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1. Introduction

Molecular biotechnology may yield biomarkers for many purposes including early detection

of disease, accurate sophisticated diagnosis and monitoring of treatment effect. The devel-

opment of biomarkers is a relatively recent area of research. Yet, the enormous investment

of resources from public and private sectors testifies to the promise that this approach holds.

The ROC curve is typically used to describe the discriminatory capacity of a marker. How-

ever, for most statisticians, their familiarity with ROC methodology is limited. Here we use

an alternative conceptual framework for marker evaluation that has very traditional statisti-

cal elements. We show that it has strong ties to ROC analysis and importantly, we describe

some new techniques afforded by this framework.

Two specific problems are considered here. The first problem is to determine if CA-125,

a cancer antigen, discriminates women with benign ovarian tumors from healthy women as

well as it discriminates women with clinically detected ovarian cancers from healthy women.

If so, failure to distinguish benign tumors from ovarian cancer limits the utility of this

marker for both diagnostic and screening purposes. Let Y be the CA-125 measurement.

Previously published data shown in Figure 1 are comprised of {YD̄i, i = 1, ..., nD̄} for controls,

{Y1j, j = 1, ..., n1} for cases with benign tumors, and {Y2j , j = 1, ..., n2} for cases with ovarian

cancer, where nD̄ = 41, n1 = 24, n2 = 66, and nD = n1 + n2 = 90 (McIntosh et al.,2004).

The second problem is to compare the discriminatory performances of two biomark-

ers, CA-19-9 and CA-125, for pancreatic cancer. For each of nD = 90 cases with can-

cer and nD̄ = 51 controls who did not have cancer but had pancreatitis (Wieand et al.,

1989), the biomarkers denoted by (Y1, Y2) are measured. The data are represented as

{(Y1D̄i, Y2D̄i) , i = 1, ..., nD̄, (Y1Dj, Y2Dj) , j = 1, ..., nD}.
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In this report, we start by setting these two statistical problems in the new conceptual

framework, without assuming any familiarity with ROC methodology. We develop several

methods for inference including a natural approach to covariate adjustment. Finally we dis-

cuss how this framework relates to existing ROC methods and how it provides new methods

for ROC analysis.

2. Reference Distribution Standardization

The key idea is to use the biomarker distribution in controls as a reference distribution to

standardize marker values. Let F (Y ) denote the cumulative distribution of the marker Y in

the control population. The standardized marker value which we call its percentile value is

percentile value= Q ≡ 100 × F (Y )

This sort of standardization using a reference distribution is already commonplace in lab-

oratory medicine and in clinical medicine. In clinical medicine for example, consider that

weight and height of children are standardized relative to a healthy population of children

of the same age and gender, so that reporting of percentile values is typical in practice.

Suppose without loss of generality that larger biomarker values are associated with disease

(else we can use −Y as the marker). An unusually large value of Y has a percentile value

close to 100. In laboratory medicine a value of Q above 95 or 99 might be flagged as outside

of the normal reference range. A good biomarker would flag most cases as being outside of

the normal range. We propose that the distribution of case percentile values is a natural way

to characterize the discriminatory performance of markers. On the one hand, with a useless

marker the case and control distributions of Y are the same so Q has a uniform (0, 100)

distribution. On the other hand, an ideal marker will place all cases at Q = 100. The closer

the case distribution of Q is to that of the ideal, the better is the marker.

One could compare benign tumors and malignant cancers in regards to their distributions

of the standardized marker values. Substantially smaller values in benign tumor cases would
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indicate that discrimination is not as good for them as it is for malignant cancer cases. An

advantage of the standardization is that it simplifies the problem by essentially reducing the

number of groups from 3 to 2. In a sense, rather than evaluating if there is an interaction on

the marker between disease status and disease type, we need only do a simple two sample

comparison of Q between benign tumor cases and malignant cancer cases.

To compare two markers for discriminating a single set of cases from controls, each marker

would be standardized with respect to its distribution in controls, yielding standardized

values Q1 and Q2 for markers 1 and 2 respectively. If Q1 tends to be larger than Q2, marker

1 is the better marker because for cases it is more indicative of their disease than is marker 2.

The standardization puts the two markers on a common scale where they can be compared

using simple paired comparisons.

Adopting the control distribution as a reference to standardize a biomarker seems like a

natural useful procedure. The approach has been taken in some biomarker studies (Frischan-

cho, 1990; McIntosh et al., 2004), but it has never been formalized as a valid statistical

method. Moreover, since in practice only a finite sample of controls are available, formal

statistical procedures need to acknowledge sampling variability in the reference distribution.

We will develop formal methods for inference here.

We can estimate F either empirically or parametrically with control data {YD̄i, i =

1, ..., nD̄}. Write F̂ for the estimator which in the case of parametric estimation can also

be written Fθ̂ where θ̂ is the estimated parameter for the model Fθ. Even if marker values

among cases are independent, their estimated standardized values, Q̂j = 100 × F̂ (Yj), are

not independent because of their common dependence on F̂ . This makes inference somewhat

challenging.
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3. Comparing Benign Tumors versus Ovarian Cancers

3.1 Comparing Means

3.1.1 Unconditional Test Let Qz(Q̂z) denote the percentile value (estimated) for the

zth group of cases, with mean E(Qz), z = 1, 2. Let ∆ = E(Q1) − E(Q2). The difference in

sample means ∆̂ = Q̂1 − Q̂2 can serve as the basis of a test statistic. Let nD̄, n1, n2 be the

numbers of subjects in the control group and the 1st and 2nd case groups respectively. The

next theorem is proved in supplementary appendices.

