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Summary. Randomized clinical trials are a powerful tool for investigating causal treatment effects, but in
human trials there are oftentimes problems of noncompliance which standard analyses, such as the intention-
to-treat or as-treated analysis, either ignore or incorporate in such a way that the resulting estimand is no
longer a causal effect. One alternative to these analyses is the complier average causal effect (CACE) which
estimates the average causal treatment effect among a subpopulation that would comply under any treatment
assigned. We focus on the setting of a randomized clinical trial with crossover treatment noncompliance
(e.g., control subjects could receive the intervention and intervention subjects could receive the control)
and outcome nonresponse. In this article, we develop estimators for the CACE using multiple imputation
methods, which have been successfully applied to a wide variety of missing data problems, but have not yet
been applied to the potential outcomes setting of causal inference. Using simulated data we investigate the
finite sample properties of these estimators as well as of competing procedures in a simple setting. Finally
we illustrate our methods using a real randomized encouragement design study on the effectiveness of the
influenza vaccine.

Key words: Causal inference; Complier average causal effect; Missing data; Multiple imputation; Noncom-
pliance; Nonresponse; Principal stratification.

1. Introduction
The focus of empirical studies in medicine is often to estimate
the causal effect of treatments, where randomized clinical tri-
als are considered the most acceptable tool for investigating
these causal relationships. But in trials involving human sub-
jects there are oftentimes problems of patient noncompliance,
where the patient does not adhere to the treatment assigned.
In addition, there is also the problem of nonignorable miss-
ing data, where the missing-data mechanism may depend on
unobserved data. Standard methods and analyses either ig-
nore these complications, which can lead to biased estimates
of causal treatment effect, or account for them in such a way
that the resulting estimand can no longer be considered a
causal effect of treatment. A statistical framework for causal
inference that deals with the issue of noncompliance is based
on potential outcomes and was first introduced by Neyman
(1923) for randomized studies and later developed by Rubin
(1974, 1978) for nonrandomized studies and other forms of
inference. Rubin’s approach, sometimes referred to as the Ru-
bin Causal Model (Holland, 1986), provides a framework for
defining the parameters of interest and correctly attributing
the data observed between different treatment groups to the
causal effects of the treatment.

As a motivating example, we focus on the setting of a
randomized clinical trial for the influenza vaccine (McDon-
ald, Hui, and Tierney, 1992). Observational studies suggest
that among patients with a high risk of pulmonary disease,

those vaccinated with the influenza vaccine have better out-
comes, including fewer hospitalizations. Clinical trials have
never been performed because of ethical problems that come
from withholding the vaccine from patients in the control arm.
As an alternative, a three-year clinical trial was performed
where the intervention arm increased the use of the influenza
vaccine without changing its use in the control arm (McDon-
ald et al., 1992). For doctors in the intervention arm, com-
puter reminders were sent out when a patient with a scheduled
visit was eligible for a flu shot. Unfortunately, noncompliance
is a large problem in this type of study where encouragement
to take the treatment, rather than the treatment itself, is ran-
domized.

This article attempts to address noncompliance using
a principal stratification framework (Frangakis and Rubin,
2002) which focuses on the subpopulation of compliers, who
are not fully identifiable from the observed data. Alternative
methods of modeling noncompliance, such as conditioning on
the potential outcomes in selection models (Heitjan, 1999)
or the use of structural equation models (Robins, Greenland,
and Hu, 1999) are not considered here.

In the principal stratification framework, existing meth-
ods for estimation of the treatment effect include Bayesian
(Imbens and Rubin, 1997; Hirano, Rubin, and Zhou, 2000;
Frangakis, Rubin, and Zhou, 2002), likelihood (O’Malley
and Normand, 2005; Zhou and Li, 2005), and moment
methods (Frangakis and Rubin, 1999; Levy, O’Malley, and
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Normand, 2004; O’Malley and Normand, 2005; Taylor and
Zhou, 2008). An interesting alternative is multiple imputa-
tion (Rubin, 1987) which has been successfully applied to
a wide variety of missing data problems but has not yet
been applied to the potential outcomes setting of causal
inference.

