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1 Introduction

Ecologic studies are characterized by being based on grouped data, with the
groups often corresponding to geographical areas. Such studies have a long his-
tory in ma;iy disciplines including political science (39), geography (50), sociology
(59) and epidemiology and public health (48). Here we concentrate on the lat-
ter and discuss why ecologic studies are widely-used, along with their unique
drawbacks, namely the potential for ecologic bias, which describes the difference
between ecologic and individual associations. Ecological data may be used for
a variety of purposes including disease mapping (the geographical summariza-
tion of risk measures), and cluster detection (in which geographic anomalies are
flagged); here we focus on geographical correlation studieé in which the aim is to
investigate associations between risk and exposure. In disease mapping ecologic
bias is not a problem since prediction of area-level risk summaries is the objec-
tive, rather than the estimation of associations. Interesting within-area features
may be masked by the process of aggregation, but although ecologic covariates
may be used in disease mapping models to improve predictions, the coeflicients
are not of direct interest, (77) provides more discussion.

There are a number of reasons for the popularity of ecologic studies, the obvious
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Ecologic Studies Revisited 3

one being the wide and increasing availability of aggregated health and population
data; exposure information is usually less readily available. If the exposure is an
environmental pollutant, concentration information will rarely be aggregate in
nature; it is more typical for measurements from a set of pollution monitors to
be available. Nevertheless, we will still refer to such non-individual summaries
as “ecologic”. Improved ease of analysis also contributes to the widespread use
of ecologic data. For example, geographical informations systems (GIS) allow
the effective storage and combination of data sets from different sources and
with differing geographies (13, 14, 47, 58, 61), and recent advances in statistical
methodology allow a more refined analysis of ecologic data, references (20) and
(79) contain reviews.

There are numerous examples of ecologic studies in the public health and epi-
demiology literature. For example, Figure 1, reproduced from (45) and using data
from (42) displays stomach cancer mortality in 1991-1993 versus infant mortality
in 1921-1923, each measured in 27 countries. The suggested hypothesis .is that
the association is due to stomach cancer risk being related to H. pylori infection,
transmitted in the same way as diarrheal diseases that contributed to diseases
that caused the observed childhood mortality rates. The interpretation of the
apparent association is complicated due to the potential for ecological bia.é, how-
ever. Specifically, the 27 countries differ in many respects in addition to their
rates of stomach cancer and infant mortality. The variables representing these
differences may be related to both rates, and so the observed ecologic association
may be due to confounding. The three highlighted countries, Japan, Russia and
Chile, “... share very little in terms of their current socio-environmental condi-

tions, and historically they are very different countries culturally, economically,

*https://biostats.bepress.com/uwbiostat/paper308



4 Ecologic Studies Revisited

and socially”, (45); the implication being that confounding is not responsible for
the simultaneous high values of the two rates. But confounding is harder to char-
acterize in ecologic studies, since it consists of both Within—area and between-area
components. For example, within each country there will be variability in infant
mortality rates and this may covary with confounders, as discussed in Section
3.2. For motivation we briefly describe three additional ecological associations.
Mortality rates for cervix cancer and the percentagé pap test rate, both by state,
are presented in Figure 3 of (61) as an example of an exploratory spatial analy-
sis, and to illustrate the flexibility of a GIS. In the context of income inequality
and health Figure 1 of (70) presents life expectancy versus income inequality in
11 countries; the correlation between income inequality and health is -0.81, but
it is noted that, “.. data from aggregate-level studies of the effect of income
inequality on health ... are largely insufficient to discriminate between compet-
ing hypotheses”, which makes the point that the loss of information in ecologic
studies leads to a fundamental identifiability problem, with many scientifically
interesting models being indistinguishable from the observed aggregate data. Fi-
nally, the two plots of Figure 5 of (44) show the percentage of individuals with
forced vital capacity less than 85%, versus two measures of particulate matter
(< 2.1 pm and 2.1 — 10 pm) for 22 US and Canadian communities. These plots
are based on semi-ecological data in that individual-level data on outcome and
confounders are supplemented with ecological exposure information. Such stud-
ies are less susceptible to ecological bias due to the increase in information when
compared to a pure ecologic study, see Section 3.4..