Theorem 1. Suppose marker observations are sampled independently and nD̄ → ∞, n1

nD̄
→

λ1 ∈ (0, 1), n2

nD̄
→ λ2 ∈ (0, 1), then

√
nD̄

(
∆̂− ∆

)
converges to a mean 0 normal random

variable with variance σ2, with

(a) σ2 = var (R1(YD̄) − R2(YD̄)) + var(Q1)
λ1

+ var(Q2)
λ2

if F̂ is the empirical CDF, where

Rz(YD̄) = P (Yz < YD̄) denotes the percentile value of the marker YD̄ from a control within

the zth case distribution, and

(b) σ2 =
(

∂∆
∂θ

)T
Σ(θ)∂∆

∂θ
+ var(Q1)

λ1
+ var(Q2)

λ2
if F is modeled parametrically, where Σ(θ)

is the asymptotic variance of
√

nD̄

(
θ̂ − θ

)
and we assume that ∆ is differentiable with

respect to θ. Thus the variability of ∆̂ comes from two sources, that due to sampling

controls that form the reference distribution, and that due to sampling cases and cal-

culating their percentile values given the reference distribution. In practice, we can use

v̂ar(R̂1(YD̄) − R̂2(YD̄)) + v̂ar(Q̂1)
n1/nD̄

+ v̂ar(Q̂2)
n2/nD̄

or
(

∂∆̂
∂θ

)
|T
θ=θ̂

Σ(θ̂)∂∆̂
∂θ
|θ=θ̂ + v̂ar(Q1)

n1/nD̄
+ v̂ar(Q2)

n2/nD̄
to

consistently estimate σ2 (where v̂ar indicates the sample variance estimate). Another way

to estimate σ2 is to bootstrap, resampling subjects from the control and each case group

separately. By calculating the variance of ∆̂−∆, we can construct a confidence interval for

∆, and formally test for equality of E(Q1) and E(Q2).

In the ovarian cancer study (McIntosh et al., 2004), serum samples from 41 healthy

women, 24 women with benign ovarian tumors, and 66 women with clinically detected ovarian

cancer, were assayed for CA-125. Figure 1(a) displays the distribution of log(CA-125) in the
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three groups. The difference between the ovarian cancer group and the healthy group is

larger than the difference between the benign tumor group and the healthy group. We

also computed the percentile values of CA-125 in each of the case groups, using either the

empirical control distribution or under the assumption that log(CA-125) in controls follows a

normal distribution after box-cox transformation. Distributions of the estimated percentile

values are displayed by case group in Figure 1. Women with ovarian cancer appear to have

larger percentile values of CA-125 compared to women with benign tumors, suggesting it

better discriminates ovarian cancer than benign tumor from healthy women.

Let Q1 and Q2 be percentile values for women with benign tumors and women with

ovarian cancer, respectively. We calculated 95% CI for ∆, the expected difference in mean

percentile values between the two case groups. When F is estimated empirically, Q̂1 = 63.31,

Q̂2 = 90.17, ∆̂ = −26.86, and the 95% CI for ∆ is (−42.77,−10.94) based on the asymptotic

variance, and (−42.74,−10.97) based on the bootstrap variance. When F is estimated para-

metrically, Q̂1 = 64.56, Q̂2 = 90.03, ∆̂ = −25.47, and the 95% CI for ∆ is (−41.48,−9.46)

based on the asymptotic variance, and (−41.39,−9.56) based on the bootstrap variance. In-

ference based on the asymptotic and bootstrap variance agree fairly well here. The p-value

for comparing E(Q1) and E(Q2) (denoted as “unconditional”) is presented in Table 1. The

population mean percentile values are significantly different (at α = 0.01 level) between the

two case groups, regardless of how we model the marker distribution in controls. The ability

of CA-125 to identify ovarian cancer seems to be much better than is its ability to detect

benign tumors.

3.1.2 Conditional Test When our objective is hypothesis testing as opposed to estima-

tion, we can consider testing for equality of mean percentile values conditional on the control

sample. We use the term “conditional” inference here. The advantage of the conditional
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approach is that it maintains independence among the estimated percentile values, allowing

standard two-sample tests for independent samples to be applied to compare case groups.

The following formal proposition is proved in supplementary appendices.

Proposition 1. Under H0 : Q1 =d Q2, if the support of the marker Y in each case group

is covered by its support in controls, then Y1 =d Y2 and Q̂1 and Q̂2 have the same conditional

distribution.

The implication of Proposition 1 is that if we reject the hypothesis that Q̂1 and Q̂2 have

the same conditional distribution, we can reject the null hypothesis that Q1 and Q2 have

the same distribution. That is, equal discriminatory performance is rejected. A common

way to test the equality of distributions is to test for equality of means. Earlier we used

the unconditional test to compare the means of Q1 and Q2. In another words, we tested

whether E(∆) = 0 where variability enters through both case and control samples. Here

we compare the means of Q̂1 and Q̂2 conditioning on the control sample. That is we test

whether E(∆̂|Yi, i = 1, ..., nD̄) = 0.

Observe that conditional on the control sample, the variance of ∆̂ is:

var

(
1

n1

n1∑

j=1

Q̂1j −
1

n2

n2∑

i=1

Q̂2j

∣∣∣∣∣Yi, i = 1, ..., nD̄

)

=
var(Q̂1|Yi, i = 1, ..., nD̄)

n1
+

var(Q̂2|Yi, i = 1, ..., nD̄)

n2

which can be consistently estimated by:

v̂ar(Q̂1)

n1
+

v̂ar(Q̂2)

n2
.

On the other hand, the unconditional variance of ∆̂ can be estimated by:

v̂ar(Q̂1)

n1
+

v̂ar(Q̂2)

n2
+

v̂ar(R̂1(YD̄) − R̂2(YD̄))

nD̄

≥ v̂ar(Q̂1)

n1

+
v̂ar(Q̂2)

n2
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As a result, the conditional test comparing the means of Q̂1 and Q̂2 is always more powerful

than the unconditional test. This is corroborated by results in the top row of Table 1.

