous example to build candidate scoring

systems.

First, suppose that one is interested in survival probability at month 72. We let Y =

I(T ≥ 72). Figure 4 summarizes the treatment difference curves for various scoring systems

based on 500 random cross-validations with 4/5 of the data as the training set. The treat-

ment difference curve with the 7 clinically meaningful covariates and the one with eGFR

alone are similar. Both perform uniformly better than any of the scoring systems which use

all 21 covariates. When using two separate models, as shown in the left panel of Figure 4,

the performance of the scoring systems constructed via variable selection procedures appears

similar to the full model. Using a single interaction model (right panel), the stepwise and

lasso variable selection procedures appear inferior to the one with all 21 covariates. It is inter-

esting to note that the scoring system based on lveejf alone performs quite poorly, indicating
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that this conventional marker for cardiovascular diseases by itself is not helpful in identi-

fying patients who would benefit from ACEi. To further quantify the relative performance

among the candidate scoring systems, one may use the AUC and ABC discussed in Section

3. For example, with two separate models and η = .90, the ABC for the scoring system built

with 7 covariates is 0.015, which is the largest among all candidates. The estimated ratio of

correlations between the true treatment difference D(Z0) and log{[1− H̄(D̄(Z0))]−1} using

this scoring system is 1.21 relative to that using eGFR alone, 1.65 relative to the one using

all 21 covariates, and 4.11 relative to that using lveejf alone.

Next, suppose that one is interested in the restricted mean event time up to month 72.

To this end, we let Y = min(T, 72). Figure 5 presents the results based on 500 random

cross-validations with 4/5 of the data as the training set. The scoring system built with the

7 covariates appears to outperform the others. Again it appears that the scoring systems

created using the variable selection procedures with 21 covariates perform similarly or inferior

to the one with the full model, and the system based on lveejf only performs poorly. It is

interesting to note that the model with eGFR alone does not perform particularly well for

this endpoint.

Based on the partial AUC and ABC, the scoring system using two separate models

with 7 covariates is the best among the candidate models for the survival probability at

month 72. This model also gives the best scoring system among the candidate models for

the restricted mean event time up to month 72. Figure 6 provides the estimated average

treatment differences ÂDa(c) over a range of values c for both endpoints. From this figure,

one can easily identify the subgroup of patients with any desired level of treatment benefit.

For example, if we desire a 72-month survival rate benefit of 0.05, since ÂD(0.038) = 0.05,

we can identify the subset of patients with Z0 such that D̂(Z0) ≥ 0.038. If we desire a

treatment benefit of 1.5 months for the restricted mean event time up to month 72, the

corresponding subset could consist of patients Z0 such that D̂(Z0) ≥ 2.23.
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6. REMARKS

Note that the typical subgroup analysis strategy, which tries to identify a target popula-

tion for future study by dichotomizing one or more baseline variables, may not be efficient,

especially when the dimension of Z is large. That is, the resulting population selected by

this strategy can be quite small, which is not practically useful. Our proposal selects the

largest population whose subjects would have a desired overall treatment benefit, among all

candidate scoring systems.

We conducted an extensive numerical study to examine the performance of the new

proposal under various practical settings. We find that the empirical average of the estimates

ÂDa(c) via the random cross-validation procedure is practically identical to its theoretical

counterpart AD(c) in (2.1) when c is not very large (the upper tail of ÂDa(·) may not

be stable). On the other hand, if we use the entire data set to fit a model for creating

a scoring system, and use the same data set to estimate AD(c), the resulting estimator

ÂD(·) can be expected to be substantially overly optimistic. For example, we mimicked

the HIV example to generate the data for our numerical study. Specifically, we assumed a

single linear model with response Y being the week 24 CD4 count and independent variables

being the treatment indicator, the nine baseline covariates discussed in Section 5, and the

treatment-covariate interactions. The error of the model was assumed to be normal with

mean zero. We fitted the HIV study data using this model and then used this model

to generate responses. To simulate a data set with sample size n, for each subject, first

we randomly chose a covariate vector and the treatment indicator from the original study

database with replacement. We then generated a week 24 CD4 count using the above “true”

model. For each simulated data set, we fitted two separate linear models, one for the control

and one for the treatment group, using the above 9 covariates additively. With the resulting

scores D̂(Z), we estimated the mean value of the treatment difference Y 0
(1) − Y 0

(0) given

D̂(Z) > c, with 10,000 fresh independent observations (Y,G, Z). We replicated this process

100 times and used the empirical average to approximate AD(c). The resulting curve (solid)
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is given in Figure 7 with n = 838. Now, to obtain an empirical average of ÂDa(c), we

used the above 100 simulated data sets with sample size n. The random cross-validation

procedures were repeated 100 times for each simulated data set. The dashed curve is the

resulting empirical average of ÂDa(c) with a 4:1 ratio of training and evaluation samples.