The paucity of exposure data has recently lead a number of authors to combine

ecologic population and health data with modeled exposure concentration sur-
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Ecologic Studies Revisited 5

faces; for a review of such modeling see (36). For example, Zidek and colleagues
(81) examine the association between daily hospital admissions for respiratory
disease and sulphate concentrations, while Carlin et al. (9) examine the rela-
tionship between pediatric asthma emergency room visits and ozone, the latter
modeled using kriging within a GIS. In each of these examples great effort is
placed on the modeling of the concentration surface without consideration of
ecologic bias.

The structure of this review is to provide an illustrative ecologic study in
Section 2, before cataloging a number of sources of ecologic bias in Section 3.
Section 4 describes approaches to combining ecologic and individual data, and

Section 5 provides concluding comments.

2 TIllustrative Example: SIDS Risk in North Carolina

We examine data on sudden infant death syndrome (SIDS) and race; these data
are available at the individual level, thus allowing the implications of aggrggation
to be examined. Mortality and birth data were obtained from the North Car-
olina State Center for Health Statistics website (www.schs.state.nc.us/SCHS/).
SIDS cases were extracted for the years 2001-2004, by race for each of the 100
counties of North Carolina, along with the number of live births. There were a
total of 386 cases and Figure 2(a) shows the distribution of risk across tile 100
area. Race was categorized as white/non-white with 220 white deaths. There
were 473,484 live births over the four years, with 343,811 being white. Figure
2(b) shows the proportion of non-white births; across the counties the propor-
tion non-white live births ranges between 0.006 and 0.733 with median 0.222, S0

that in the majority of areas there are more white births than non-white births.
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6 Ecologic Studies Revisited

The mortality rates for non-whites and whites are 0.00128 and 0.00064, giving a
relative risk of 2.0 with asymptotic 95% confidence .interval (1.64,2.45).

We now assume that ecological data only are available. An ecologic dataset
would consist of the proportion non-white, Z, along with the number of SIDS
deaths, y, and the total births, n, in each area. The top map in Figure 3 displays
the proportion non-white, with areas of relative high frequency in the north-east
and south, though these are not reflected in the risk map in the bottom figure.

A naive ecologic model is given by
Ecologic Risk = e A% (1)

and fitting this model gives the ecologic relative risk e®* = 0.89 (0.44-1.79) so
that the risk decreases as the proportion non-white increases. The fitted curve
is superimposed on the scatterplot of y versus z in Figure 2(c). If this point
estimate was assumed to apply at the individual-level we would conclude that
non-white babies are at lower risk than white babies, the opposite of that found in
the individual-level analysis, thus providing an example of the ecological fallacy.
The source of the fallacy will be returned to after we discuss sources of ecological

bias.

3 Ecologic Bias

There is a vast literature describing sources of ecological bias, see for example,
(25, 28, 29, 40, 48, 51, 52, 56, 57, 68, 74, 75, 77). The fundamental problem with
ecological inference is that the process of aggregatibn reduces information, and
this information loss usually prevents identification of association of interest in
the underlying individual-level model. Ecologic bias is relative to a particular

individual-level model. When trying to understand ecologic bias it is beneficial
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Ecologic Studies Revisited 7

to specify an individual-level model, and aggregate to determine the consequences
(64,75,76). If there is no within-area variability in exposures and confounders,
then there will be no ecological bias; so ecological bias occurs due to within-area
variability in exposures and confounders; though there are a number of ciistinct
consequences of this variability. Ecologic bias is also referred to as aggregate,
or cross-level, bias, the latter emphasizing the differing levels of the data and
inference. Throughout we assume that at the individual level the outcome is a

0/1 disease indicator.

3.1 Pure Specification Bias

So-called pure specification bias, (27) (also referred to as model specification bias,
(64)) arises because a nonlinear risk model changes its form under aggregation.

We initially assume a single exposure z and the individual-level model
Individual Risk = e*+#2 (2)

which is often used for a rare disease; e* is the risk associated with z = 0 (baseline
risk) and e? is the relative risk corresponding to an increase in z of one unit. We
concentrate on this model but will also comment on linear forms. The logistic
model, which is often used for non-rare outcomes, is unfortunately not amenable
to analytical study and so the effects of aggregation are difficult to discern (63).

