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Abstract

The risk ratio is perhaps the e¤ect measure most commonly assessed in epidemiologic studies

with a binary outcome. In this paper, the author presents a simple and e¢ cient two-stage approach

to estimate risk ratios directly, which does not directly rely for consistency on an estimate of the

baseline risk. This latter property is a key advantage of the approach over existing methods,

because, unlike these other methods, the proposed approach obviates the need to restrict the

predicted risk probabilities to fall below one, in order to recover e¢ cient inferences about risk

ratios. An additional appeal of the approach is that it is easy to implement. Finally, when the

primary interest is in the e¤ect of a speci�c binary exposure, a simple doubly robust closed-form

estimator is derived, for the multiplicative e¤ect of the exposure. Speci�cally, we show how one

can adjust for confounding by incorporating a working regression model for the propensity score

so that correct inferences about the multiplicative e¤ect of the exposure are recovered if either this

model is correct or a working model for the association between confounders and outcome risk is

correct, but both do not necessarily hold.

KEY WORDS: Risk ratio, prevalence ratio, semiparametric e¢ cient, doubly robust
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1 Introduction

An objective of many epidemiologic studies is to evaluate the multiplicative association between

a vector of risk factors and a binary outcome. When the outcome is rare within all levels of the

covariates, logistic regression is well known to deliver valid, albeit approximate, inferences about

risk ratios whether in a cohort or in a case-control study. When, as often the case in cohort studies,

the outcome is not rare within all levels of covariates, logistic regression overstates the relative risk

association and should not be used to approximate the latter. Instead, a variety of techniques have

been proposed in recent years to recover estimates of risk ratios for a common outcome (Wacholder,

1986, Lee, 1994, Skov et al, 1998, Greenland, 2004, Zou, 2004, Spiegelman and Hertzmark, 2005,

Chu and Cole, 2010). A basic requirement shared by previous methods, with the exception of

the method proposed by Breslow (1974) and subsequently by Lee (2004) is that the log-baseline

risk, i.e. the regression intercept, must be estimated along with regression coe¢ cients, in order to

obtain a consistent estimate of regression coe¢ cients. Unfortunately, this task is often not easily

achieved if one wishes to respect the essential model restriction that all predicted probabilities in

the sample should not exceed one; often resulting in lack of convergence of estimation procedures.

The suboptimal performance of such methods are well documented in the literature (Deddens et

al, 2003, Petersen and Deddens, 2006, Tian and Liu, 2006, Chu and Cole, 2010). Recently, such

concerns prompted Chu and Cole to develop a Bayesian approach that appropriately incorporates

this additional modeling restriction (Chu and Cole, 2010). Their approach which relies on Markov

Chain Monte Carlo simulations provides a promising Bayesian solution when risk prediction is of

primary interest, but a satisfactory frequentist solution is still lacking even in settings where risk

ratios are the primary target of inference.

In this paper, the author presents a simple approach to estimate risk ratios directly, that does
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not directly rely for consistency on obtaining an estimate of the baseline risk. In this respect,

the approach is similar to that of Breslow (1974) and Lee (2004); but whereas their method is

ine¢ cient, here a two-stage approach is described that delivers e¢ cient estimates of risk ratios.

The �rst stage of the method does not require an estimate of the baseline risk, while the second

stage recovers information not used in the �rst stage by incorporating a weight which does depend

on the individual predicted risk, and therefore on the individual baseline risk. However, because

the weights are not essential for consistency, a simple pluggin estimate of the baseline risk may be

used without altering the large sample behavior, more precisely, without altering the large sample

e¢ ciency of the estimated regression coe¢ cients. This property holds even though the pluggin

estimate is generally ine¢ cient for the baseline risk and may result in a predicted risk outside

of the unit range. An important advantage of the approach is that it is easy to implement. An

alternative approach is described, which guarantees that the estimated predicted risk used for the

weight remains bounded between zero and one. Finally, when the primary interest is in the e¤ect

of a speci�c binary exposure, we describe a simple closed-form estimator, of the multiplicative

e¤ect of the exposure that is doubly robust. Speci�cally, we show how to incorporate a working

regression model for the probability of being exposed given confounders, i.e. the propensity score,

so that correct inferences about the multiplicative e¤ect of the exposure are recovered if either this

model is correct or the working model for the association between confounders and disease risk is

correct, but both do not necessarily hold.
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2 PROPOSED METHODS