The dotted curve is the corresponding empirical average of ÂD(·), where the same data set

is used for both training and evaluation. Note that the dotted curve is markedly higher than

the solid one, indicating that the procedure using the entire data set for model building and

evaluation can be quite misleading. From our extensive numerical study, we find that the

estimation procedure for AD(·) performs well with a random K-fold cross validation when

5 ≤ K ≤ 10 (that is, using (K − 1)/K as training and 1/K as evaluation repeatedly).

It is important to note that it is difficult, if not impossible, to make further inferences, for

example, constructing confidence intervals or bands, about the average treatment difference

curve AD(·) using only a single data set. This is due to the fact that we perform a large

number of model building and selection processes to identify the best scoring system. The

sampling variation for the final estimator ÂDa(·) cannot be derived based on the conventional

fixed model fitting procedure. If there is an independent data set generated from a similar

population, the techniques for analyzing standard empirical processes may be utilized for

constructing the interval estimates by treating the scores as being fixed (Song and Pepe,

2004; Song and Zhou, 2011).

From a risk-benefit perspective for evaluating the new treatment, one may collect toxicity

information and construct corresponding treatment contrast measures using the same efficacy

score D̂(Z). The resulting two sets of curves can be quite useful for selecting a proper

target population. For comparing multiple treatment arms with a control, we may construct

pair-wise treatment-control difference curves ÃDa(·). It follows from our proposal that the

treatment with the highest treatment difference curve or a function thereof may be selected

to be the candidate for the future studies.
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APPENDIX A: CONSISTENCY OF ÂD(·)

In this appendix, we outline the proof for (2.5) and (2.6). We assume that the covariate

vector Z0 ∈ Ω is bounded. In addition, we assume that D̂(Z0) converges in probability to

a finite constant D̄(Z0) uniformly in Z0 ∈ Ω, as n → ∞. This assumption holds for all

the scoring systems considered in Section 4, because of the convergence of the regression

22

http://biostats.bepress.com/harvardbiostat/paper134



parameter estimator β̂ regardless of whether the working model is correctly specified (Cai

et al., 2011). Note that D̄(Z0) could be different from D(Z0) when the working model is

misspecified. Without loss of generality, we assume that at least one of the covariates is

continuous, but similar arguments can be used to justify the discrete case. Furthermore, we

assume that D(Z0) and D̄(Z0) are bounded, and the probability density function of D̄(Z0)

is bounded.

We first prove (2.5). To this end, let ε = supZ0∈Ω |D̂(Z0)−D̄(Z0)| = op(1) by assumption.

It is easy to show that

∣∣∣I{D̂(Z0) ≥ c} − I{D̄(Z0) ≥ c}
∣∣∣ ≤ I

{
D̄(Z0) ∈ [c− ε, c+ ε)

}
.

Because the probability density function of D̄(Z0) is bounded, and ε = op(1), it follows that

sup
c∈(−∞,c0)

∣∣∣pr(D̂(Z0) ≥ c)− pr(D̄(Z0) ≥ c)
∣∣∣ ≤ sup

c∈(−∞,c0)

pr
(
D̄(Z0) ∈ [c− ε, c+ ε)

)
= o(1).

(A.1)

Similarly, suppose |D(Z0)| is bounded by B0, we have

sup
c∈(−∞,c0)

∣∣∣E (D(Z0)I{D̂(Z0) ≥ c}
)
− E

(
D(Z0)I{D̄(Z0) ≥ c}

)∣∣∣
≤ B0 sup

c∈(−∞,c0)

pr
(
D̄(Z0) ∈ [c− ε, c+ ε)

)
= o(1) (A.2)

Combining (A.1) and (A.2), and the fact thatAD(c) = E
(
D(Z0)I{D̂(Z0) ≥ c}

)
/pr(D̂(Z0) ≥

c) and ĀD(c) = E
(
D(Z0)I{D̄(Z0) ≥ c}

)
/pr(D̄(Z0) ≥ c), it follows that (2.5) is true.

