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INTRODUCTION 

The reference design, described in (Kerr, M. K. et al., 2001) and (Yang, Y. H. et al.,

2002b),  is an extremely popular choice for two-color microarray studies.  In a reference 

design, a “reference” RNA is co-hybridized with the RNAs of interest.  The design is 

intuitively appealing because every RNA can be compared with any other RNA since 

each RNA is directly compared to the reference.  While the reference design may be 

technically less efficient than some other design choices (Kerr, M. K. et al., 2001;Kerr, 

M. K., 2003a), the efficiency disadvantage can be minor and is often considered 

negligible in light of the design’s advantages:  the design is simple and produces data that 

are easy to analyze compared to more elaborate designs.  In addition, a reference design 

is very flexible, as it is easy to add new or previously unanticipated samples into a study. 

 

In a reference design, the reference RNA is hybridized in one channel of every array in 

the experiment, so fully half of all hybridizations are to the reference.  Since the reference 

RNA uses such a large proportion of array resources, and since the reference is the 

linchpin of the design, selecting an RNA to use as the reference is a choice that 

investigators take very seriously.  Some previous work has discussed choices for 

reference RNAs (Gorreta, F. et al., 2004;He, X. R. et al., 2004;Novoradovskaya, N. et 

al., 2004;Yang, I. V. et al., 2002).  Each of these papers asserts that the most important 

quality of a reference RNA is that it has good representation of all of the genes on the 

array, i.e. that most genes give a signal “above background” when hybridized to the 

reference.  This assertion presumably originates with the idea that low-intensity signals 

are unreliable.  Based on this assertion, these studies typically evaluate reference RNAs 

by examining the percentage of spots on arrays that give signal above some threshold.  

Note that such an evaluation is several steps removed from evaluating how well a 

reference facilitates getting accurate answers to a scientific question of interest. 

 

We question whether the most important quality of a reference RNA is broad 

representation of all genes on the array because this supposition ignores an important 

fact.  Namely, the popular methods for normalizing two-color array data rely on 

assumptions that most genes are not differentially expressed between the co-hybridized 
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RNAs, or that the amount of differential expression between them is roughly symmetric 

(Quackenbush, J., 2002).  Our supposition is that the most important quality of a 

reference RNA is that it satisfies the assumptions of the normalization routine.  In other 

words, a “good” reference will not be too different from the RNAs in the study. 

 

We propose the following reasoning as a basis for evaluating reference RNAs.  A 

reference RNA allows an “indirect” comparison between RNAs of interest.  Therefore, it 

seems reasonable to require that a good reference faithfully reproduce the comparison 

that would have been acquired had two RNAs of interest been directly compared.  One 

justification for using this criterion is that it favors reference RNAs that give estimates 

that are not “reference-specific.”  We comment further on the merits of this method of 

evaluation in the Discussion.  Note a similar principle was applied by König et al (Konig, 

R. et al., 2004) .

We evaluated the efficacy of three common choices for reference RNAs:  (1) a pool of all 

the non-reference RNAs in our study; (2) placenta RNA; and (3) a commercially-sold 

RNA that is promoted as a “universal” reference.  Our experimental design (see 

METHODS) employed these three reference RNAs in a design with three different “test-

pairs” of other RNAs.  The RNAs comprising the test-pairs play the role of the RNAs “of 

biological interest” in a real study.  We chose the “test” RNAs strategically to evaluate 

our supposition that a reference RNA will perform better when it is more similar to the 

RNAs of interest.  Based on this reasoning, we made specific predictions about the 

performance of the three reference RNAs prior to collecting the data (see RESULTS).   

 

METHODS 

 

Experimental Design. We used 9 mouse RNAs in this study:  3 “reference” RNAs, and 

3 pairs of “test” RNAs.  Figure 1 shows the experimental design for one test-pair.  The 

reference RNAs were chosen to represent some common reference choices:  (1) a pool of 

the six “test RNAs”; (2) an aliquot of placenta RNA; and (3) a commercial RNA that is 

promoted as a “universal” reference.  We refer to these as the “pool reference”, “placenta 
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reference,” and the “commercial reference” in the remainder of this paper.  Test RNAs 1a 

and 1b are from placenta, which was chosen to be most similar to the placenta reference.  