2.1 A Simple Ine¢ cient Initial Estimator

To motivate the approach, consider the simple case where Xi (i = 1; 2; :::; n) is a binary exposure

with a value of 1 if exposed and 0 if unexposed . Let Yi (i = 1; :::; n) denote the binary response,

which is randomly sampled from a log-binomial model with

log Pr(Yi = 1jXi) = log[pi] = �0 + �0Xi (1)

Then, a standard application of maximum likelihood theory delivers the estimator

exp(b�MLE) =

P
i YiXiP
iXi

�
P

i(1�Xi)P
i(1�Xi)Yi

Now, we note that this equation is equivalent to:

0 = exp(�b�MLE)
X
i

YiXi

X
i

(1�Xi)�
X
i

(1�Xi)Yi
X
i

Xi

, 0 =
X
i

Yi

"
exp(�b�MLE)Xi

X
i

(1�Xi)� (1�Xi)
X
i

Xi

#

, 0 =
X
i

Yi exp(�b�MLEXi)

"
Xin�

X
i

Xi

#
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which states that b�MLE solves the equation

0 =
X
i

Yi exp(�b�MLEXi)
�
Xi �X

�
, 0 =

X
i

Yi exp(�b�MLE

�
Xi �X

�
)
�
Xi �X

�
, 0 =

X
i:Yi=1

n
Zi � exp(b�MLEWi)

o
Wi (2)

where X is the sample average of X;Wi = �
�
Xi �X

�
; and Zi = 0 for all i: The main appeal of

the representation given by equation (2) in the above display is two-fold:

(i) It is completely free of the intercept, and therefore does not require an actual estimate of the

predicted probabilities.

(ii) It is exactly of the form of the score equation for �; under the arti�cial case-only model in

which the pseudo-outcome Zi is assumed to follow a Poisson distribution with mean given

by the intercept-free multiplicative model exp(�Wi); i = 1; :::n; in cases only.

Thus, Equation (2) provides an equivalent representation of the maximum likelihood estimator

in the simple setting of a saturated multiplicative model with a binary exposure; however, this rep-

resentation is of no particular use in this latter setting because the maximum likelihood estimator

is easy to compute. But, as we show below, the alternative representation is useful for estimation

in settings where it may be considerably more di¢ cult to compute the maximum likelihood es-

timator. Speci�cally, now suppose that Xi and thus Wi; are vector valued possibly with several

continuous components and one aims to make inferences about �0 in the multiplicative model

Pr(Yi = 1jXi)

Pr(Yi = 1jXi = 0)
= exp

�
�T0 Xi

	
(3)
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Then, one may generalize equation (2) ; and de�ne an estimator b� as the solution to the equation:

0 =
X
i:Yi=1

Ui

�b��
=
X
i:Yi=1

n
Zi � exp(b�TWi)

o
Wi

In the appendix, we show that b� is consistent for �0 and we establish its large sample behavior.
Result 1: Under assumption (1), n1=2

�b� � �0

�
is approximately normal with mean zero and

variance �� provided in the appendix. We also show that the standard sandwich estimator

b�� =

"X
i:Yi=1

@Ui (�)

@�
jb�
#�1

n
X
i:Yi=1

Ui

�b��2 "X
i:Yi=1

@Ui (�)

@�
jb�
#�1

is a conservative estimator of ��:

The estimator b� is particularly useful for routine application in epidemiologic practice, because
properties (i) and (ii) continue to apply even though model (3) is no longer saturated, and therefore

b� does not generally inherit the e¢ ciency properties of a maximum likelihood estimator. The

e¢ ciency loss (relative to a maximum likelihood estimator) can be particularly severe when the

regression model is not saturated, and when as we assume throughout, the outcome is not rare.