According to Proposition 1, Q1 =d Q2 ⇔ Y1 =d Y2. Therefore, an alternative way to

test H0 : Q1 =d Q2 is to compare the distributions of Y1 and Y2, that is, the distributions

of raw marker measurements between the two case groups. Standard two-sample tests for

comparing two groups, such as the t-test,Wilcoxon rank sum test, or permutation test, all

can be used for this purpose. Tests based on raw marker measurements and tests based

on percentile values have the same type-I error under the null hypothesis H0 : Y1 =d Y2 or

H0 : Q1 =d Q2, but their powers may differ under different alternative hypotheses. In Table

1, we note that the test for equal means of Y1 and Y2 reaches the same conclusion as that

for equal means of Q̂1 and Q̂2. This might not be true in other circumstances, depending on

the particular control sample used as the reference. We do not include detailed illustrations

here.

In summary, to compare a marker’s ability to differentiate two different case groups from

the same control group, we can compare means of their percentile values Q1 and Q2. On

the one hand, if we are interested in constructing a confidence interval for E(Q1) − E(Q2),

we need to use unconditional inference that incorporates variability in controls as well as

cases. We derived corresponding variance expressions. On the other hand, if our objective is

simply to perform a hypothesis test for equality of the distributions of Q1 and Q2, we should

use conditional methods because of their enhanced power.

3.2 Rank Statistics

The previous section deals with comparisons of mean percentile values. However, when

distributions of percentile values do not belong to the same location-scale family (as shown

in Figures 1(b) and 1(c)), the comparison between means does not tell the whole story about

the difference between distributions. This motivates comparing distributions of percentile
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values using other types of test statistics that are not based on means. For example, we

can use rank-based statistics. The Wilcoxon rank sum test is often used for comparing

two groups of independent samples. For the problem at hand, we need to acknowledge the

correlation among Q̂′s when applying the Wilcoxon rank sum test to them.

In analogy with methods in the previous section, we can compare the ranks of Q̂1 and Q̂2

“unconditionally” or “conditionally”. Applying the Wilcoxon rank sum test unconditionally

to Q̂1 and Q̂2, the null hypothesis tested is P (Q̂1 > Q̂2) = P (Q̂1 < Q̂2), which holds

if Q1 =d Q2 according to Proposition 1. Comparing the ranks of Q̂1 and Q̂2 conditional

on the control sample, the null hypothesis tested is P (Q̂1 > Q̂2|Yi, i = 1, ..., nD̄) = P (Q̂1 <

Q̂2|Yi, i = 1, ..., nD̄), which holds for all sets of control samples if Q1 =d Q2. With conditional

testing, the observations are independent and so standard Wilcoxon rank sum test can be

applied. However, for the unconditional test, the variance of the Wilcoxon rank sum test

statistic must be estimated using the bootstrap, resampling from controls and each case

group.

In Table 1, both the conditional and unconditional Wilcoxon rank sum tests suggest

significant differences in the distributions of CA-125 percentile values between benign tumor

cases and ovarian cancer cases. Again, the conditional Wilcoxon rank sum test applied to

Q̂ is more powerful than the unconditional test since it does not involve variability in the

control sample.

According to Proposition 1, we can also apply the Wilcoxon rank sum test to the raw

marker measurements between the two case groups to test the null hypothesis Q1 =d Q2.

Consider the comparison between the Wilcoxon rank sum test applied to Y1 and Y2 and

that applied to Q̂1 and Q̂2. If the transformation from Y to the corresponding Q̂ does not

change each observation’s rank in the sample, then the rank based statistic is invariant to

this transformation. This happens when F the marker distribution in controls is modeled
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as a parametric family with strictly monotone increasing distribution function, but does not

necessarily happen when F is estimated nonparametrically. In the latter case, the Wilcoxon

rank sum test applied to Q̂1, Q̂2 can be different from that applied to Y1, Y2. Depending on

their placement with respect to the control sample, the two groups of case marker measure-

ment Y may be ”squeezed” differently by the transformation to Q̂. In particular, more ties

may be created with the empirical CDF transformation. The increase in the number of ties

will (1) potentially affect the value of the Wilcoxon rank sum test statistic (depending on

how many pairs of Y1i > Y2j or Y1i < Y2j lead to Q̂1j = Q̂2j) and (2) reduce the variance

of the test statistic. In the ovarian cancer data, the Wilcoxon rank sum test applied to Q̂′s

and that applied to Y ′s lead to the same conclusion (Table 1), but there are situations when

different conclusions can be reached (results not shown).

We note that the variance of the Wilcoxon rank sum test statistic gets smaller as the

number of ties in the data increases. Using the nonparametric bootstrap tends to create ties

in the marker sample. Then when calculating percentile values, ties are created as a result of

ties in the control and case samples when F is estimated empirically, or as a result of ties in

case samples when F is estimated parametrically. This increase in ties due to sampling with

replacement has the potential to lead to under-estimation of the variance. The severity of

this problem depends on the sample size and the distribution of percentile values. We found

in limited simulation studies that for small sample sizes and good classification accuracy,

applying the Wilcoxon rank sum test with nonparametric bootstrap to Q̂ can lead to anti-

conservative type-I error, especially when F is estimated nonparametrically. A solution to

this problem is to use the smoothed bootstrap (Silverman, 1986; Silverman and Young,

1987). The idea is to simulate from smoothed distributions to avoid ties during resampling.

There has been little systematic investigation about the choice of optimal bandwidth. We

explored several bandwidths in simulation studies and found that the bandwidth that covers

9
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around 40% of the total sample works reasonably well.

In summary, to compare the discriminatory performance of a marker across different case

groups using rank based tests, we recommend (1) transforming the data to the estimated

percentile values because the resulting test based on Q̂ is more relevant to differences in

diagnostic accuracies than differences on the raw marker distribution scale, and (2) using

the conditional rather than unconditional Wilcoxon rank sum test because the conditional

test can be performed with standard statistical software and is more powerful, whereas the

unconditional test calls for smoothed bootstrap for variance estimation and does not have a

sound theoretic basis for bandwidth selection.