Test RNAs 2a and 2b are kidney, which was chosen because kidney is a component of 

the commercial reference.  Test RNAs 3a and 3b are lung, which was chosen because the 

supplier disclosed that lung is a small or nonexistent component of the commercial 

reference.  We refer to these six RNAs as the placenta test-pair, the kidney test-pair, and 

the lung test-pair. 

 

As shown in Figure 1, there was a dye-swap pair of arrays between each test-pair and a 

dye-swap pair of arrays between each test RNA and each reference RNA.  Our 

investigation therefore used 14 arrays for each test-pair, for a total of 42 microarrays. 

 

All samples were acquired from a single RNA isolation.  Each RNA isolation was 

divided into two aliquots, one of which was labeled with Cy3 and the other with Cy5.  

These two dye-labeled aliquots were used in all hybridizations to control for labeling 

variation when comparing references.  For example, test RNA 1 hybridized to the 

commercial reference is from the same labeling reaction as test RNA 1 hybridized to the 

placenta reference, so any difference in the performance of the references cannot be 

explained by labeling inconsistencies of the test RNAs. 

 

All tissues were isolated from normal C57Bl/6J mice.  Placenta tissue was isolated from 

time-mated pregnant mice with E17 embryos attached. 

 

Laboratory Assays. Test RNAs were extracted from intact tissues using the RNeasy 

Mini Kit (Qiagen).  RNAs were quantified via absorption at 260 and 280nm and checked 

for RNA quality using the Agilent 2100 Bioanalyzer Nano chip (Agilent Technologies).  

The commercial RNA used was the Universal Mouse Reference RNA from Stratagene 

(http://www.stratagene.com/homepage/).  The Placenta RNA was acquired from Zyagen 

(http://zyagen.com/).  These RNAs were evaluated on the bioanalyzer before use.  The 

pool reference was constructed by combining equal mass aliquots of each of the six test 

RNAs.   
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RNA was amplified and labeled using the Agilent low-input fluorescent labeling kit 

(Agilent Technologies) and an equal amount (0.75ug) of each fluor-labeled target was 

hybridized according to Agilent’s instructions.  The arrays in the study were Agilent 

Whole Genome Mouse Microarrays.  Following hybridization and washing, arrays were 

scanned using the Agilent MicroArray scanner and intensities extracted using Agilent’s 

Feature Extraction software version 7.5.  All arrays were checked to ensure that the data 

spanned the dynamic range appropriately, with a distribution of spot intensities typical of 

high-quality hybridizations. 

 

Data Pre-Processing. Four versions of “spot intensity” were extracted from the text files 

generated by Agilent’s Feature Extraction software: (1) mean foreground intensity, (2) 

mean foreground intensity minus median background intensity, (3) median foreground 

intensity, and (4) mean foreground intensity minus mean background intensity.  All 

control spots were excluded.  In subsequent analyses, each of these versions of the data 

was considered without normalization, or normalized using the the “loess” method (Cui, 

X. et al., 2003) available in the R add-on package MAANOVA (available at 

http://www.jax.org/staff/churchill/labsite/software).  This normalization is a 

generalization of the intensity-normalization proposed in (Yang, Y. H. et al., 2002a).  We 

present results for data versions (1) and (2).  Results for data version (3) were similar to, 

but not as good as, the results for version (1), and are not shown.  Similarly, results for 

data version (4) were similar to, but not as good as, the results for version (2), and are not 

shown. 

 

Note that the Feature Extraction software makes a local measurement of “background” 

using the pixels around each spot in the microarray image.  This background 

measurement was used for a simple background-subtraction where noted below. 

 

Tissue Specific Genes. To identify tissue specific genes, we utilized Novartis’ publicly 

available SymAtlas (http://symatlas.gnf.org/SymAtlas/).  Data for the genes that were 

mostly highly expressed in lung, kidney or placenta were downloaded.  The compilation 
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of tissue specific genes was made by taking the normalized intensities of these genes 

across all available tissues and visually selecting those genes that appeared to have no or 

minimal expression in any but the specified tissue.   