Multiple imputation (MI) is attractive for a number of rea-
sons (see Rubin, 1996; Schafer and Olsen, 1998). An impor-
tant advantage of the MI analysis (and the Bayesian analy-
sis) over and above the likelihood methods is that neither the
monotonicity nor the compound exclusion restriction, which
have been used to develop and justify estimation procedures,
are essential, and violations of these assumptions can be ad-
dressed. However, for both Bayesian and MI methods, iden-
tification is based entirely on a carefully thought out (or
mathematically tractable) prior distribution. MI has statis-
tical properties that closely approach the optimality of max-
imum likelihood (ML) methods (although not exactly as op-
timal since ML involves no simulation) with the principal
advantage to MI being that it can be used in almost any
situation, whereas ML is much more restricted in its appli-
cations, perhaps requiring specially designed EM algorithms
and sometimes difficult analytic or numerical integration on
the log likelihood for interval estimates.

An important advantage of the MI analysis over the
Bayesian and ML methods is that MI works in conjunction
with standard complete-data methods and software so that
after the imputations are generated, data analysts who are
not professional statisticians can apply standard complete-
case analyses to the multiply imputed data sets. And since
the imputation phase is operationally distinct from subse-
quent analyses, given a set of m imputations, many different
analyses can be performed making it unnecessary to re-impute
when a new analysis is considered. By using a Bayesian frame-
work for imputation and a frequentist approach to examin-
ing the estimator, one is also able to take advantage of the
Bayesian framework, for example by relaxing certain assump-
tions, while having the ability to make direct comparisons to
other frequentist methods. MI is especially promising when
standard complete-case analyses are difficult to modify an-
alytically in the presence of nonresponse, as in the case of
nonignorable missing data or multivariate outcomes. Finally,
it can be very efficient with as few as 3–5 imputations needed
to obtain valid results.

Barnard et al. (1998) describe a basic template for obtain-
ing inferences using multiple imputations in a setting where
only intervention subjects could receive the new treatment, al-
though they stop short of implementing the imputation tech-
niques or comparing them to existing methods. This article
extends the template for obtaining inferences using multiple
imputation to a setting of crossover noncompliance (e.g., con-
trol subjects could receive the intervention and intervention
subjects could receive the control), and compares these meth-
ods to existing methods. Section 2 and 3 define the causal
inference notation, assumptions, and parameters of interest.
Section 4 introduces the multiple imputation framework. Sec-
tion 5 provides additional assumptions used in this frame-
work. Section 6 provides simulation results for the setting of
a binary outcome with noncompliance and outcome nonre-
sponse. In Section 7 these methods are applied to a reanalysis

of a data set on the influenza vaccine previously studied by
McDonald et al. (1992).

2. Setting and Notation
The setting consists of a randomized clinical trial where N
subjects are randomized to treatment Z where Z is an N-
vector of treatment assignments with ith element Zi. For sub-
ject i, Zi = 1 if assigned to the new treatment and Zi = 0 if
assigned to the control. Let D(Z) be the vector of potential
treatment receipts with ith element Di(Z). Here Di(Z) = 1 if
subject i receives the new treatment and Di(Z) = 0 if subject
i receives the control, under treatment assignment vector Z.
Let Y i(Z) and Ri(Z) be, respectively, the potential outcome
and potential indicator for response, equal to 1 for response,
and 0 for nonresponse, on outcome Y i, for subject i under
treatment assignment Z. A random subset of the N subjects
are assigned to treatment arm Z.

3. Definition of Causal Estimands
We make the stable unit treatment value assumption
(SUTVA) which limits the number of potential outcomes and
allows us to write the potential outcomes as functions of Zi

rather than of the vector Z. Formally the SUTVA states that
if, for all Z, Z

′
where Zi = Z

′
i (i.e., under treatment assign-

ments which may differ for some subjects but not for sub-
ject i), Di(Z) equals Di(Z

′
), Yi(Z) equals Yi(Z

′
), and Ri(Z)

equals Ri(Z
′
), which means that we can write Di(Z),Y i(Z),

and Ri(Z) as Di(Zi),Y i(Zi), and Ri(Zi), respectively. Un-
der the SUTVA, we can define the intention-to-treat (ITT)
average causal effect of Z on Y as E[Y i(1) − Y i(0)].

We can stratify the population into four compliance
principal strata—never-takers, always-takers, compliers, and
defiers—as determined by the value of the vector of poten-
tial treatment receipts [Di(0), Di(1)] where Ci = n (never-
taker) if Di(0) = Di(1) = 0; Ci = a (always-taker) if Di(0)
= Di(1) = 1; Ci = c (complier) if Di(0) = 0 and Di(1) =
1; and Ci = d (defier) if Di(0) = 1 and Di(1) = 0. Note
that without additional assumptions, compliance type is not
identified from the observable data on treatment receipt D. In
addition to the SUTVA, we chose to assume the monotonicity
assumption which states that Di(1) ≥ Di(0) for all subjects
(i.e., no defiers) which means compliance type is observable
when Zi �= Di. We also assume that compliance is all-or-none
meaning that any switching of treatments was done soon after
randomization so that the subject is assumed to have com-
pletely taken the new treatment or the control. Note that
unlike membership to the observed compliance strata, mem-
bership to these principal compliance strata is unaffected by
assigned treatment and therefore can be considered as a base-
line covariate (Frangakis and Rubin, 2002).