Next, we outline the proof for (2.6) separately for the cases when the response variable

Y is completely observed and not completely observed. We first consider the case when Y is

completely observed. For simplicity, we assume Y is bounded. By the uniform law of large
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numbers (Pollard, 1990), we have

sup
c∈(−∞,c0)

∣∣∣∣∑n
i YiI{D̄(Zi) ≥ c,Gi = k}∑n
i I{D̄(Zi) ≥ c,Gi = k}

− E
(
Y 0

(k)|D̄(Z0) ≥ c
)∣∣∣∣ = op(1),

for k = 1, 2. Thus it suffices to show that

sup
c∈(−∞,c0)

∣∣∣∣∣
∑n

i YiI{D̂(Zi) ≥ c,Gi = k}∑n
i I{D̂(Zi) ≥ c,Gi = k}

−
∑n

i YiI{D̄(Zi) ≥ c,Gi = k}∑n
i I{D̄(Zi) ≥ c,Gi = k}

∣∣∣∣∣ = op(1), (A.3)

for k = 1, 2. It is easy to show that

∣∣∣I{D̂(Zi) ≥ c,Gi = k} − I{D̄(Zi) ≥ c,Gi = k}
∣∣∣ ≤ I

{
D̄(Zi) ∈ [c− ε, c+ ε), Gi = k

}
.

(A.4)

Because the probability density function of D̄(Z0) is bounded, and ε = op(1), by the uniform

law of large numbers (Pollard, 1990), we have

sup
c∈(−∞,c0)

1

nπk

n∑
i=1

I
{
D̄(Zi) ∈ [c− ε, c+ ε), Gi = k

}
= op(1). (A.5)

Combining (A.4) and (A.5), it follows that

sup
c∈(−∞,c0)

∣∣∣∣∣ 1

nπk

n∑
i

I{D̂(Zi) ≥ c,Gi = k} − 1

nπk

n∑
i

I{D̄(Zi) ≥ c,Gi = k}

∣∣∣∣∣ = op(1).

Suppose |Yi| ≤ B1. Similar to (A.4), we have

∣∣∣YiI{D̂(Zi) ≥ c,Gi = k} − YiI{D̄(Zi) ≥ c,Gi = k}
∣∣∣ ≤ B1I

{
D̄(Zi) ∈ [c− ε, c+ ε), Gi = k

}
.

It follows by the same arguments as above that

sup
c∈(−∞,c0)

∣∣∣∣∣ 1

nπk

n∑
i

YiI{D̂(Zi) ≥ c,Gi = k} − 1

nπk

n∑
i

YiI{D̄(Zi) ≥ c,Gi = k}

∣∣∣∣∣ = op(1).
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Thus (A.3) is true. This proves (2.6) when Y is completely observed.

Now, we prove (2.6) for the case when Y is not completely observed. Here we consider

the response for Y = I(T ≥ t0). The proof for Y = min(T, τ0) is similar. Let N̄
(k)
i,c (t) =

I(Xi ≤ t, D̄(Zi) ≥ c,Gi = k)∆i, and Ȳ
(k)
i,c (t) = I(Xi ≥ t, D̄(Zi) ≥ c,Gi = k), k = 0, 1;

i = 1, . . . , n. Firstly, following the equivalence between the Kaplan-Meier estimator and the

Nelson-Aalen estimator, it is not difficult to see that

t0∏
t=0

{
1−

∑n
i=1 dN

(k)
i,c (t)∑n

i=1 Y
(k)
i,c (t)

}
= exp

{
− 1

n

n∑
i=1

∫ t0

0

dN
(k)
i,c (t)

L
(k)
c (t)

}
+ op(1),

and
t0∏
t=0

{
1−

∑n
i=1 dN̄

(k)
i,c (t)∑n

i=1 Ȳ
(k)
i,c (t)

}
= exp

{
− 1

n

n∑
i=1

∫ t0

0

dN̄
(k)
i,c (t)

L̄
(k)
c (t)

}
+ op(1),

uniformly for c ∈ (−∞, c0), where L
(k)
c (t) = pr(Xi ≥ t, D̂(Zi) ≥ c,Gi = k) and L̄

(k)
c (t) =

pr(Xi ≥ t, D̄(Zi) ≥ c,Gi = k). Note that the above two exponential terms are the sum of n

iid terms. The rest of proof is similar to the completely observed case.