 

Low Intensity Genes. A gene is considered “low intensity” according to the following: 

1. Average the Cy3 and Cy5 intensities on all arrays and identify the 10th percentile 

2. For a particular array, a gene is considered low-intensity if its Cy3 and Cy5 

averaged intensity is below the threshold determined in (1.) 

3. For a given comparison, a gene is considered low-intensity if it is low-intensity on 

one or more arrays involved in the comparison. 

 

Data Analysis. For each test-pair of RNAs, we can measure the relative expression 

between them with a “direct” comparison, using the dye-swap between the test-pair.  In 

addition, we can use the three “indirect” comparisons, via each of the three reference 

RNAs.  Specifically, the indirect logratio for comparing test samples A and B using a 

particular reference is calculated as: 

A vs. B A vs. Ref B vs. Ref.indirect-logratio logratio logratio ,= −

where logratioA vs. Ref and logratioB vs. Ref are the means of the appropriate logratios from 

the pair of arrays between the test sample and the reference. 

 

For each test-pair of RNAs, we plotted the indirect log2ratios for each reference RNA 

against the direct log2ratios.  We summarize these scatterplots with Lin’s correlation 

coefficient (Lin, L. I., 1989).  (Whereas Pearson correlation measures how well bivariate 

data are summarized by a straight line, Lin’s correlation measures of how well bivariate 

data are summarized by a straight line through the origin with slope 1.  Lin’s correlation 

coefficient is always less than or equal to Pearson’s correlation.)  In general, correlation 

metrics are problematic as a measure of reproducibility because the magnitude of 

correlation depends on factors such as the spread of the data.  However, for a given set of 

direct logratios, it is reasonable to use correlation to compare different sets of indirect 

logratios because the direct logratios are held constant. 

 

Hosted by The Berkeley Electronic Press



The experimental design allowed us to investigate other important questions related to 

microarray data analysis.  Because the experimental design contains multiple 3-loops, a 

test of normalization procedures is how well direct and indirect log-ratios agree.  We 

applied different low-level data processing techniques and compared direct and indirect 

log-ratios for different methods of processing the data.  Specifically, we considered the 

data with a “loess” method of normalization (Cui, X. et al., 2003) to data with no 

normalization other than dye-swap averaging.  In addition, we considered the data with 

and without background-adjustment (BA) (local background subtraction).  We also 

investigated genes for which direct and indirect logratios were highly discrepant, and 

identified characteristics of such genes that may be useful for quality control in future 

studies. 

 

RESULTS 

 

Predictions and Performance of Reference RNAs. Common methods of normalization 

for microarray data assume that differential expression between co-hybridized RNAs is 

roughly symmetric and/or most genes are not differentially expressed (Quackenbush, J., 

2002).  From this fact we reasoned that an effective reference RNA should not be too 

dissimilar from the RNAs of interest in a study, since the reference RNA is co-hybridized 

with every other RNA.  Our experimental design and our test RNAs were specifically 

chosen to evaluate this reasoning.  Based on our hypothesis, we predicted that  

(a.) The “pool” reference RNA should work well overall. 

(b.) The placenta reference RNA should be the best reference for the placenta test RNAs. 

(c.) The commercial reference RNA should work well for the kidney test RNAs but not as 

well for the lung test RNAs, since kidney is a component of the commercial reference 

but lung is not. 

 

Predictions (a) and (b) were borne out whereas prediction (c) was not.   Figures 2 

(placenta test-pair), 3 (kidney test-pair), and 4 (lung test-pair) show scatterplots of the 

direct logratios from the dye-swap between test RNAs (horizontal axis) against the 

indirect logratios for each of the reference RNAs.  These figures support prediction (a): 
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the pooling strategy is generally effective for constructing an experiment-specific 

reference RNA. Figure 2 shows that prediction (b) is substantiated, namely that the 

placenta reference gives the best agreement with the direct logratios for the placenta test 

pair, although the improvement over the other references is admittedly small.   