The loss of e¢ ciency should decrease the more �exible or richly parametrize the model is allowed

to remain, and should be almost nill for nearly saturated models. Despite this limitation, the

approach has some advantages in that by (i) it does not require an estimate of the intercept and

therefore will generally not su¤er from the same computational challenges as methods that rely

on an estimate of the intercept. For inference using b�; valid con�dence intervals, for say the �rst
component �(1)0 of �0; can be obtained by the method of Wald : b�(1) � 1:96qb�11� =n; where b�11� =n
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is the estimate of the variance of b�(1): This approach is convenient, as (ii) outlines how to obtain b�
using standard statistical software such as GENMOD; which also provides the empirical/sandwich

variance estimator b�� upon request, i.e by specifying the REPEATED statement.
We performed a simulation study to illustrate the performance of the method. For this we

generated 1000 samples each of size n =1000, under the following model X(2) is Bernoulli (0.7);

X(3); X(4) are both uniform(0,1); X(1) is Bernoulli((1+exp(-[0:5;�0:5; 0:5;�0:9; 0:9] � Q)) where

Q = [1; X(2)�X(3),X(3)�X(4); X(2)�X(4)2]; Y is then generated under a Bernoulli model with event

probability exp
�
[�1:4; 0:3;�0:2;�0:2; 0:3]� [1; XT ]T

�
; thus

�
�0; �

T
0

�
= [�1:4; 0:3;�0:2;�0:2; 0:3]

which roughly corresponds to a marginal risk Pr(Y = 1) � 0:278. We then obtained estimates

using the method described in this section which we summarize in Table 1 in rows labelled "Correct

Model". The simulation study indicates that the point estimate b� performs well and has small bias.
The simulation further shows that the simple sandwich estimator b�� can be quite conservative as
it produces estimates that can be much larger than the Monte Carlo variance. Instead of using b��,
alternative inferences can also be obtained by using an empirical version of ��; which we denote

e�� and is given by
e�� = b�� � "X

i

Yi
�
exp(��T0

�
Xi �X

�
)
	#2

�
"X
i:Yi=1

@Ui (�)

@�
jb�
#�1

n

2X
i:Yi=1

�
Xi �X

�
2 "X
i:Yi=1

@Ui (�)

@�
jb�
#�1

as derived in the appendix. However, this more precise estimator may be less convenient as it

requires additional, though fairly straightforward programming. The simulation study indicates

that e�� outperforms b�� and performs well.
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2.2 An E¢ cient Estimator

To address concerns about lack of e¢ ciency, suppose that we have obtained b� in a �rst stage. One
can then update b� in a single step, to obtain an e¢ cient estimator of �0: Let

bTi (w) = (wi � Piwi exp(
b�TXi)P

i exp(
b�TXi)

)

where wi is a vector, of the same dimension as Xi; of user-speci�ed functions of Xi. For any choice

of wi, let

b� (w) = b� + "X
i

Yi bTi (w)XT
i

#�1
�
"X

i

Yi bTi (w)#

de�ne a new so-called one-step-update estimator. The class of one-step-update estimators is very

rich and includes several well-known estimators. In fact, for any estimator � of �0 that is regular

and asymptotically linear, we show in the appendix using results due to Bickel et al (1993), that

there exist a corresponding weight function wi such that

p
n
nb� (w)� �

o
= op (1)

In other words, the two estimators share a common large sample distribution and are therefore

asymptotically equivalent. For instance, one can easily verify that the particular choice wi =

exp(�b�TXi)(Xi � X) recovers b� exactly . Whereas, wi = Xi produces an estimator that is

asymptotically equivalent to the Breslow-Lee estimator. Neither of these estimators is generally

e¢ cient. In the appendix, we show that b� (wopt) is e¢ cient, where
wopt;i = f1� bpig�1 � "Xi �

P
iXi f1� bpig�1 bpiP
i f1� bpig�1 bpi

#
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with

bpi = exp(b�TXi)
X
i0

Yi0 exp(�b�TXi0)=n

an estimator of the predicted risk for person i; where

exp(b�) =X
i0

Yi0 exp(�b�TXi0)=n

is a pluggin estimator of the baseline risk Pr (Y = 1jX = 0) = exp(�0). Speci�cally, we establish

that

b� (wopt) = b� + "X
i

Yiwopt;iX
T
i

#�1
�
"X

i

Yiwopt;i

#

since
P

iwopt;i exp(
b�TXi) = 0: In fact, we prove the following result:

Result 2: Under assumption (1), n�1=2
�b�eff � �0

�
is approximately normal with mean zero

and variance �eff� : Furthermore, the estimator b�eff� converges (in probability) to �eff� where

b�eff� = n

"X
i

f1� bpig bpiwopt;iwTopt;i
#�1

Finally, b�eff achieves the semiparametric e¢ ciency bound for the model given by (1).
As before, b�eff� can be used to construct Wald-type con�dence intervals. The simulation results

in table 1 con�rm that, as theory predicts b�eff signi�cantly outperforms b� in terms of e¢ ciency.
We emphasize that the estimated individual risk bpi; i = 1; :::; n; is solely used for the purpose of
enhancing e¢ ciency through the weights wopt;i: Result 2 con�rms that the baseline log-risk �0 may

be ine¢ ciently estimated by the simple pluggin estimator b�; without a¤ecting the e¢ ciency of
b�eff : However, although b� is consistent and asymptotically linear, bpi may be greater than one for
some observations in the sample. Naturally, one may wish to impose that the estimated risk used
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to compute the optimal weight be a genuine probability; in the next section, we describe a slight

modi�cation of the proposed approach that achieves this goal.

3 Additional results and an application

3.1 An alternative e¢ cient estimator

While not strictly required by the two stage approach, the following modi�cation guarantees that

individuals� estimated risk used to compute the weights wopt;i fall within the unit interval. To

develop the approach, we observe that pi is equivalently written:

logitpi = �
�
�T0 Xi

�

where

� (�) = log fexp(�0 + �)= (1� exp(�0 + �))g :

Given the �rst stage estimate Mi = b�TXi of �T0 Xi; we propose to ignore knowledge about the

precise functional form of � (�) ; and to estimate � (�) by �tting a nonparametric logistic regression

of Yi on the scalar variable Mi; i = 1; :::; n: Let b�i = b� (Mi) denotes such an estimator of �
�
�T0 Xi

�
;

then clearly

0 < epi = n1 + exp���b�i��o�1 < 1, i = 1; :::; n
that is epi is guaranteed to fall within the unit interval. There currently exist a vast literature
on nonparametric techniques that may be used to obtain b� (�) ; including polynomials series, local
polynomial smoothing, trigonometric series, wavelet regression, spline regression or kernel smooth-

ing; a textbook treatment of these various methods may be found in Wasserman (2003) and Hastie
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et al (2008). Here, we brie�y illustrate polynomial series regression. Let �k (Mi) =Mk
i ; k = 0; :::K:

Then, for �xed K; let epi denote the predicted probabilities obtained by standard logistic regression
of Yi on f�k (Mi) ; k � Kg using data f(Mi; Yi) : i = 1; :::; ng : A result due to Hirano et al (2003)

implies that, since � (�) has at least four bounded derivatives, setting K = Cn1=6 for some constant

C is su¢ cient for the resulting estimator epi to converge to pi at rates no slower than n1=4; and the
resulting estimator e�eff of �0 is semiparametric e¢ cient.
3.2 A data illustration

We consider a data set involving 172 diabetic patients presented by Lachin (14, p. 261) and also

analyzed by Zou (2003). This is a subset of a large clinical trial known as the Diabetes Control

and Complications Trial (The Diabetes Control and ComplicationsTrial Research Group, 1993),

where it is of interest to determine the relative risk of standard therapy versus intensive treatments

in terms of the prevalence of microalbuminuria at 6 years of follow-up. For estimation, we adjust

for the following covariates: the percentage of total hemoglobin that has become glycosylated at

baseline, the prior duration of diabetes in months, the level of systolic blood pressure (mmHg), and

gender (female) (1 if female, 0 if male). Applying the single stage approach results in an estimated

risk of microalbuminuria that is 2.5 times higher in the control group than in the treatment group

(b� = �0:92; s:e = 0.37). The e¢ cient two-stage approach delivers a more precise estimated risk

ratio, with the risk in the control group that is 5.4 times higher than in the treatment group

(b�eff = �1:69; s:e: = 0:28) using the simple pluggin approach for estimating individuals�predicted
risk, and an estimated risk that is 3.2 times higher in the control group (e�eff = �1:18; s:e: = 0:25)
using the approach described in Section 5.4. It is Interest to compare these point estimates to those

reported by Zou (2003) who estimated that the risk in the control group is 2.9 that in the treatment

group (b�Zou = �1:08; s:e: = 0:30) using a modi�ed Poisson approach, which closely matched the
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estimated risk ratio of 2.85 for the control vs the treatment group (b�bin = �1:04; s:e: = 0:30) he
obtained using the log-binomial approach. He further noted that the binomial regression procedure

failed to converge until a variety of starting values were provided, when it �nally converged with a

starting value of �1.1 for the intercept. The two-stage estimator appears to provide more precise

inference about the treatment e¤ect than the other methods.