Define ηzt = E[Y i(z)|Zi = z, Ci = t] and γzt = E[Ri(z)|Zi

= z, Ci = t] to be the conditional expectation of outcome
and indicator for response, respectively, given treatment as-
signment z and principal compliance type t, and let ωt be
the proportion of the population with compliance type t
for t ∈ {n, c, a, d}. Then we can define the ITT effect as
ITT =

∑
t∈{n,a,c,d} ωtITTt where ITT t = E[Y i(1) − Y i(0)|C

= t] is the average ITT effect of Z on Y for the subpopula-
tion of compliance type t. Under monotonicity, defiers do not
exist, and the noncompliers (never-takers and always-takers),
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by definition of this group, do not carry information about
the comparison between treatments, with respect to finding
the causal effect of treatment on outcome (although they do
provide information on the effect of assignment to treatment
on outcome). Thus we focus on the the subpopulation of com-
pliers and define the complier average causal effect (CACE)
to be ITT c, or CACE = E[Y i(1) − Y i(0)|Ci = c], which
is the average treatment effect among the subpopulation of
compliers, where under randomization, CACE = η1c − η0c.

4. Framework for Multiple Imputation in the Setting
of Noncompliance and Nonresponse

4.1 Introduction to Multiple Imputation
Letting θ = (η1n, η1c, η1a, η0n, η0c, η0a, γ1n, γ1c, γ1a, γ0n,
γ0c, γ0a, ωn, ωc, ωa) be the parameter vector, we partition
the complete data M into the observed data, Mobs = (Yobs, Z,
D, R), and the missing data, Mmis = (Ymis, Cmis). Inference is
then based on the observed-data posterior density

P (θ|Mobs) =

∫
p(θ|Mobs,Mmis)p(Mmis|Mobs)dMmis. (1)

Here we see that the observed-data posterior density can be
obtained by averaging the complete-data posterior distribu-
tion over the predictive distribution p(Mmis |Mobs); we there-
fore draw the missing values from p(Mmis |Mobs) to complete
the data set, and then we draw θ from its completed-data pos-
terior distribution p(θ|Mobs,Mmis). In multiple imputation, (1)
is approximated by analyzing the data sets separately and
then combining the results (discussed in Section 4.3). The
theoretical motivation for multiple imputation is Bayesian al-
though the estimators have been shown to have good fre-
quentist properties (Rubin and Schenker, 1986; Schenker and
Welsh, 1988; Rubin, 1996; Schafer, 1997; see discussion sec-
tion).

4.2 Computational Setup for Multiple Imputation
The idea of multiple imputation is to draw the missing data
and parameters from the joint distribution P (Mmis, θ|Mobs)
≡ P (Ymis, Cmis, θ|Yobs, Z, D, R) by recursively iterating be-
tween the missing data and the parameters. We do this by
a sequence of conditional distributions, where we model the
conditional distribution of the compliance type Ci, and the
conditional distribution of potential outcomes and potential
response indicators given compliance type. We use data aug-
mentation (Tanner and Wong, 1987) to draw from P (Ymis,
Cmis, θ|Yobs, Z, D, R) = P (Ymis |Cmis, Yobs, Z, D, R, θ)P (Cmis

|Yobs, Z, D, R, θ)P (θ|Yobs, Z, D, R).
The first stage involves draws from P (Ymis,i |Yobs,i, Ci, Zi,

Di, Ri, θ) where, given (Ci, Zi, Di, Ri), the Y i are indepen-
dent indicators dependent on the data only through Zi,Di,
and Ci (under the SUTVA and latent ignorability). The sec-
ond stage of data augmentation involves an analysis of the
complete-data posterior distribution of θ. Let δ(z, d) indicate
the subset of subjects with observed values (Zi = z, Di = d)
for z = 0, 1 and d = 0, 1 where δ(z, ·) = δ(z, 0) ∪ δ(z, 1) and
let ζ(t) indicate the subset of subjects with compliance type t
for t = {n, c, a}. Then the conditional posterior distribution

of θ given C,Z,D,Y, and R has the simple structure:

p(θ|C,Z,D,Y,R) ∝ p(θ)
∏

z∈{0,1}

∏
t∈{n,c,a}

( ∏
i∈{ζ(t)∩δ(z,·)}

×ωtfzt,iγRi
zt (1 − γzt)1−Ri

)
.