 

Figure 3 shows that prediction (c) did not hold.  The commercial reference is the worst 

reference for the kidney test-pair, even though the commercial reference includes kidney 

as a component.  Furthermore, the commercial reference works as well as the other two 

reference RNAs for the lung-test pairs (Figure 4), even though lung is a small or non-

existent component of this reference.  In light of our incomplete knowledge of the 

commercial reference (further details of its composition is proprietary information held 

by the vendor), we cannot offer further explanation for the performance of the 

commercial reference.  Lung may have an expression profile similar to another tissue that 

is part of the commercial reference, leading to better-than-expected performance of the 

commercial reference with the lung test-pair.  Alternatively, the poor performance for the 

kidney test-pair may have been a chance event.   

 

These results are elucidated by considering tissue-specific genes.  For the lung test-pair, 

lung-specific genes are highlighted in Figure 4.  Clearly, the pool reference gives the best 

reproduction of the direct logratios.  This is exactly what we would expect, since the pool 

reference is the only reference containing lung RNA.  It also appears that the commercial 

reference gives the worst agreement for the placenta-specific genes (Figure 2).  For the 

kidney-specific genes, the commercial reference also does poorly, illustrating the overall 

poor performance of the commercial reference for this test pair. 

 

Data Processing. Figures 2, 3, and 4 are based on intensity-normalized array data that 

were not background-adjusted.  We also constructed versions of these figures using 

different pre-processings of the array data.  Following the methodology of (Qin, L. X. et 

al., 2004) and (Members of the Toxicogenomics Research Consortium, 2005b), we 

considered the data with and without background-subtraction and with and without loess 

normalization.  Figure 5 shows the plots for the lung-test pair when background-
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subtracted spot intensities are used, followed by loess normalization; see Supplementary 

information for the remaining figures and Table 1 for a summary of the results.  Without 

exception, the best agreement between the direct and indirect logratios was for the 

version of the data without background-subtraction and with intensity-normalization (in 

other words, the data as shown in Figures 2, 3, and 4).   

 

Placenta Test-Pair Kidney Test-Pair Lung Test-Pair 
Reference 

RNA: Pool Placenta Comm Pool Placenta Comm Pool Placenta Comm 

Loess 
normalization, 

no BA 
.77 .80 .77 .65 .64 .51 .79 .79 .80 

No 
normalization, 

no BA 
.34 .68 .76 .09 .50 .18 .63 .63 .57 

Loess 
normalization, 

with BA 
.62 .60 .61 .50 .50 .28 .67 .67 .69 

No 
normalization, 

with BA 
.21 .29 .31 .01 .22 .04 .56 .49 .36 

Table 1. Lin’s correlation coefficients for four different processings of the data.  
Uniformly, the best concordance between direct and indirect logratios was for the version 
of the data that used the global loess normalization and did not use background-
adjustment (BA).  See Supplementary material for the associated scatterplots.  All 
foreground intensities are the mean spot intensity.  The background spot intensity (for the 
last two rows of the table) is the median intensity of the background pixels for a spot, as 
determined by the image analysis software. 
 

Correlation coefficients are technically not directly comparable between different pre-

processings of the data because the scale of the data changes.  However, inspection of the 

scatterplots (supplementary figures 2, 3, and 4) indicates that the summary of 

concordance provided by Lin’s correlation coefficient is reasonable; agreement between 

direct and indirect logratios is clearly worsened with alternative pre-processings of the 

data.  An alternative approach is to examine the absolute size of the discrepancy between 

direct and indirect logratios.  Figures 6 and 7 show the normalized data with background-

adjustment (Figure 6) and without background-adjustment (figure 7) for the lung test 
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pair.  For the background-adjusted data, the discrepancy between indirect and direct 

logratios is clearly larger on average, dramatically so for low-intensity genes. 

 

Data Quality Control. A noticeable pattern in Figures 2, 3, and 4 is a “+” shape within 

the scatterplots.  For a handful of genes, the direct and indirect logratios are highly 

discrepant in a particular way:  one logratio is very near 0, while the other is not.  

Examining the logratios for any of these genes on the individual arrays, we observed a 

clear pattern.  Specifically, the logratio was very near 0 for all arrays except one.  