3.3 Double robustness

Suppose that, as often the case in epidemiologic studies, we are particularly interested in the e¤ect

�(1) of the �rst component X(1) of X, which represents a binary exposure under study, and the

remaining sub-vector X(�1) of X includes confounding factors with corresponding e¤ect �(�1); so

that X =
�
X(1); X(�1)T �T and � = �

�(1); �(�1)T
�T
: Then, strictly speaking �(�1) is a nuisance

parameter not of direct interest, and the model

Pr(Yi = 1jX(1) = 0; X(�1))

Pr(Yi = 1jXi = 0)
= exp

n
�
(�1)T
0 Xi

o
(4)

is a working model used strictly for the purpose of confounding adjustment. Unless the work-

ing model in the display above is saturated, in general one cannot rule out possible model mis-

speci�cation which in turn can result in biased inferences about the exposure e¤ect, due to inad-

equate confounding adjustment. Because saturated models will generally be impractical due to

data sparseness, we propose to partially alleviate these concerns by modeling the probability of

exposure given covariates, i.e. the propensity score, with a working regression model,

logitfPr(X(1) = 1jX(�1); 0)g =  T0 [1; X
(�1)]T (5)
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Suppose b is the maximum likelihood estimator of  0 , and let b�i = Pr(X(1) = 1jX(�1); b ). Then
b�(1)dr is doubly robust, where

b�(1)dr = logPi YiX
(1)
i exp(��(�1)TX(�1))f1� b�igP

i Yi(1�X
(1)
i ) exp(��(�1)TX(�1))b�i

that is

Result 3: b�(1)dr converges (in probability) to �(1)0 if either model (4) holds, or model (5) holds,

but not necessarily both hold.

Furthermore, it can be shown that b�(1)dr is in large samples normally distributed with mean �(1)0
and variance that is easily estimated via the nonparametric bootstrap. The bootstrap is required

here to appropriately account for additional variability from the �rst stage regression of X(1)
i onto

X
(�1)
i : Although doubly robust estimators of a multiplicative exposure e¤ect have previously been

proposed (Robins and Rotnitzky, 2001), the doubly robust method described here is new and

has the appealing property that, unlike previous methods, it does not require an estimate of the

baseline risk Pr(Y = 1jX = 0):

The simulation study reported in table 1 nicely illustrates the robustness property described in

Result 2, as it shows in the row labelled �Incorrect Model", that the doubly robust estimator re-

mains unbiased when model (5) holds; even though model (4) is incorrect because in this scenario, Y

is generated under a log-binomial model with event probability exp([�1:5; 0:3;�0:2;�0:7; 0:9]�Q),

with corresponding marginal risk Pr(Y = 1) � 0:30 . This is in stark contrast with the non-doubly

robust estimator b�(1) which incurs bias when the confounders are mis-speci�ed. The simulation
study also indicates that when modeling error is absent, the doubly robust estimator exhibits

similar e¢ ciency as the non-doubly robust estimator, suggesting that, at least in this speci�c sim-

ulation study, little e¢ ciency loss was incurred in exchange for a potential gain in robustness. In
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the appendix, the doubly robust methods described above are extended to incorporate possible

interactions between the exposure and covariates, and the approach is further developed for a

continuous exposure.