To take advantage of this structure, we assume prior joint
independence of all parameters so that:

p(ωn, ωc, ωa|C,Z,D,Y,R) ∝ p(ωn, ωc, ωa)ωNn
n ωNc

c ω
Na
a

p(ηzt|C,Z,D,Y,R) ∝ p(ηzt)
∏

i∈{ζ(t)∩δ(z,·)}

ηYi
zt (1 − ηzt)1−Yi

p(γzt|C,Z,D,Y,R) ∝ p(γzt)
∏

i∈{ζ(t)∩δ(z,·)}

γRi
zt (1 − γzt)1−Ri .

The final step involves draws from P (Cmis |Yobs, Ymis, Z, D, R,
θ) where subjects in δ(0, 0) are a mixture of never-takers and
compliers; subjects in δ(1, 1) are a mixture of always-takers
and compliers; and subjects in δ(1, 0) and δ(0, 1) are never-
takers and always-takers, respectively (from monotonicity).
Therefore P (Ci = n|Y i, Zi = 1, Di = 0, Ri, θ) = P (Ci =
a|Y i, Zi = 0, Di = 1, Ri, θ) = 1 and from Bayes’ theorem,

P (Ci = t|Yi, Zi = 0,Di = 0, Ri, θ)

=
ηYi

0t (1 − η0t)
(1−Yi)γRi

0t (1 − γ0t)
(1−Ri)ωt∑

t∈{n,c}

ηYi
0t (1 − η0t)

(1−Yi)γRi
0t (1 − γ0t)

(1−Ri)ωt

for t ∈ {n, c},

P (Ci = t|Yi, Zi = 1,Di = 1, Ri, θ)

=
ηYi

1t (1 − η1t)
(1−Yi)γRi

1t (1 − γ1t)
(1−Ri)ωt∑

t∈{a,c}

ηYi
1t (1 − η1t)

(1−Yi)γRi
1t (1 − γ1t)

(1−Ri)ωt

for t ∈ {n, c}.

4.3 Analysis of the Multiply Imputed Data Sets
Rubin (1987) developed multiple imputation combining rules
for interval estimation and hypothesis testing which account
for imputation uncertainty. The complete-data CACE esti-
mate Q̂ would be the observed difference in treatment means
among the subpopulation of compliers with associated vari-
ance U = s21/n1 + s22/n2 where s1 and s2 are the sample stan-
dard deviations and n1 and n2 are the sample sizes within
treatment groups among compliers. Using this complete data
method on the m completed data sets, we obtain the estimates
(Q̂1, Q̂2, . . . , Q̂m) and associated variances (U 1, U 2, . . . , Um)
of the CACE.

We combine the estimates as follows (using the rules in
Rubin, 1987): the overall estimate is Q̄ = 1/m

∑
Qi for i

= 1, . . . , m and variance Tm = Ūm + {1/(m+ 1)}Bm where
Ūm = 1/m

∑
U i is the complete-data variance estimate and

{1/(m + 1)} Bm is additional variance due to imputing
the missing data where Bm = {1/(m− 1)}

∑
(Q̂i − Q̄)2. In-

ference is then based on the t-distribution approximation
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T−1/2(Q− Q̄) ∼ tv with degrees of freedom v = (m− 1)[1 +
Ūm/{(1 +m−1)Bm}]2.

If the fraction of missing information about a scalar es-
timand is λ, the relative efficiency of a point estimate (on
the variance scale) based on m imputations to one based
on an infinite number of imputations is approximately (1
+ λ/m)−1, which can be estimated by λ̂ = (1 + 1/m)Bm/Tm
(Rubin, 1978). For reasonable amounts of missing data, 3 to
5 imputations are adequate since the asymptotic efficiency of
the repeated-imputation finite-m estimate, relative to the in-
finite m estimate, is close to one in this case (Schafer, 1997).
But since, under monotonicity, compliance type is missing for
many subjects (and missing for all subjects without the as-
sumption of monotonicity), more than the typical 3–5 imputa-
tions may be needed; for our setting, if the percent of missing
information was even as high as 90%, then an estimate based
on m = 10 imputations would tend to have a standard error
only

√
(1 + 0.9/10) = 1.04 times as large as the estimate with

m = ∞ imputations; therefore 10 imputations is adequate for
our setting.