3.3 Adjusting for Covariates

Suppose the biomarker distribution in controls varies with a covariate X, then the appro-

priate reference distribution should depend on X. We define the covariate specific percentile

value

QX = 100 × F (Y |X)

where F (Y |X) is the cumulative distribution function of the marker in the control population

with covariate value X. This is standard practice in clinical medicine for anthropometric

measurements. For example, the percentiles of height for children are age and gender specific

because these factors affect height in normal healthy children.

To compare women with benign tumor and women with ovarian cancer, we can evaluate

the covariate specific percentiles values for each case group and compare them using two-

sample statistics based on sample means or ranks as developed in section 3.1 and 3.2. Is

covariate adjustment important? The answer is ”potentially yes”. Suppose for example that

X is age and that in controls older age is associated with larger values of the biomarkers.

If women with ovarian cancer tend to be older than women with benign tumor, one would

observe a difference in discriminatory performance that is simply due to age. Using age
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adjusted biomarker percentiles is a simple way to eliminate such confounding.

If X is discrete and there are a lot of controls per X category, a nonparametric approach to

estimating F (Y |X) can be taken. Otherwise a parametric model is employed. With z = 1, 2,

let QzX(Q̂zX) be the (estimated) covariate specific percentile value for an observation in case

group z. Let ∆ = E(Q1X) − E(Q2X) and ∆̂ = Q̂1X − Q̂2X. When covariate X is discrete

with K categories, let nD̄k be the number of controls, and nzk be the number of zth type of

cases in the kth covariate category, k = 1, ...,K.

Theorem 2. Suppose nD̄ → ∞, n1

nD̄
→ λ1 ∈ (0, 1), n2

nD̄
→ λ2 ∈ (0, 1). Suppose when X is

discrete,
nD̄k

nD̄
→ pD̄k ∈ (0, 1), n1k

n1
→ p1k ∈ (0, 1), and n2k

n2
→ p2k ∈ (0, 1), k = 1, ...,K. Then

√
nD̄

(
∆̂ −∆

)
converges to a mean 0 normal random variable with variance σ2, where

(a) σ2 =
∑

k

{
var(Rk

1(Y k
D̄))

pD̄k/p2
1k

+
var(Rk

2(Y k
D̄))

pD̄k/p2
2k

}
+ var(Q1X)

λ1
+ var(Q2X)

λ2
if F (Y |X) is modeled

with the empirical CDF, where Rk
z

(
Y k

D̄

)
= P

(
Y k

z < Y k
D̄

)
and the k superscript indicates

cases and controls in covariate category k.

(b) σ2 = ∂∆
∂θ

T
Σ(θ)∂∆

∂θ
+ var(Q1X)

λ1
+ var(Q2X)

λ2
if F (Y |X) is modeled parametrically, where

Σ(θ) is the asymptotic variance of
√

nD̄

(
θ̂ − θ

)
and we assume that ∆ is differentiable with

respect to θ and that F = {Fθ (y|x) : θ ∈ Θ} is a Donsker class (Donsker, 1952). In practice,

we can use
∑

k

{
v̂ar(R̂k

1(Y k
D̄

))
nD̄k
nD̄

/
(

n1k
n1

)2 +
v̂ar(R̂k

2(Y k
D̄

))
nD̄k
nD̄

/
(

n2k
n2

)2

}
+ v̂ar(Q̂1X)

n1/nD̄
+ v̂ar(Q̂2X)

n2/nD̄
or

(
∂∆̂
∂θ

)
|T
θ=θ̂

Σ(θ̂)∂∆̂
∂θ
|θ=θ̂ + v̂ar(Q̂1X)

n1/nD̄
+ v̂ar(Q̂2X)

n2/nD̄
to consistently estimate σ2.

To illustrate the comparison of covariate specific percentile values between two case

groups, we simulated a continuous covariate X for the ovarian cancer data. X is generated

to be positively associated with both CA-125 and disease status, X ∼ N(µ, σ) where µ = 10×

log {5 × I(benign tumors) × I(log(CA-125) > 2.2) + .8 × I(ovarian cancer) + 1.5 × log(CA-125)}

and σ = 4. Figure 2 shows the distribution of log(CA-125) in healthy women, women with

benign ovarian tumors, and women with ovarian cancer ignoring covariate X (marginal distri-

butions, where F is modeled parametrically) or when X is equal to its (.25, .5, .75) quantiles
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in the whole sample. It appears that the distribution of log(CA-125) in controls varies with

X. Moreover, the separations between controls and case groups differ with X. To calculate

covariate-specific percentile values, we assume the distribution of log(CA-125) in controls

conditional on a specific covariate value is normally distributed. The mean is modeled as

a cubic B-spline in X, with pre-chosen knots at the (.25, .5, .75) quantiles in the control

sample.

Figure 3 plots the distributions of unadjusted and covariate specific percentile values of

CA-125 for women with benign tumors and women with ovarian cancer. It appears that

adjusting for the covariate X reduces the separation between women with benign tumors

and healthy women, while the separation between women with ovarian cancer and healthy

women is unchanged. Indeed the covariate adjusted percentile values have an approximately

uniform distribution for women with benign tumors indicating that their distribution is the

same as that for normal healthy controls. Therefore covariate adjustment appears to be

desirable in this setting. After covariate adjustment, CA-125 picks up fewer benign tumor

cases while maintaining its ability to identify ovarian cancer cases.