4 Conclusion

In this paper, we have described a simple and e¢ cient two-stage approach to estimate risk ratios

directly, which does not directly rely for consistency on an estimate of the baseline risk. This

latter property is advantageous, because unlike previous methods, the proposed approach obviates

the need to restrict the predicted risk probabilities to fall below one, in order to recover e¢ cient

inferences about risk ratios. For e¢ ciency, the approach incorporates an individual weight which

does depend on the individual�s predicted risk; nonetheless, because the primary target of inference

is the risk ratio parameter, we have argue that a consistent estimate of the risk is su¢ cient for

inference, and we have described a simple pluggin estimator of risk which we have used to construct

an e¢ cient estimator of risk ratios. Both a simulation study and a data application con�rmed the

good performance of the approach. We have further extended the proposed methodology by

modifying it to ensure that individuals�estimated risks are genuine probabilities. Furthermore,

when the primary interest is in the e¤ect of a speci�c exposure, we have developed a simple

doubly robust closed-form estimator for the multiplicative e¤ect of the exposure, while adjusting

for a possibly large number of confounders. In future work, we plan to further extend the methods

of this paper for correlated binary outcomes as encountered in studies with repeated outcome

measurements, or in studies with clustered data.
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APPENDIX 1
Proofs

Proof of Result 1: Let E fU� (�)g = E
�
Y
�
exp(��T (X � E (X)))

	
(X � E (X))

�
denote the

(probability) limiting value of n�1
P

i:Yi=1
Ui (�) :To show that the result holds, it su¢ ces to show

that U (�) is an unbiased estimating function; that is we need to show that E fU (�0)g = 0: Now

E fU (�0)g = E
�
Y
�
exp(��T0 (X � E (X)))

	
(X � E (X))

�
= E

�
E (Y jX)

�
exp(��T0 (X � E (X)))

	
(X � E (X))

�
= E

�
exp(�T0 X + �0)

�
exp(��T0 (X � E (X)))

	
(X � E (X))

�
= E

�
exp( �0 + �T0 E (X)) (X � E (X))

�
= exp( �0 + �T0 E (X))E [(X � E (X))]

= 0

To establish the large sample behaviour of b�; we perform a standard Taylor expansion

0 =
X
i

h
Yi

n
exp(�b�T �Xi �X

�
)
o�

Xi �X
�i

�
X
i

�
Yi
�
exp(��T0 (Xi � E (X)))

	
(Xi � E (X))

�
�
X
i

h
Yi
�
exp(��T0 (Xi � E (X)))

	
(Xi � E (X)) (Xi � E (X))T

i
(b� � �0)

+
X
i

�
Yi
�
exp(��T0 (Xi � E (X)))

	
(Xi � E (X)) �T0

� �
X � E (X)

�
�
X
i

�
Yi
�
exp(��T0 (Xi � E (X)))

	� �
X � E (X)

�
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By the law of large numbers and an application of Slutzky�s theorem, we conclude that
p
n(b���0)

has large sample distribution equal to the distribution of

E
h
Yi
�
exp(��T0 (X � E (X)))

	
(X � E (X)) (X � E (X))T

i�1
�
(
n�1=2

X
i

�
Yi
�
exp(��T0 (Xi � E (X)))

	
(Xi � E (X))

�
+ E

�
Y
�
exp(��T0 (X � E (X)))

	
(X � E (X)) �T0

�
n�1=2

X
i

(Xi � E (X))

�E
�
Y
�
exp(��T0 (X � E (X)))

	�
n�1=2

X
i

(Xi � E (X))

)

= E
h
Yi
�
exp(��T0 (X � E (X)))

	
(X � E (X)) (X � E (X))T

i�1
�(X

i

�
Yi
�
exp(��T0 (Xi � E (X)))� E

�
Y
�
exp(��T0 (X � E (X)))

	�	
(Xi � E (X))

�

sinceE
�
Y
�
exp(��T0 (X � E (X)))

	
(X � E (X)) �T0

�
= 0:Wemay further conclude that the large

sample variance of
p
n(b� � �0) is given by

E
h
Yi
�
exp(��T0 (X � E (X)))

	
(X � E (X)) (X � E (X))T

i�1
� E

n�
Yi
�
exp(��T0 (Xi � E (X)))� E

�
Y
�
exp(��T0 (X � E (X)))

	�	
(Xi � E (X))

�
2o
� E

h
Yi
�
exp(��T0 (X � E (X)))

	
(X � E (X)) (X � E (X))T

i�1
=

�
E

�
@U� (�)

@�

���1
E
�
U� (�0)


2	 �E �@U� (�)
@�

���1
� E

�
Y
�
exp(��T0 (X � E (X)))

	�2
�
�
E

�
@U� (�)

@�

���1
E
�
(X � E (X))
2

	 �
E

�
@U� (�)