5. Additional Assumptions
In dealing with missing outcomes, it is important to condi-
tion on important covariates, such as compliance type, be-
fore assuming nonresponse is independent of the outcome; we
assume the latent ignorability assumption which states that,
within each latent principal compliance type, potential out-
comes and associated potential response indicators are inde-
pendent, or

P [Ri(0)|Yi(0), Ci] = P [Ri(0)|Ci]

P [Ri(1)|Yi(1), Ci] = P [Ri(1)|Ci].

Unlike MI and Bayesian methods, ML and moment meth-
ods require further assumptions for identifiability of model
parameters. Although the following assumption is not neces-
sary for the MI analysis, it is often plausible and helps to
facilitate inference for the CACE (by reducing variability in
the estimate), and will also allow us to compare the MI meth-
ods to the likelihood and moment methods. In addition to
the SUTVA, monotonicity, and latent ignorability, we chose
to assume the compound exclusion restriction for never-takers
and always-takers. This states that among the subpopulations
of never-takers and always-takers, treatment assignment does
not affect outcomes or response behaviors, or

P [Yi(1), Ri(1)|Ci = n] = P [Yi(0), Ri(0)|Ci = n]

P [Yi(1), Ri(1)|Ci = a] = P [Yi(0), Ri(0)|Ci = a].

6. Simulation Study with a Binary Outcomes
For the MI estimator, in addition to assuming the SUTVA and
monotonicity, we consider the CACE parameter derived both
under the model assuming the compound exclusion restric-
tion (with the estimator denoted MI1) as well as under the
model that imposes no compound exclusion restriction (with
the estimator denoted MI2). Hirano et al. (2000) refers to
the model which imposes no exclusion restriction as “weakly
identifiable” in the sense that there is no unique ML esti-
mator although the posterior distribution is proper. For the

purpose of comparison, we also calculate the moment esti-
mator (MOM) and the EM estimator (MLE) for the CACE
(Zhou and Li, 2005; Taylor and Zhou, 2008) derived under
the SUTVA, monotonicity, and the compound exclusion re-
strictions.

Subjects are randomized to the control or new treatment
arm with P (Zi = 1) = 0.5 where principal compliance type
Ci is generated independently as a multinomial random vari-
able with (ωn,ωc,ωa) = (0.3, 0.4, 0.3). Y i and Ri are gen-
erated from a binomial distribution with a mean conditional
upon treatment assignment Zi and principal compliance type
Ci. We fix average outcomes ηzt = 0.5 and average response
probabilities γzt = 0.5 where fzt = ηYi

zt (1 − ηzt)(1−Yi) for z =
0, 1 and t ∈ {n, c, a}. All posterior distributions are easy to
draw from for conventional prior distributions because they
only involve the Beta and Dirichlet distributions. We used
two separate sets of noninformative priors: the Beta(1,1) and
Dirichlet(1) priors for the outcome and compliance type distri-
butions, respectively, as well as the Beta(0.5,0.5) and Dirich-
let(0.5) priors corresponding to Jeffrey’s priors for these dis-
tributions. Since both sets of prior distributions gave similar
results we only present the results using the Beta(1,1) and
Dirichlet(1) priors. We use the ML estimates as starting val-
ues for the parameters in the DA chain (and since the ML esti-
mates are derived under the compound exclusion restrictions,
for MI2, we let the starting values η0n = η1n, η0a = η1a, γ0n

= γ1n, and γ0n = γ1n. One thousand data sets were created
per scenario with 10,000 iterations used for MI1 and 50,000
iterations used for MI2 in the data augmentation procedure
with m = 10 imputations. Here imputations were obtained
by subsampling a single chain, taking every kth iterate where
the value k was determined by looking at time series and au-
tocorrelation plots of the CACE parameter, as suggested by
Schafer (1997); in our scenarios k ranged between 400 and
5000.

In this section we examine some finite sample properties of
the estimators, first under hypothetical conditions that fol-
low the assumptions of latent ignorability and the compound
exclusion restriction, and then under certain deviations from
these assumptions. Table 1 reports the mean squared error
(MSE), bias, coverage rates for nominal 95% confidence inter-
vals, and average confidence interval length for the CACE.