APPENDIX B: OPTIMALITY OF THE TRUE SUBJECT-SPECIFIC

TREATMENT DIFFERENCE AS A SCORING SYSTEM

It can be shown that H(D̂(Z0)) converges in probability to H̄(D̄(Z0)) uniformly in

Z0 ∈ Ω, as n → ∞. Thus it follows by the same arguments of Appendix A that ÃD(q)

defined in Section 3 is a consistent estimator for E(Y 0
(1)− Y 0

(0)|H̄(D̄(Z0)) ≥ q), which can be

rewritten as

E
((
Y 0

(1) − Y 0
(0)

)
I{H̄(D̄(Z0)) ≥ q}

)
pr{H̄(D̄(Z0)) ≥ q}

=

∫
I{H̄(D̄(z)) ≥ q}D(z)f(z)dz

1− q
, (B.1)

where f(z) is the density function of Z0.

Now we show that the limit of ÃD(·) is pointwise maximized when the true subject-

specific treatment difference D(Z0) is used as the scoring system. From (B.1), the limit of
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ÃD(q) with the scoring system D̂(Z0) is
∫
I{H̄(D̄(z)) ≥ q}D(z)f(z)dz/(1 − q). Similarly,

the limit of ÃD(q) with the scoring system D(Z0) is
∫
I{H0(D(z)) ≥ q}D(z)f(z)dz/(1− q),

where H0(·) is the cumulative distribution function of D(Z0). It follows that

∫
I{H0(D(z)) ≥ q}D(z)f(z)dz −

∫
I{H̄(D̄(z)) ≥ q}D(z)f(z)dz

=

∫ [
I
{
D(z) ≥ H−1

0 (q)
}
− I

{
D̄(z) ≥ H̄−1(q)

}]
D(z)f(z)dz

=

∫ [
I
{
D(z) ≥ H−1

0 (q), D̄(z) < H̄−1(q)
}]
D(z)f(z)dz −∫ [

I
{
D(z) < H−1

0 (q), D̄(z) ≥ H̄−1(q)
}]
D(z)f(z)dz

≥
∫ [

I
{
D(z) ≥ H−1

0 (q), D̄(z) < H̄−1(q)
}]
H−1

0 (q)f(z)dz −∫ [
I
{
D(z) < H−1

0 (q), D̄(z) ≥ H̄−1(q)
}]
H−1

0 (q)f(z)dz

= H−1
0 (q)

∫ [
I
{
D(z) ≥ H−1

0 (q)
}
− I

{
D̄(z) ≥ H̄−1(q)

}]
f(z)dz

= 0.

This proves that for each q ∈ (0, 1), the limit of ÃD(q) is maximized when the true subject-

specific treatment difference D(Z0) is used as the scoring system. Thus so are the limits of

AUC, partial AUC, and weighted AUC of ÃD(·), and the corresponding ABCs.

APPENDIX C: AUC AND ABC OF WEIGHTED ÃD(·)

Suppose that w0(q), q ∈ [0, 1] is a non-negative weight function, in this section we will

justify that ∫ η

0

w0(q)ÃD(q)dq
p→ E

{
D(Z0)ψw0

(
min{η, H̄(D̄(Z0))}

)}
. (C.1)

and

∫ η

0

w0(q)
{
ÃD(q)− ÃD(0)

}
dq

p→ Cov
(
D(Z0), ψw0

(
min{η, H̄(D̄(Z0))}

))
, (C.2)
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where

ψw0(q) =

∫ x

0

w0(q)dq

1− q

and 0 < η < 1 is a fixed constant.

It follows from (B.1) that

∫ η

0

w0(q)ÃD(q)dq

p→
∫ η

0

w0(q)

[∫
I{H̄(D̄(z)) ≥ q}D(z)f(z)dz

1− q

]
dq

=

∫ [∫ min{η,H̄(D̄(z))}

0

w0(q)

1− q
dq

]
D(z)f(z)dz

=

∫
ψw0

(
min{η, H̄(D̄(z))}

)
D(z)f(z)dz

= E
{
D(Z0)ψw0

(
min{η, H̄(D̄(Z0))}

)}
Therefore (C.1) is true. To justify (C.2), we first note that ÃD(0) is consistent for E(D(Z0)) =