@�

���1
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because

E
�
Y
�
exp(��T0 (X � E (X)))

	�
= E

h
Y
�
exp(��T0 (X � E (X)))

	
(X � E (X)) (X � E (X))T

i
E
h
(X � E (X)) (X � E (X))T

i�1

where A
2 = AAT : Furthermore, because covariance matrices are positive-de�nite, we may con-

clude that
h
E
�
@U�(�)
@�

�i�1
E
�
U� (�0)


2	 hE �@U�(�)
@�

�i�1
is conservative for the variance-covariance

matrice in the positive-de�nite sense, that for any non-zero constant vector t

tT��t < tT
�
E

�
@U� (�)

@�

���1
E
�
U� (�0)


2	 �E �@U� (�)
@�

���1
t

and therefore b�� is a conservative estimator of �� :Whereas e�� is consistent for �� where
e�� = b�� � "X

i

Yi
�
exp(��T0

�
Xi �X

�
)
	#2

�
"X
i:Yi=1

@Ui (�)

@�
jb�
#�1

n
2X

i:Yi=1

�
Xi �X

�
2 "X
i:Yi=1

@Ui (�)

@�
jb�
#�1

Proof of Result 2: Consider the semiparametric model given solely by restriction (3) ; then

Bickel et al (1993) established that all regular and asymptotically linear estimators of �0 are fully

characterized by the set of in�uence functions :

� =

8>>>>>><>>>>>>:

U y (v) =
�
Y � exp

�
�0 + �T0 X

�	
�
�
V � EfV exp(�T0 X)g

Efexp(�T0 X)g

�
:

V= v(X) of dimension dim��0

with E
n
U y (v)T U y (v)

o
<1

9>>>>>>=>>>>>>;
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It is straightforward to verify that this set is equivalently written :

� =

8>>>>>><>>>>>>:

U \ (�) =
fY�exp(�0+�T0 X)g
1�exp(�0+�T0 X)

�
�
��

E
n
� exp(�0+�T0 X)[1�exp(�0+�T0 X)]

�1o
E
n
exp(�0+�T0 X)[1�exp(�0+�T0 X)]

�1o
�
:

�=�(X) of dimension dim��0

with E
n
U \ (�)T U \ (�)

o
<1

9>>>>>>=>>>>>>;
Now, the score for �0 in this model is given by

S� =
X
�
Y � exp

�
�0 + �T0 X

��
f1� exp (�0 + �T0 X)g

therefore, the e¢ cient score of �0, i.e. the orthogonal projection of S� onto �; is U y (�opt), with

�opt=�opt(X) = X; in other words,

Seff� = U \ (�opt) =

�
Y � exp

�
�0 + �T0 X

�	
1� exp (�0 + �T0 X)

�

24X �
E
n
X exp

�
�0 + �T0 X

� �
1� exp

�
�0 + �T0 X

���1o
E
n
exp (�0 + �T0 X) [1� exp (�0 + �T0 X)]

�1
o
35

since Seff� 2 �, and for all U \ (w) 2 �

E
h�
S� � Seff�

�
U \ (w)

i
= 0

The proof is completed by noting that

Seff� = U \ (�opt) = U y (vopt)
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where

vopt (X) =

24X �
E
n
X exp

�
�0 + �T0 X

� �
1� exp

�
�0 + �T0 X

���1o
E
n
exp (�0 + �T0 X) [1� exp (�0 + �T0 X)]

�1
o
35 =1� exp ��0 + �T0 X

�

Then, a theorem due to Bickel et al (1993) states that for any initial n1=2�consistent estimator

of �0; an e¢ cient estimator can be constructed by a one-step update of b� in the direction of the
estimated e¢ cient score by using the following formula

b�eff = b� � "X
i

c�
Ui
\

(�opt)

#�1X
i

bUi\ (�opt)
where bU \ (�opt) is an empirical version of U \ (�opt) obtained by replacing all expectations by empir-
ical expectations, with �0 estimated by b� and exp (�0) estimated by the simple pluggin estimatorP

i0 Yi0 exp(�b�TXi0)=n;
P

i

c�
U
\

(�opt) =n is a similarly constructed estimator of the expected deriv-

ative of the e¢ cient score, fY�exp(�0+�
TX)g

1�exp(�0+�TX)