6.1 Simulation Results
The first three columns of Table 1 correspond to the behav-
ior of the estimators when the compound exclusion restriction
and latent ignorability hold in the data. For the smallest sam-
ple size of n = 100, both MI estimators (MI1 and MI2) per-
form the best in terms of MSE and interval length where MI1

has the smallest MSE and tightest confidence interval, with
all estimators having similar bias and coverage rates. Here the
MOM estimator performs the worst in terms of having a much
larger MSE and much wider confidence intervals than the rest
of the estimators. (Note that even under correct model as-
sumptions, coverages for the MOM estimator are higher than
the nominal 95 since the variance estimator for MOM involves
a denominator of counts that could potentially be very small
or even zero in which case the variance estimator would be
quite large or possibly infinite.) For smaller sample sizes, the
MI estimators tend to have better properties because they
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Table 1
Simulation results for the CACE with {(ωn,ωc,ωa) = (0.3, 0.4, 0.3)

CER and LI Hold CER Violated LI Violated
(η0n, γ0n) = (0.5, 0.5) (η0n, γ0n) = (0.3, 0.6) r = 1

2

100 500 1000 100 500 1000 100 500 1000

MSE
MOM 0.673 0.077 0.035 0.587 0.090 0.057 5.023 0.087 0.045
MLE 0.351 0.029 0.013 0.327 0.048 0.037 0.426 0.036 0.022
M1 0.121 0.036 0.016 0.132 0.055 0.040 0.128 0.042 0.025
M2 0.149 0.117 0.114 0.154 0.117 0.114 0.151 0.116 0.112

Bias
MOM 0.004 −0.003 0.003 0.200 0.152 0.158 −0.071 −0.087 −0.091
MLE 0.005 −0.003 0.003 0.166 0.152 0.157 −0.084 −0.085 −0.091
M1 −0.001 −0.004 0.004 0.116 0.154 0.159 −0.053 −0.085 −0.092
M2 −0.004 −0.003 0.000 0.074 0.080 0.078 −0.044 −0.040 −0.035

Interval length
MOM 4.690 0.850 0.579 4.091 0.775 0.536 4.192 0.871 0.593
MLE 1.920 0.650 0.450 1.770 0.620 0.430 2.000 0.660 0.450
M1 1.450 0.800 0.540 1.430 0.740 0.510 1.480 0.790 0.540
M2 1.640 1.500 1.480 1.630 1.450 1.440 1.650 1.480 1.460

% Coverage
MOM 99.40 99.40 98.70 99.50 92.20 82.10 99.50 98.00 96.90
MLE 98.30 95.80 95.50 96.00 84.30 68.60 97.90 94.10 87.90
M1 97.70 95.70 95.90 95.60 86.60 75.60 97.20 93.40 89.60
M2 99.80 100 100 99.70 100 100 99.50 100 100

are in effect approximating the observed-data posterior by a
finite mixture of densities rather than one single density as is
the case for ML methods. In addition, the theory underlying
multiple imputation is Bayesian, which is known to provide
useful inference in smaller samples. It is also true that even
noninformative priors can convey information about the pa-
rameters of interest which, in small samples, may increase
the information. For larger sample sizes (n ≥ 500), bias and
coverage were similar among the MOM, MLE, and MI1 esti-
mators. MSE for MOM was more than double that of MLE
and MI1 estimators; and MSE, confidence interval length, and
coverage were much higher for the MI2 estimator, which can
be attributed to the increase in variability from estimating
the four additional parameters in the model that imposes no
compound exclusion restriction.

We violate the compound exclusion restriction in the data
by letting η0n = 0.3 and γ0n = 0.6 keeping η1n = 0.5 and γ1n =
0.5 where results are reported in the second three columns of
Table 1. Again for the smallest samples size (n = 100), the MI
estimators perform the best where MI1 has the smallest MSE,
bias, and average confidence interval length. For larger sam-
ple sizes (n ≥ 500), MI2 has the smallest bias among the esti-
mators although its MSE, average confidence interval length,
and coverage probabilities (close to or equal to 100%), are the
highest among the estimators, which can be attributed to the
increase in variability from estimating the four additional pa-
rameters in the model that imposes no compound exclusion
restriction. For the larger sample sizes, the MLE estimator
has the smallest MSE and interval length although it has the
smallest coverage (85.4% for n = 500 and 69.8% for n = 1000)
of all the estimators.