We now formally compare the two groups of cases in regards to their covariate specific

percentile values. All of the unconditional tests described in section 3.1 and 3.2 can be ap-

plied. P-values comparing E(Q1X) and E(Q2X) are 0.0002 based on the asymptotic variance

and 0.0004 based on the bootstrap variance, while for the Wilcoxon rank sum test applied

to Q̂1X and Q̂2X the p-value is less than 0.0001. All tests suggest that CA-125 has better

discriminatory performance for identifying ovarian cancer compared to benign tumors. We

also estimate the mean covariate specific percentile values for the two case groups and their

difference ∆. As expected for benign tumors, Q̂1X is close to the uninformative marker

value of 50 (Q̂1X = 50.13), because their distribution is close to uniform (0,100). In the

ovarian cancer group, Q̂2X = 88.10 which is similar to the mean unadjusted percentile val-
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ues Q̂2 = 90.17. The difference in covariate adjusted means is ∆̂ = −37.96, with 95% CI

(−57.76,−18.16) based on the asymptotic variance expression and (−58.79,−17.13) based

on the bootstrap variance. Observe that
∣∣∣Q̂1X − Q̂2X

∣∣∣ is larger than
∣∣∣Q̂1 − Q̂2

∣∣∣.

In summary, when the marker distribution in controls varies with a covariate, covariate

specific percentile values can be calculated to eliminate potential confounding. Two groups

of cases can then be compared using mean or rank based statistics. This provides a covariate

adjusted comparison of the discriminatory capacity of the marker.

4. Comparing Markers

Next consider the comparison of two markers with respect to their diagnostic accuracy.

Suppose we have two types of subjects, cases and controls, with two markers measured on

each subject. Let nD, nD̄ be the number of cases and controls respectively. Let Fz, z = 1, 2 be

the distribution function for the zth marker in controls, and let Qz(Q̂z) denote the (estimated)

case percentile value for the zth marker. Observe that each marker is standardized with

respect to its own control reference distribution. Even though the raw marker values may

be in different units, the transformation to percentile values put them on the same scale.

4.1 Using Means

For each case, one can compare their percentile value standardized markers Q1 and Q2. If

Q1 tends to be larger than Q2 then Q1 is the better marker. Formally, let ∆ = E(Q1−Q2) =

E(Q1) − E(Q2). The difference in sample means can serve as the basis of a test statistic

∆̂ = Q̂1 − Q̂2.

In this two-marker setting, the correlation between estimated percentile values comes

from two sources. First, two marker measurements measured on the same subject are corre-

lated. Second for any particular marker, the estimated percentile values are correlated due

to sampling variability in the controls used to calculate the reference distribution. We need

to acknowledge this variation in making inference.
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Theorem 3. Suppose nD

nD̄
→ λ as nD̄ → ∞, then

√
nD̄

(
∆̂ − ∆

)
converges to a mean 0

normal random variable with variance σ2, where

(a) σ2 = var(R1(Y1D̄) − R2(Y2D̄)) + var(Q1−Q2)
λ

if Fz is estimated with the empirical

CDF, where YzD̄ and YzD are the measurements of the zth marker from a control and a case

respectively, and Rz(YzD̄) = P (YzD < YzD̄) is the percentile value of the zth marker from a

control in its case distribution (Delong et al., 1988),

(b) σ2 =
(

∂∆
∂θ

)T
Σ(θ)∂∆

∂θ
+ var(Q1−Q2)

λ
if Fz is modeled parametrically with parameter θz,

θ = (θ1, θ2), Σ(θ) is the asymptotic variance of
√

nD̄

(
θ̂ − θ

)
and we assume ∆ is differen-

tiable with respect to θ. In practice, σ2 can be consistently estimated by v̂ar(R̂1(Y1D̄) −

R̂2(Y2D̄)) + v̂ar(Q̂1−Q̂2)
nD/nD̄

in (a) and
(

∂∆̂
∂θ

)T

Σ(θ̂)∂∆̂
∂θ
|θ=θ̂ + v̂ar(Q̂1−Q̂2)

nD/nD̄
in (b). We could also

bootstrap to estimate σ2, resampling subjects from case and control groups separately.

Observe that, for this two-marker problem, the conditional test is no longer applicable.

Even if the distributions of Q1 and Q2 are the same, the distributions of Q̂1 and Q̂2 con-

ditional on the particular control sample will not necessarily be equal. That is, testing the

null hypothesis that Q̂1|YD̄i, i = 1, ..., nD̄ =d Q̂2|YD̄i, i = 1, ..., nD̄ is not equivalent to testing

the null hypothesis that Q1 =d Q2.

The dataset we use for illustration here is from a pancreatic cancer serum biomarker

study (Wieand et al., 1989). This is a case-control study including 90 cases with pancreatic

cancer and 51 controls that had pancreatitis. Serum samples from each patient were assayed

for CA-19-9, a carbohydrate antigen, and CA-125, a cancer antigen.

Figure 4(a) shows the probability distribution of log(CA-19-9) and log(CA-125) for con-

trols and cases separately. Also displayed are the distributions of the estimated percentile

values in cases for each marker, with Fz, z = 1, 2 estimated empirically in Figure 5(b), and

under the normal assumption after box-cox transformation in Figure 5(c). Clearly, the dis-

tribution of the estimated percentile values for CA-19-9 is shifted to the right compared
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with CA-125, indicating that it is a better biomarker. In other words, more cases have high

percentile values for CA-19-9 than for CA-125.

Next consider the mean percentile values. When Fz is estimated empirically, Q̂1 = 86.23

for CA-19-9, Q̂2 = 70.70 for CA-125, and ∆̂ = 15.53. The corresponding 95% CI for ∆

is (4.34, 26.73) using the asymptotic variance and similar, (4.37, 26.70), using the bootstrap

variance. When Fz is estimated parametrically, results are similar: Q̂1 = 86.07, Q̂2 = 71.09,

and ∆̂ = 14.97. The corresponding 95% CI for ∆ is (3.80, 26.15) using the asymptotic

variance and (3.57, 26.38) using the bootstrap variance. The differences are highly significant

(Table 2). CA-19-9 is a better biomarker than CA-125 for pancreatic cancer.

In summary, to compare the diagnostic accuracies of two markers, we can use the controls

to transform them to the percentile value scale and compare the percentile values in cases

with the difference in means. If nD̄ = ∞, this is essentially a paired t-test. If nD̄ < ∞, the

paired t-test needs to be modified to accommodate the additional variability in the estimated

control marker distributions.