Obviously these are genes with high variability in measurement, but with a particular 

kind of variability. 

 

Based on these observations, we propose a filter for identifying suspect measurements for 

array quality control.  For any gene, let (|LR1|, |LR2|, …, |LRn|) be the absolute values of 

the observed logratio for that gene on the n arrays in an experiment using the normalized 

data.  For each gene, compute the median and skew of these numbers.  Figure 8A shows 

that the skewness tends to increase with the median absolute logratio across arrays.  

However, for a small number of genes with small median absolute logratio, the skewness 

is large.  If we highlight these genes in the scatterplots of indirect versus direct logratios 

(Figure 8B), we see that we can identify highly discrepant genes with high sensitivity and 

specificity.  We also examined the array images for these identified genes.  In each case 

we could identify a single spot that was contaminated with dust or otherwise corrupted.  

These are exactly the kinds of datapoints one wishes to exclude from any analysis. 

 

We contrasted our proposed filter to the five quality control variables provided by the 

Feature Extraction software.  These variables indicate spots for which (1) the within-spot 

pixel distribution deviates substantially from uniform; (2) the signal has reached 

saturation; (3) the background pixel distribution deviates substantially from uniform; (4) 

the background measurement is a population outlier; (5) the spot intensity is a population 

outlier.  The last of these had no flags in our dataset and so was uninformative.  Of the 

remaining four, the only variable that showed any ability to identify highly discrepant 

genes was (1).  Figure 8C shows that this flag reliably identifies genes with highly 
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discrepant results.  However, Figure 8C also shows that the specificity of the indicator is 

quite poor, as a large number of genes with concordant measurements between the direct 

and indirect logratios are also flagged.  It is possible this indicator could be tuned to 

improve specificity while maintaining its high sensitivity, but there is no tuning option in 

the software.  (See supplementary figures 5-13 for the corresponding results on data 

filtering for other test pairs and references.) 

 

König et al (Konig, R. et al., 2004) also considered different quality filters.  They 

advocate using the reproducibility of measurements on replicate arrays as a filter.  While 

this is a sensible choice, it requires technical replicates.  Most investigators have a limited 

budget for microarrays and including technical replicates means reducing the number of 

biological replicates, which is highly undesirable (Kerr, M. K., 2003b).  In the absence of 

technical replicates,  König et al (Konig, R. et al., 2004) advocate flagging spots based on 

the difference between the logratios acquired using mean spot intensities and the median 

spot intensities.  The rationale is that spots with a highly non-symmetric distribution of 

pixel intensities are likely to be corrupted, and also likely to give a median spot intensity 

that is far from the mean spot intensity.  We flagged spots based on the full range of 

possible thresholds using König et al’s proposed metric, but this method did not approach 

the accuracy of our proposed filter. 

 

Comments on low-intensity genes. Figure 9 highlights low-intensity genes in the assays 

for the lung test-pair.  The vast majority of these genes appear around the origin in the 

scatterplot.  They are measured as not differentially expressed, and this measurement is 

reproducible between the direct and indirect logratios.  Notice, however, that some of 

these low-intensity genes appear to be differentially expressed, as measured concordantly 

by the direct and indirect logratios.  Finally, notice that most of the highly discrepant 

genes are not highlighted in Figure 9.   

 

Certainly, it is likely that most of these low-intensity genes are probably not expressed at 

all, and hence are not differentially expressed.  However, the results displayed in Figure 9 

have important implications for the practice of discarding low-intensity genes.  
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Specifically, discarding low-intensity genes may be a rather ineffective filter, since (1) it 

does not necessarily remove genes with problem measurements, and (2) it can remove 

potentially interesting differentially-expressed genes.   

 

The scatterplots in Figure 2-4 have a “bulge” around the origin.  As shown in Figure 9, 

low intensity genes tend to appear in this region of the scatterplot.  These observations 

appear to corroborate the conventional wisdom that measurements on low-intensity genes 

are unreliable, and indirectly corroborate the assumption, which we have challenged, that 

a good reference RNA will minimize the number of low-intensity spots.  However, some 

care is required in interpreting such plots.  First, there are many more points in the middle 

of the scatterplots, so we expect the total spread there to be bigger.  In fact, Figures 6 and 

7 show that, on an absolute scale, the genes in the middle of the scatterplots actually give 

more consistent results than the genes at the extremes of the scatterplots.   