Letting pk = P (Ri = 1|Zi = 0, Ci = c, Y i = k) for k = 0, 1,
the odds ratio r = p1(1 − p1)/p0(1 − p1) is a simple measure
of deviation from the latent ignorability assumption (where

r and γ0c determine the values of p0 and p1); we violate this
assumption in the data by letting r = 1/2 where results are
reported in the last three columns of Table 1. For the smallest
sample size (n = 100) the MI estimators have the smallest
MSE and and tightest confidence intervals where the MOM
estimator has the smallest bias although it has the largest
MSE and widest confidence interval. For larger samples (n
≥ 500) the MLE and MI1 estimators had similar MSE, bias,
and coverage probabilities, where the MI2 had the smallest
bias but the largest interval length and coverage (close to or
equal to 100%) of all the estimators.

In summary, for smaller sample sizes MI1 tended to per-
form better than the MLE and moment estimator, where MI2

Table 2
Influenza vaccine data

R=1,Z =0 Y=0 Y=1 Total
D=0 573 49 622
D=1 143 16 159
Total 716 65 781

R=1,Z =1 Y=0 Y=1 Total
D=0 499 47 546
D=1 256 20 276
Total 755 67 822

R=0,Y = · D=0 D=1 Total
Z=0 492 17 509
Z=1 497 9 506
Total 989 26 1015

Note: Y= 1 if there was a hospitalization, 0 if there was no
hospitalization, and . if missing; R = 1 if outcome Y was observed and
0 otherwise; Z = 1 if randomized to the intervention group and 0 if
randomized to the control; D = 1 if the patient received the flu vaccine
and 0 otherwise.
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Table 3
Summary statistics for the influenza vaccination study

MOM MLE MI1 MI2

Mean S.E. Mean S.E. Mean S.E. Mean S.E.

ITT c ≡ CACE 0.008 (0.141) −0.007 (0.112) −0.037 (0.121) −0.288 (0.378)
ITTn 0 0 0 0 0 0 0.020 (0.025)
ITTa 0 0 0 0 0 0 −0.035 (0.050)

E[Y i(1)|Ci = c] 0.034 (0.059) 0.031 (0.054) 0.075 (0.053) 0.098 (0.110)
E[Y i(0)|Ci = c] 0.026 (0.128) 0.038 (0.098) 0.111 (0.111) 0.386 (0.320)
E[Y i(1)|Ci = n] 0.086 (0.012) 0.086 (0.012) 0.085 (0.013) 0.085 (0.012)
E[Y i(0)|Ci = n] 0.086 (0.012) 0.086 (0.012) 0.085 (0.013) 0.064 (0.019)
E[Y i(1)|Ci = a] 0.101 (0.024) 0.101 (0.024) 0.086 (0.020) 0.065 (0.044)
E[Y i(0)|Ci = a] 0.101 (0.024) 0.101 (0.024) 0.086 (0.020) 0.099 (0.024)

E[Ri(1)|Ci = c] 1.073 (0.181) 1.000 (0.048) 0.988 (0.015) 0.943 (0.040)
E[Ri(0)|Ci = c] 1.070 (0.552) 0.885 (0.220) 0.747 (0.227) 0.348 (0.289)
E[Ri(1)|Ci = n] 0.523 (0.015) 0.523 (0.015) 0.530 (0.016) 0.523 (0.015)
E[Ri(0)|Ci = n] 0.523 (0.015) 0.523 (0.015) 0.530 (0.016) 0.580 (0.030)
E[Ri(1)|Ci = a] 0.903 (0.022) 0.926 (0.018) 0.928 (0.017) 0.976 (0.024)
E[Ri(0)|Ci = a] 0.903 (0.022) 0.926 (0.018) 0.928 (0.017) 0.903 (0.022)

Pr(Ci = c) 0.069 (0.023) 0.084 (0.015) 0.101 (0.079) 0.092 (0.066)
Pr(Ci = n) 0.797 (0.020) 0.783 (0.011) 0.767 (0.061) 0.774 (0.047)
Pr(Ci = a) 0.134 (0.012) 0.134 (0.009) 0.132 (0.020) 0.134 (0.020)

had smaller bias than M1 when the exclusion restriction was
violated. For larger sample sizes the MLE and MI1 estimators
tended to perform the best.

7. Influenza Vaccination Study
We return to the influenza vaccination study that motivates
these methods (where the data are provided in Table 2). Since
the study did not maintain records on the clustering of pa-
tients by doctor, we ignore this for the purposes of illustra-
tion. Estimation of the CACE under the model that imposes
no exclusion restrictions may more realistic in this setting. For
example, the subpopulation of always-takers, who received a
flu shot regardless of their physician’s treatment assignment,
will more likely be at a higher risk of the flu. Here the exclu-
sion restriction on outcomes for this particular subgroup may
be violated if, for example, the letter prompts the physician
to take other measures beyond the influenza vaccine like sug-
gesting that the patient avoid unnecessary exposure to certain
things or providing the vaccine earlier than they would have
had they not received the reminder.