4.2 Using Rank Statistics

Rank based tests provide another avenue to compare the distributions of percentile values.

In particular, when Q̂1 and Q̂2 have similar expectations, a test comparing their means

(section 4.1) will have low power. Rank based tests may be more powerful. Due to the

complicated correlation structure, standard variance formulae for rank test statistics no

longer apply. Instead, we use the bootstrap method to calculate their variances. Moreover,

as discussed earlier, the conditional test is not applicable for the two marker problem. So only

the unconditional test is discussed here. Heuristic proofs of the following three propositions

are given in supplementary appendices.

Proposition 2.

Under H0 : Q1 =d Q2, we have Q̂1 =d Q̂2 when Fz is estimated empirically.

15
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Proposition 3.

Let Uj = Q̂1j− Q̂2j, j = 1, ..., nD. Let T and S be the Wilcoxon signed rank test statistic

and the Sign test statistic respectively. Under H0 : Q1 =d Q2, we have E(T ) = nD+1
4

, E(S) =

1
2

when Fz is estimated empirically.

Proposition 4

Let rk be the rank of Q̃k where
{
Q̃k, k = 1, ..., 2nD

}
=
{
Q̂1j, j = 1, ..., nD, Q̂2j, j = 1, ..., nD

}
.

Let W =
∑nD

k=1 rk be the Wilcoxon rank sum test statistic. Then under H0 : Q1 =d Q2,

E(W ) = nD(2nD+1)
12

when Fz is estimated empirically.

We expect the corresponding results in propositions 2-4 to hold asymptotically when Fz

is estimated parametrically.

Under H0 : Q1 =d Q2, or equivalently Q̂1 =d Q̂2 (according to Proposition 2), the

expectation of the Wilcoxon rank sum test statistic, W , applied to Q̂1 and Q̂2 is the same

as E(W ) when W is applied to two groups of independent observations from the same

distribution (Proposition 4); and the expectations of the Wilcoxon signed rank test statistic

T and the Sign test statistic S applied to Q̂1 and Q̂2 is the same as E(T ) and E(S) when

those test statistics are applied to a paired sample where the two members in each pair have

the same marginal distribution (Proposition 3). Therefore, to test H0 : Q1 =d Q2, we can

use the rank based test statistics applied to Q̂1 and Q̂2, bootstrapping the variance. Here

we face the same concern about under-estimation of the variance as in section 3.2. We use

a smoothed bootstrap to minimize this problem. Asymptotic distribution theory appears to

be very challenging. Table 2 displays p-values based on the rank tests for comparing the case

distributions of CA-19-9 percentile values with CA-125 percentile values, using a bandwidth

covering approximately 40% sample points in the smoothed bootstrap. All of these tests

suggest a highly significant difference.
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4.3 Adjusting for Covariates

We argued earlier that adjusting for covariates may be important when comparing two

case groups. This is also potentially important when comparing two biomarkers. Suppose

for example that biomarker values in the control group vary with study site in a multi-

center study. Such might occur if collection or processing procedures differed across sites.

If the site specific control populations are pooled to form a reference set, the distribution

of the case percentiles may be more diffuse than if the site specific controls are used for

reference (see the right side of Figure 5 for an example). Biomarker performance can appear

to be worse than it is by using a pooled reference set. Markers may differ in regards to

this phenomenon. Processing techniques that vary across sites may affect one marker but

not another. Covariate effects on reference distributions of biomarkers therefore can bias

the comparison of markers unless proper adjustment is undertaken. The use of covariate

specific percentile values is a means to avoid such bias. In summary, covariate adjustment

is required for covariates that affect the marker in controls. Note that pertinent covariates

may be different for different markers.

Let QzX (Q̂zX) be the covariate specific percentile value (estimated) for the zth marker,

z = 1, 2, ∆ = E(Q1X) − E(Q2X), and ∆̂ = Q̂1X − Q̂2X. When the covariate X is discrete

with K categories, let nD̄k and nDk be the numbers of controls and cases in the kth covariate

category, k = 1, ...,K.

Theorem 4 Suppose nD̄ → ∞, nD

nD̄
→ λ ∈ (0, 1), and for discrete covariate, nD̄k

nD̄
→

pD̄k ∈ (0, 1), nDk

nD
→ pDk ∈ (0, 1), k = 1, ...,K, then

√
nD̄

(
∆̂ − ∆

)
converges to a mean 0

normal random variable with variance σ2, where

(a) σ2 =
∑

k

var(Rk
1(Y k

1D̄
)−Rk

2(Y k
1D̄

))

pD̄k/p2
Dk

+var(Q1X−Q2X)
λ

if F (Y |X) is estimated empirically, where

Rk
z (Y

k
zD̄

) = P (Y k
zD < Y k

zD̄
) is the percentile value for a control using his covariate specific case

distribution as the reference for zth marker in the kth covariate category,
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(b) σ2 =
(

∂∆
∂θ

)T
Σ(θ)∂∆

∂θ
+ var(Q1X−Q2X )

λ
if F (Y |X) is modeled parametrically for marker z

with parameter estimate θz, θ = (θ1, θ2) and Σ(θ) is the asymptotic variance of
√

nD̄

(
θ̂ − θ

)
,

we assume that ∆ is differentiable with respect to θ and that F = {Fθ (y|x) : θ ∈ Θ} is a

Donsker class. In practice, σ2 can be consistently estimated by
∑

k

v̂ar(R̂k
1(Y k

1D̄
))−R̂k

2(Y k
2D̄

))

nD̄k
nD̄

/
(

nDk
nD

)2 +

v̂ar(Q̂1X−Q̂2X)
nD/nD̄

in (a) and by
(

∂∆̂
∂θ

)
|T
θ=θ̂

Σ(θ̂X)∂∆̂X

∂θ
|θ=θ̂ + v̂ar(Q̂1X−Q̂2X)

nD/nD̄
in (b).