E(Y(1))− E(Y(0)), which is simply the overall treatment difference. In addition,

E
{
ψw0

(
min{η, H̄(D̄(Z0))}

)}
=

∫ 1

0

ψw0(q) {min(η, u)} du

=

∫ 1

0

∫ min(η,u)

0

w0(q)

1− q
dqdu

=

∫ η

0

w0(q)dq,

where we used the fact that H̄{D̄(Z0)} follows uniform distribution. Coupled with (C.1), it

follows that

∫ η

0

w0(q)
{
ÃD(q)− ÃD(0)

}
dq

p→ E
{
D(Z0)ψw0

(
min{η, H̄(D̄(Z0))}

)}
− E{D(Z0)}E

{
ψw0

(
min{η, H̄(D̄(Z0))}

)}
= Cov

(
D(Z0), ψw0

(
min{η, H̄(D̄(Z0))}

))
,
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which justifies (C.2).

When w0(q) = 1, we have ψw0(q) = − log {(1− q)}, ψw0(H̄(D̄(Z0))) follows unit expo-

nential distribution, and

∫ 1

0

{
ÃD(q)− ÃD(0)

}
dq

p→ σ0Cor
(
D(Z0), ψw0

(
H̄(D̄(Z0))

))
,

where σ0 is the standard deviation of D(Z0), an unknown constant which does not depend

on any specific scoring system. If w0(q) is set as 1− q, then ψw0(q) = q and

∫ 1

0

(1− q)
{
ÃD(q)− ÃD(0)

}
dq

p→ σ0

2
√

3
Cor

(
D(Z0), H̄{D̄(Z0)}

)
,

where we use the fact that Var{H̄(D̄(Z0))} = 1/12 because H̄(D̄(Z0)) follows standard

uniform distribution.
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Table 1: Estimated (Est) regression coefficients, their standard errors (SE) and p-values by
fitting two separate linear regression models to the ACTG 320 data with week 24 CD4 as
the response and log(CD4) and log10(RNA) as the baseline covariates

Covariates Two-drug Three-drug
Est SE p-value Est SE p-value

Intercept -17.04 24.13 0.48 -137.66 40.91 <0.01
log(CD4) 43.05 2.31 <0.01 55.62 3.83 <0.01
log10(RNA) -9.98 4.05 0.01 19.16 6.85 0.01

Table 2: Estimated (Est) regression coefficients, their standard errors (SE) and p-values by
fitting two separate linear regression models to the ACTG 320 data with week 24 CD4 as
the response and log(CD4) alone as the baseline covariates

Covariates Two-drug Three-drug
Est SE p-value Est SE p-value

Intercept -72.21 9.08 <0.01 -31.64 15.57 0.04
log(CD4) 44.52 2.24 <0.01 52.79 3.72 <0.01
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Figure 1: Estimated average treatment difference for patients with D̂(Z) ≥ c using the
scoring system built with two baseline covariates, log(CD4) and log10(RNA), for the ACTG
320 data
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Figure 2: Comparing the two estimated average treatment differences for patients with
largest 100(1 − q)% scores using the systems built with and without log10(RNA) for the
ACTG 320 data
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Figure 3: Comparing the estimated average treatment difference curves using various scoring
systems based on 500 replicates of cross-validation for the ACTG 320 data (left panel: two
separate models; right panel: a single interaction model)
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Figure 4: Comparing the estimated average treatment difference curves using different scor-
ing systems with respect to 72-month survival rate, based on 500 replicates of cross-validation
for the PEACE data (left panel: two separate models; right panel: a single interaction model)
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Figure 5: Comparing the estimated average treatment difference curves using different scor-
ing systems with respect to restricted mean survival time up to 72 months, based on 500
replicates of cross-validation for the PEACE data (left panel: two separate models; right
panel: a single interaction model)
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Figure 6: Estimated average treatment difference for patients with D̂(Z) ≥ c using the
scoring system built with two separate models and 7 covariates for the PEACE data (left
panel: 72-month survival rate; right panel: restricted mean survival time up to 72 months)
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Figure 7: Comparisons between the estimation procedures with and without cross-validation
with n = 838; the solid curve is the “truth”, the dashed curve is the empirical average using
cross-validated procedure with a 4:1 ratio of training and evaluation samples, and the dotted
curve is the empirical average without using cross-validation.
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