�
X �

E
n
X exp(�0+�TX)[1�exp(�0+�TX)]

�1o
Ef exp(�0+�TX)[1�exp(�0+�TX)]�1g

�
with respect

to � evaluated at �0: It is straightforward to verify that b�eff reduces to the formula provided in
the main text. Furthermore, the theorem of Bickel et al (1993) further states that under standard

regularity conditions, n1=2
�b�eff � �0

�
is asymptotically normal with mean zero and variance

E
�
U \ (�opt)


2	�1

which is also the semiparametric e¢ ciency bound of �0: Finally, b�eff� is an empirical version of

�eff� which converges to the latter in probability.

In order to prove Result 3, we �rst establish a more general result, for which we allow X(1)

to be continuous, and for the model to incorporate a possible interaction between exposure and

20 http://biostats.bepress.com/harvardbiostat/paper136



covariates, say X(2). Speci�cally, we suppose that

Pr(Yi = 1jX(1); X(�1))

Pr(Yi = 1jX(1) = 0; X(�1))
= exp

�
�
(1)T
0

h
Xi; X

(1)
i X

(2)
i

iT�
(6)

and let � ( ) = E(X(1)jX(�1); ) = g( T [1; X(�1)T ]T ) denote a working model for the mean of the

exposure given covariates; where g�1 is the identity link for continuous X(1) and g is the logit link

for binary X(�1): De�ne the estimating function

W (�(1); �(�1);  ) =

0BB@ 1

X(2)

1CCAYi exp
n
��(1)T

�
X;X(1)X(2)

�T � �(�1)TX(�1)
o�

X(1) � � ( )
	

Then we have the following lemma.

Lemma 1:Under model (6) ;

E
h
W (�

(1)
0 ; �(�1);  )

i
= 0 (7)

if either but not necessarily both of the following conditions hold,

(1)  =  0 and E(X(1)jX(�1); 0) = E(X(1)jX(�1)) or

(2) �(�1) = �
(�1)
0 and model (4) holds.
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Proof of Lemma 1:

E
h
W (�

(1)
0 ; �(�1);  )

i
= E

2664
0BB@ 1

X(2)

1CCAYi exp
n
��(1)T0

�
X;X(1)X(2)

�T � �(�1)TX(�1)
o�

X(1) � � ( )
	3775

= E

2664
0BB@ 1

X(2)

1CCAE [YijXi] exp
n
��(1)T0

�
X;X(1)X(2)

�T � �(�1)TX(�1)
o�

X(1) � � ( )
	3775

= E

2664
0BB@ 1

X(2)

1CCA expnE hYijX(1)
i = 0; X

(�1)
i

i
� �(�1)TX(�1)

o�
E(X(1)jX(�1))� � ( )

	3775

which is certainly zero if (1) holds since then E(X(1)jX(�1))� � ( ) = 0. If (2) holds, we have

E

2664
0BB@ 1

X(2)

1CCA expnE hYijX(1)
i = 0; X

(�1)
i

i
� �(�1)TX(�1)

o�
E(X(1)jX(�1))� � ( )

	3775

= E

2664
0BB@ 1

X(2)

1CCA exp fE [YijXi = 0]g
�
E(X(1)jX(�1))� � ( )

	3775

= exp fE [YijXi = 0]g � E

2664
0BB@ 1

X(2)

1CCA�X(1) � � ( )
	3775

/ E

2664
0BB@ 1

X(2)

1CCA�X(1) � � ( )
	3775 = 0

since the last quantity is part of the �rst order condition used to estimate  either by ordinary

least-squares when X(�1) is continuous or by logistic regression in the binary case.

22 http://biostats.bepress.com/harvardbiostat/paper136



Proof of Result 3: The result immediately follows from Lemma 1 since when X(1) is binary, it

is straightforward to verify that equation (7) is equivalent to

�
(1)
0 = log

E
�
Y X(1) exp(��(�1)TX(�1))f1� � ( )g

�
E [Y (1�X(1)) exp(��(�1)TX(�1))� ( )]

Therefore, if either (1) holds, and thus b converges to  0 or (2) holds and thus b�(�1)converges to
�
(�1)
0 ; we have that b�(1)dr converges to �(1)0 :
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