The MLE, MOM, MI1, and MI2 estimators were used to
estimate the effect of the influenza vaccine on flu-related
hospitalizations. For the MI1 and MI2 estimators, m = 10
imputations were drawn from the 100,000 iterations of the
data augmentation algorithm, subsampling every 10,000th
observation. The Jeffrey’s priors were used for the outcome
and compliance type distributions: Beta(0.5,0.5) and Dirich-
let(0.5). Table 3 reports the mean and standard error (S.E.)
for the parameters of the model.

7.1 Effectiveness of the Influenza Vaccine
The estimated CACE (which is the ITT effect among the
subpopulation of compliers) is a percent reduction in flu-
related hospitalizations which is close to zero for the MOM
and ML estimators, 3.7% for the MI1 estimator (estimated un-

der the model assuming the compound exclusion restriction),
and 28.8% for MI2 (estimated under no compound exclusion
restriction). Interestingly enough this indicates that the com-
pound exclusion restriction plays a significant role in estimat-
ing the CACE in this particular setting although the high
standard errors for MI2 indicate that there is no statistically
significant reduction in flu-related hospitalizations, due to the
flu vaccine, among compliers. When the compound exclusion
restriction is not imposed, the ITT effect among the never-
takers and always-takers is 2.0% and −3.5%, respectively, in-
dicating no significant effect of assignment to treatment on flu-
related hospitalizations among these subpopulations (e.g., the
compound exclusion restrictions for never-takers and always-
takers may hold in this setting). In summary, the data pro-
vide no evidence that the flu vaccine significantly reduces flu-
related hospitalizations.

The estimated fraction of missing information, λ̂, for MI1

and MI2 for all estimands reported in Table 3 ranged from 0.25
to 0.95 which, although very high, was expected due to the
large amount of missing data: hospitalization outcomes were
missing (where missingness was nonignorable and dependent
upon latent compliance type) for 39% of the subjects, and
compliance type was missing for 53% of the subjects.

8. Discussion
Here we derived multiple imputation estimators for the CACE
in a randomized clinical trial with crossover noncompliance
and outcome nonresponse, showing that for smaller sample
sizes, multiple imputation may be more favorable as com-
pared to ML or moment methods, for estimating the CACE.
For situations where the exclusion restriction may be unreal-
istic, an appropriate alternative to the likelihood and moment
methods is the multiple imputation estimator that imposes no
exclusion restrictions, which has less bias but higher variabil-
ity as a result of having to estimate additional parameters.
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We acknowledge that the SUTVA may not hold in a setting
that involves an infectious disease such as the influenza virus
(Halloran and Struchiner, 1995); however if the study pop-
ulation is a small enough sample from a larger susceptible
population and there is little contact between trial partici-
pants, which is a reasonable assumption in this study, then
the SUTVA should approximately hold.

Extensions of these methods to include covariates is
straightforward, where conditioning on covariates would make
the latent ignorability assumption more plausible. Covariate
information could also help decrease the uncertainty in pre-
dicting compliance principal strata, thereby reducing variabil-
ity in the remaining estimates (Frangakis et al., 2002), as
well as decreasing the fraction of missing information in the
multiple imputation inference. With regards to the multiple
imputation procedures used in this article, although there is
controversy on the combining rules of Rubin (1987) under
potentially misspecified imputation models (Meng, 1994; Fay,
1996; Rao, 1996; Rubin, 1996; Robins and Wang, 2000), Lit-
tle (2006) comments that the combining rules are based on
Bayesian principles, whereas the criticisms focus on frequen-
tist issues like unbiased estimation of sampling variance, and
hence the debate is more on the level of the underlying phi-
losophy of inference. In this article we chose to use Rubin’s
combining rules, although it would be interesting to see how
inferences change using other methods, such as those devel-
oped by Robins and Wang (2000). Although we focus on the
MI estimator fully imposing or not imposing the compound
exclusion restriction, it is possible to relax the compound ex-
clusion restriction partly, so that it holds for always-takers
only or never-takers only, for the purposes of a more thor-
ough sensitivity analysis, as in Hirano et al. (2000). The de-
velopment of methods that account for noncompliance and
outcome nonresponse and which use fewer assumptions is an
important feature of the multiple imputation methods in this
setting and an important area for further research.
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