 

Figure 10 shows the relationship between the magnitude of the discrepancy between 

direct and indirect logratios, intensity, and the size of the direct logratio θ . At lower 

intensities, the magnitude of error rises more quickly with θ than at high intensities.  On 

the other hand, there are more large θ at higher intensities.   Said differently, large 

measurements of differential expression are less reliable for low-intensity genes; 

however, a lower proportion of low-intensity genes exhibit large changes in expression.  

The net result is that the average discrepancy is about the same across intensity levels.   

 

Our conclusion is that low-intensity genes are indeed less reliable, but not unreliable.  

Our data support the statement that “unreliable genes are low-intensity,” but not the 

statement that “low-intensity genes are unreliable.”   

 

DISCUSSION  

We evaluated several methods for data filtering.  In experimental designs that include 

technical replicates, the distribution of replicates is an effective way to assess data quality 

and the data can potentially be filtered based on agreement among replicates (Konig, R. 

et al., 2004).  However, not all designs contain such replicates and it is highly desirable to 
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have methods to assess data quality that do not require them.  The flags provided by the 

image analysis software were either ineffective at identifying problem spots, or did not 

have satisfactory specificity in identifying problem spots.  Contrary to conventional 

wisdom, most low-intensity measurements are reproducible, so simply discarding low 

intensity genes is an excessively crude filter.  We proposed a new indicator to identify 

genes with suspect measurements.  Our filter uses information across arrays rather than 

relying on spot characteristics or other within-array quantities.  Our results suggest this 

filter is both highly sensitive and highly specific.  The proposed filter applies to any 

experimental design and in particular does not require (technical) replicate arrays.  We 

envision the filter could be used either in an automated fashion to exclude suspect 

measurements, or to simply identify genes whose measurements need to be manually 

evaluated for contamination. 

 

A question of great interest to researchers using two-color microarrays is what to use as a 

reference RNA in a reference design.  In this study we evaluated three common choices. 

On the whole, the data support our premise that a good reference RNA should be similar 

to the RNAs of interest.  However, perhaps the more impressive result is that in two out 

of three instances, all three reference RNAs performed comparably.  These results 

suggest that practical considerations may be more important than technical considerations 

in choosing a reference RNA for a microarray study. 

 

We found no advantage to the commercial RNA in our evaluation. The better-than-

expected performance of the commercial reference for the lung test-pair is offset by the 

unexplained poor performance for the kidney test-pair.  At the very least, these results 

support our position that there is no such thing as a “universally best” reference. 

 

One advantage suggested for commercial reference RNAs is that they can facilitate cross-

laboratory collaboration if every lab uses the reference design with the same reference 

RNA.  We do not entirely agree with the merit of this argument.  First, we think 

investigators should design microarray experiments to get the best possible data for 

answering their questions of interest.  Designing experiments for hypothetical unplanned 
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collaborations should not be the primary concern.  For planned collaborations, 

investigators may indeed wish to use a common reference RNA, but this need not be a 

commercially-purchased RNA.  A “pooling” strategy could be an economical and 

effective choice for many studies.  Of course, there are always practical considerations 

that are study-specific.  For example, a pooling strategy might make it more difficult to 

add unanticipated additional samples to a study after the initial hybridizations are 

completed. 

 

We used the concordance between indirect and direct logratios to evaluate reference 

RNAs.  Figures 2-5 illustrate that this concordance is quite good overall.  A disadvantage 

of this evaluation is that if direct logratios are biased, then we have merely identified 

which reference RNA reproduces those biases.  We offer three counterpoints to this 

argument.  First, as mentioned, references that reproduce direct logratios give study 

results that are not “reference-specific.”  If, instead, results are reference-specific, then 

they may be inherently non-reproducible because any reference is finite.  This violates a 

fundamental tenet of scientific research.  Second, the alternative would be to identify a 

reference RNA that cancels out any biases in direct logratios.  No such claim has ever 

been made for the existence of such a reference and it seems improbable that one would 

exist.  In other words, it is unlikely that one could ever do better than direct comparisons.  