To illustrate the use of adjusting for covariates when comparing markers, we simulate a

discrete covariate X for the pancreatic cancer data. We set X to 1 for those with CA-125

above its median in the data, and 0 otherwise. 14 out of 51 (27.4%) controls and 57 out of

90 (63.3%) cases have covariate X = 1.

Figure 5 shows the probability distributions of log(CA-19-9) and log(CA-125) in control

and case samples respectively within each covariate category. First we look at CA-19-9,

it seems that the covariate does not have a dramatic influence on the reference control

distribution. Thus covariate adjustment does not appear to be warranted for CA-19-9.

On the other hand, covariate adjustment is warranted for CA-125. Within each covariate

category, there is not much difference between cases and controls. However, since CA-125

is positively associated with the covariate and the case group has a higher percentage than

controls of subjects with covariate X = 1, when data are pooled over covariate categories,

the distribution of cases shifts to the right compared to the distribution of controls. In other

words X is a confounder for the CA-125 marker.

Covariate specific percentile values for CA-19-9 (Q̂1X) and CA-125 (Q̂2X) in cases were

calculated within each covariate category. Figure 6 plots the distributions. For CA-19-9,

the case distribution of the estimated covariate specific percentile values is similar to that

of the marginal percentile values, whereas for CA-125, covariate adjustment suggests poorer

performance for CA-125 than the performance that ignores the covariate. That is, the

confounding effect of X is removed by covariate adjustment.
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When F (Y |X) is estimated empirically for each marker, Q̂1X = 87.25 for CA-19-9,

and Q̂2X = 53.85 for CA-125, with ∆̂ = 33.40. The corresponding 95% CI for ∆ is

(20.04, 46.76) using the asymptotic variance and (20.83, 45.97) using the bootstrap variance.

When F (Y |X) is estimated parametrically for each marker, Q̂1X = 87.09 for CA-19-9, and

Q̂2X = 54.20 for CA-125, with ∆̂ = 32.89. The corresponding 95% CI for ∆ is (18.97, 46.81)

using the asymptotic variance and (20.38, 45.40) using the bootstrap variance. We compare

Q̂1X and Q̂2X using mean and rank based tests as discussed in sections 4.1 and 4.2 (Table

2). CA-19-9 appears to be a much better marker than CA-125 for identifying pancreatic

cancer, especially after adjusting for the covariate.

5. Relationships with ROC analysis

Our approach to evaluating the capacity of a marker to distinguish cases from a reference

set of controls is to use the reference control marker distribution to standardize marker

values for cases. If these percentile values tend to be high for many cases, the marker’s

discriminatory capacity is good. We noted earlier that the approach is intuitive and is

used in some applications (Frischancho, 1990; McIntosh et al., 2004). Interestingly it is

equivalent to ROC analysis, which plays a central role in biomarker evaluation (Baker,

2003). The equivalence has been noted previously (Pepe and Cai, 2004; Pepe and Longton,

2005). In particular since the ROC curve, a plot of TPR = P (Y > c|D = 1) versus

FPR = P (Y > c|D = 0), can be written as

ROC(t) = P (Y > S−1(t)|D = 1) t ∈ (0, 1)

= P (S(Y ) < t|D = 1)

where S = 1 − F , the ROC curve can be interpreted as the CDF of 1 − F (Y ) in cases.

Thus comparing case distributions of biomarker percentile values, 100 × F (Y ), is entirely
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equivalent to comparing ROC curves. Empirical ROC curves for the ovarian and pancreatic

cancer dataset are shown in Figure 7.

Some of the procedures presented in sections 3 and 4 are alternative representations of

existing procedures for comparing ROC curves while some are new procedures. Using the

fact that the mean of a random variable is equal to the area under its survival function, the

average of case percentile values can be represented in terms of the area under the ROC

curve (AUC)(Bamber, 1975),

AUC = E(Q)/100.

Thus comparisons based on mean percentile values are equivalent to comparisons of AUCs,

the classical approach to comparing ROC curves.

Hanley and Hajian-Tilaki (1997) represented the empirical AUC as the sample mean of

case percentile values with F estimated empirically. The asymptotic results in Theorems

1(a) and Theorem 2(a) are results for empirical AUC differences that have been previously

reported (Sukhatme and Beam, 1994; Delong et al., 1988). However, their semi-parametric

counterparts in Theorems 1(b) and 2(b) have not. Li et al. (1996) studied semi-parametric

estimation of the ROC curve when the case distribution is modeled parametrically and the

control distribution is modeled empirically. We did the reverse in this paper using a flex-

ible smooth form for the reference distribution of control biomarker values. The Box-Cox

family has precedent in modeling the reference distribution for anthropometric measures

(Cole, 1990). Returning to the asymptotic results in Theorem 1(a) and 2(a), in contrast to

Sukhatme and Beam (1994) and similar to Hanley and Hajian-Tilaki (1997), we reparam-

eterized the variances in terms of percentile values in this report, which we feel is a more

intuitive way to understand the components of the variance.

A problem with comparing diagnostic accuracy of two tests using the area under the

ROC curve is the lack of power to detect the difference in ROC curves when they have
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the same area under the curve. As pointed out by Swets (1986), ROC curves are typically

asymmetric, and two ROC curves with different asymmetries might cross each other but

have the same AUC. Venkatraman and Begg (1996) developed a permutation test based

procedure to compare two ROC curves with paired data. Extension of the permutation test

to the case of continuous unpaired data was also proposed (Venkatraman, 2000). Extension

to comparisons among more than two tests, however, might be computationally intensive.

The rank statistics described in sections 3.2 and 4.2 compare ROC curves as well. These

can be interpreted as new ROC analysis techniques and provide an alternative way to com-

pare ROC curves. On the other hand, their interpretation as rank statistics to compare

distributions of standardized biomarkers in cases is equally valid and may be preferred by

some. The generalization to comparing distributions of multiple standardized biomarkers is

also tenable (Cuzick 1985; Kruskal and Wallis, 1952).

The concept of covariate adjustment has only recently been developed for ROC analysis.

The use of covariate specific percentiles provides a simple intuitive and easily implemented

approach to adjust for covariates. Interestingly, arguments similar to those above prove

that the distribution of covariate specific placement values, 1 − Q/100, in cases, is the

covariate adjusted ROC curve, AROC(t), proposed by Janes and Pepe (2006, 2007). Thus,

our methods for comparing distributions of covariate specific percentiles can be interpreted

as methods to compare covariate adjusted ROC curves. Formal methods for comparing

covariate adjusted ROC curves have not been available heretofore. Our methods based on

mean covariate specific percentiles compare areas under the covariate adjusted ROC curves

while methods based on ranks provide an alternative approach.

6. Concluding Remarks

Standardizing a biomarker or diagnostic test to a reference population of controls is not an

entirely new concept (Frischancho, 1990; McIntosh et al. 2004). However it is not yet a
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standard approach to biomarker evaluation. We suspect two reasons. First, ROC analysis

has become the standard of practice (Baker, 2003), and second, formal methods have not

been available for statistical inference that properly take account of sampling variability in

the reference distribution. This paper provides remedies by providing methods for statistical

inference and by noting the approach is interchangeable with ROC analysis. We feel that the

approach should be encouraged because of its conceptual simplicity, putting ROC analysis

within mainstream familiar data analytic methods.

Equally important, the approach opens up new avenues for evaluating biomarkers and di-

agnostic tests. For example, covariate adjustment is naturally handled within this framework.

We illustrated that covariate adjustment can be important when comparing biomarkers or

in comparing the performance of a biomarker in two populations. Pepe and Cai (2004) and

Cai (2004) already showed how ROC regression can be accomplished by performing regres-

sion analysis of case standardized marker values. In the context of evaluating biomarkers of

event time outcomes one might use the risk set at time t to standardize the biomarker for the

subject that fails at t (the case). Interestingly, it can be shown that the distribution of such

standardized values is closely related to the time dependent ROC curves recently developed

by Heagerty and Zheng (2005). We hope that the methods presented here will encourage use

of the percentile value standardized approach in practice and encourage further development

of new techniques for biomarker evaluation.
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Figure 1. (a) Distributions of log(CA-125) in healthy women, women with benign ovarian
tumors, and women with ovarian cancer. (b),(c) Distributions of estimated percentile values
in benign tumor cases and ovarian cancer cases. Percentile values are calculated with the
empirical distribution of CA-125 in controls in (b). The distribution of CA-125 in controls
is assumed to be normal after a Box-Cox transformation in (c).
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Figure 2. Distributions of log(CA-125) in healthy women, women with benign ovarian
tumors, and women with ovarian cancer for specified covariate value and marginally.
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Figure 3. Distributions of estimated percentile values of CA-125 for women with benign
ovarian tumors, and women with ovarian cancer. Here ‘cov-adjusted’ indicates that covariate
specific control reference distributions were employed, while ‘marginal’ indicates that the
entire set of controls were used as a single reference group..
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Figure 4. (a) Distributions of log(CA-19-9) and log(CA-125) in controls and cases, (b)
distributions of estimated case percentile values when control distributions are estimated
empirically, and (c) distributions of estimated case percentile values when control distribu-
tions are assumed to be normal after the Box-Cox transformation.
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Figure 5. Distributions of log(CA-19-9) and log(CA-125) in controls and cases within each
covariate category and marginally.
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Figure 6. Distributions of estimated case percentile values of CA-19-9 and CA-125. Here
‘cov-adjusted’ indicates that covariate specific control reference distributions were employed,
while ‘marginal’ indicates that the entire set of controls were used as a single reference group.
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Figure 7. ROC curves (control distribution is empirically or parametrically estimated) for
benign tumor cases and ovarian cancer cases in ovarian cancer data (a), and for CA-19-9
and CA-125 in pancreatic cancer data (b).
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Table 1
p-value of tests comparing case percentile value distributions between benign tumor cases
and ovarian cancer cases. nD̄ = 41, n1 = 24, n2 = 66. Tests comparing raw marker values
between benign tumor cases and ovarian cancer cases yielded p < 0.0001 for both the t-test

and the Wilcoxon rank sum test.

Unconditional Conditional

Test F̂ empirical F̂ parametric F̂ empirical F̂ parametric

Asym1 Boot2 Asym Boot Asym Boot Asym Boot

Mean 0.0009 0.0006 0.0018 0.0013 0.0005 0.0003 0.0012 0.0009

Rank - < 0.0001s - < 0.0001s < 0.0001 < 0.0001s < 0.0001 < 0.0001s

Asym1: asymptotic variance
Boot2: nonparametric bootstrap variance or smoothed bootstrap variance (s)
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Table 2
p-value for comparing percentile value distributions between CA-19-9 and CA-125.

nD̄ = 51, nD = 90

Test Statistic F̂ empirical CDF F̂ parametric

Asym1 Boot2 Asym Boot

Marginal

Mean Difference 0.007 0.007 0.009 0.01

WRS3 - < 0.0001s - 0.0006s

WSR4 - < 0.0001s - 0.0001s

Sign5 - < 0.0001s - < 0.0001s

Covariate Adjusted

Mean Difference < 0.0001 < 0.0001 < 0.0001 < 0.0001

WRS - < 0.0001 - < 0.0001

WSR - < 0.0001 - < 0.0001

Sign - < 0.0001 - < 0.0001

Asym1: asymptotic variance
Boot2: nonparametric bootstrap variance, or smoothed bootstrap variances

WRS3: the Wilcoxon rank sum test statistic
WSR4: the Wilcoxn signed rank test statistic
Sign5: the Sign test statistic
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