Third, it is important to consider the nature of bias in array measurements and whether 

the bias has any scientific importance.   

 

Elaborating on this third point, under what conditions would one expect indirect and 

direct logratios to agree?  Previous work (Dudley, A. M. et al., 2002;Qin, L. X. et al.,

2004;Yuen, T. et al., 2002;Tong, W. D. et al., 2006) has shown that estimates of relative 

expression from microarrays tend to be attenuated compared to true log-ratios.  Some 

systematic studies (Shi, L. M. et al., 2005;Yuen, T. et al., 2002) further suggest that 

logratios from arrays are proportional to true logratios:  

A vs. B A vs. Bobserved logratio true logratio ,c= � where c is a positive constant less than 1 

(see the proposed model in (Yuen, T. et al., 2002) and figures 5a and 5b in (Shi, L. M. et 
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al., 2005)).    The constant c does not appear to vary with intensity.  Our results are 

entirely consistent with such a model.   

 

What is the scientific impact of attenuated logratios?  Certainly, the answer depends on 

the goal of a particular study.  The goal of many microarray studies is to identify 

differentially expressed genes.  Using spike-in data, Qin et al (Qin, L. X. et al., 2004)

showed that much more accurate identification of differentially expressed genes could be 

made using non-background-adjusted logratios, which have larger attenuation than 

background-adjusted logratios.  Although the background-adjusted logratios have less 

bias, this is greatly offset by a drastic increase in variability that impedes identification of 

differentially expressed genes.  Other microarray studies are conducted to obtain 

estimates of relative expression for use in “higher order” analyses such as supervised and 

unsupervised clustering.  In our experience, investigators prefer reliable biased estimates 

of relative expression to highly variable estimates with less bias.  Our data show that the 

bias in non-background-adjusted logratios is perhaps only slightly larger than the bias in 

background-adjusted logratios, while the variability in the latter is much higher (see 

supplemental Figure 1).  These results are entirely consistent with previous findings (Qin, 

L. X. et al., 2004) and (Members of the Toxicogenomics Research Consortium, 2005a).    

Of course, our evaluation only considered one method of background-adjustment, which 

was simple background-subtraction.  Certainly, more sophisticated methods of 

background-adjustment may perform better, although none is widely used to our 

knowledge.  Our results also indicate that simple dye-swap averaging is not sufficient to 

normalize microarray data. 

 

The important problem of assessing and assuring data quality in microarray experiments 

is being addressed from many angles.  One important effort is the External RNA Controls 

Consortium (Baker, S. C. et al., 2005;The External RNA Controls Consortium, 2005) 

(ERCC).  The ERCC is a community-wide effort to generate a well-characterized set of 

approximately 100 RNA transcripts for use as external controls in microarray 

experiments.  The primary purpose of these controls is to provide a means to evaluate the 

performance of gene expression assays, including microarrays.  Such controls are 
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extremely important and the products of the ERCC will be valuable to the research 

community.  Note, however, that for methodological validation spike-in studies have 

disadvantages as well as advantages (Mehta, T. et al., 2004;Qin, L. X. et al., 2004).  

Thorough validation requires a plurality of approaches.   

 

More interestingly, it is possible that methods for normalizing array data could be 

developed that are based on controls like the ERCC is developing (The External RNA 

Controls Consortium, 2005).  Such methods could require weaker assumptions than 

normalization methods currently in use.  If so, then it may no longer be a priority to use 

reference RNAs that are similar to the RNAs in a study.  However, given the current 

state-of-the-art in microarrays, we believe this quality of a suitable reference should be an 

important consideration in choosing a reference RNA. 
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Figure 1.  Experimental Design for one test-pair of RNAs.  The reference RNAs that 
were evaluated in this study, Placenta, Commercial, and Pooled Reference, are shown at 
the bottom of the figure.  Each double-headed arrow represents a pair of arrays on which 
the indicated RNAs are co-hybridized in a dye-swap arrangement.  The diagram shows 
the hybridizations that were performed for a “test” pair of RNAs:  each test pair was 
compared directly on two arrays, and each test RNA was co-hybridized with each 
reference on two arrays.  This experimental design was executed for three test-pairs:  a 
kidney test pair, a placenta test-pair, and a lung test-pair.  
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Figure 2.  Comparison of the direct log2ratios to the indirect log2ratios for the placenta 
test-pair.  Lin’s correlation coefficient summarizes the agreement across genes.  The level 
of agreement is similar for all three reference RNAs but highest for the placenta 
reference.  The genes highlighted in red are placenta-specific genes. 
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Figure 3.  Comparison of the direct log2ratios and the indirect log2ratios for the kidney 
test-pair.  The level of agreement is similar for the pool and placenta reference RNAs and 
noticeably worse for the commercial reference RNA.  The genes highlighted in red are 
kidney-specific genes. 
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Figure 4.  Comparison of the direct log2ratios to the indirect log2ratios for the lung test-
pair.  The level of agreement is similar for all three reference RNAs.  The genes 
highlighted in red are lung-specific genes. 
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Figure 5.  The effect of background subtraction.  In this figure we re-plot the data in 
Figure 4 using background-subtracted intensities. Compared to Figure 4, the variability in 
the scatterplots is increased and the overall agreement between the direct and indirect 
logratios is decreased. 
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Figure 6.  Average discrepancy between direct and indirect logratios for the lung test pair 
data without background subtraction with intensity-normalization.  For the lung test-pair, 
this plot shows the same data as Figure 4 in a different way.  The horizontal axis is the 
absolute value of the logratio as computed from the dye-swap between the test RNAs.  
The vertical axis is the absolute value of the difference between this direct logratio and 
the logratio from an indirect logratio using a reference RNA.  The black points are a 10% 
moving average.   The red points are the same moving averaging, but using only the low-
intensity genes.  On an absolute scale, the average discrepancy increases with the size of 
the logratio, and the increase is faster for low-intensity genes. 
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Figure 7.  Average discrepancy between direct and indirect logratios for the lung test pair 
data with background subtraction and intensity-normalization.  This is the corresponding 
plot to Figure 6 for the data with background subtraction.  As with the data without 
background-subtraction, on an absolute scale, the average discrepancy between direct and 
indirect logratios increases with the size of the logratio, and the increase is faster for low-
intensity genes.  Comparing this figure to Figure 6, notice that the average discrepancy is 
larger for this version of the data, dramatically so for low-intensity genes. 
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Figure 8. A. Absolute skewness of the logratios plotted against the median absolute 
logratio for the lung test pair and the pool reference.  Genes with suspect measurements 
are those with large skewness but small median absolute logratio.  The genes highlighted 
in red have skewness>1 and median absolute log2ratio<0.9; these are the same genes 
highlighted in plot B.  B: Effectiveness of the proposed filter for identifying discrepant 
data. C. Performance of the non-uniformity flag from the Feature Extraction software. 
Genes plotted in red are those for which Feature Extraction flagged one or more spots on 
the six arrays contributing to the scatterplot for non-uniformity of pixels.  This flag 
detects most of the genes with discrepant results between the direct and indirect 
comparisons, but flags many more genes with consistent measurements.  The flag has 
good sensitivity but poor specificity. 
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Figure 9.  Consistency of results for low-intensity genes.  For the lung test pair, a gene is 
represented in red if its normalized log-intensity ranks in the lowest 10% of all intensities 
for one or more arrays involved in the specific scatterplot.  There are 7795, 7936, and 
8013 genes highlighted on the plots, with most highlighted genes clustered around the 
origin.  Note that the direct and indirect logratios are in good agreement for the vast 
majority of low-intensity genes.  Also, some low-intensity genes appear to be 
differentially expressed as measured concordantly by both the direct and indirect 
logratios.  A final important note is that most of the genes with the largest discrepancy 
between the direct and indirect logratio are NOT among the low-intensity genes. 
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Figure 10.  Discrepancy between direct and indirect logratios as related to the direct 
logratio θ and spot intensity.  Each point represents one gene and the color of a point 
represents the size of the discrepancy.   
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