We consider a generic area containing n individuals with exposures z;, i =

1,...,n. Aggregation of (2) yields:
1< B
Ecologic Risk = = ) e*+h%:
cologic Risk = ~ 2 e (3)

so that the ecologic risk is the average of the risks of the constituent individuals.

We let T represent the proportion of exposed individuals, i.e. T = % iz A
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8 Ecologic Studies Revisited

naive ecologic model would assume
Ecologic Risk = e** A% (4)

where the ecologic parameters, a®, 3¢ have been superscripted with “e” to distin-
guish them from the individual-level parameters in (2). Model (4) is a conteztual
effects model since risk depends on the proportion of exposed individuals in the
area, see Section 3.3 for further discussion. Interpreting ef° as an individual asso-
ciation would correspond to a belief that it is average exposure that is causative,
and that individual exposure is irrelevant. The difference between (3) and (4) is
clear, while the former averages the risks across all exposures, the latter is the
risk corresponding to the average exposure. We have ef = #° only when there is
no within-area variability in exposure so that z; =% for all ¢ = 1,...,n individu-
als. Hence pure specification bias is reduced in size as homogeneity of exposures
within areas increases; hence small areas are advantageous. Unfortunately data
aggregation is usually carried out according to administration groupings and not
in order to obtain areas with constant exposure.

For a binary exposure (2) can be written
e*t8% = (1 — z)e® 4 ze® TP
which is linear in e* and e**#. This form simply yields the aggregate form:
Ecologic Risk = (1 — T)e® + Te*+# (5)

showing that with a linear risk model there is no pure specification bias. If model
(4) is fitted using a binary proportion, Z, there will be no correspondence between
ef and ef° since they are associated with completely different comparisons. The

extension to general categorical exposures is straightforward, and the parameters
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Ecologic Studies Revisited . 9

of the disease model are identifiable so long as we have the aggregate proportions
in each category.

For a continuous exposure pure specification bias is dominated by the relation-
ship between the within-area mean and variance of the exposure and will be small
if the within-area variability is unrelated to the mean; if the variance increases
with the mean (which will often be the case for environmental exposures) then
overestimation of a harmful exposure (8 > 0) will occur (74). Unfortunately this
condition is impossible to assess without individual-level data on the exposure.
If 3 is close to zero pure specification bias is also likely to be small (since then
the exponential model will be approximately linear for which there is no bias),
though in this case confounding is likely to be a serious worry.

With respect to pure specification bias will result unless we have a categorical
variable and we know the within-area proportions in each category, except when
the exposure is constant within areas, or the risk model is linear. If the exposure
is heterogeneous within areas we need information on the variability within-each
area in order to control the bias. Such information may come from a sample of
individuals within each area; how to use this individual-level data is the subject

of Section 4.

Example Revisited

Returning to the North Carolina example, the discrepancy between the indi'vidual-
level relative risk estimate of 2.0, and the ecologic association derived from model
(1) of 0.89, is explained by pure specification bias; we fitted the contextual effects
model (4), and not the aggregate form (5). Unfortunately fitting the latter model

produces an estimate of 0.91 for these data, the reason for this discrepancy is that
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10 - Ecologic Studies Revisited

model (5) is very unstable statistically and produces a likelihood surface that is
highly irregular. In particular an asymptotic confidence interval is not appro-
priate here. This phenomenon has been observed elsewhere (32) which suggests

great care should be taken in fitting model (5).

3.2 Confounding

We assume a single exposure z, a single confounder z, and the individual-level
model

Individual Risk = e*+A®+72 (6)
As with pure specification bias, the key to understanding sources of, and correc-

tion for, ecological bias is to aggregate the individual-level model to give

1 n
Ecologic Risk = = Y e*F2i+7%, 7
” ; (M)
Female Male
Unexposed Poo po1 |1—7
Exposed P10 P11 z
1-2 zZ 1.0

Table 1: Exposure and gender distribution in a generic area, 7 is the proportion
exposed and Z is the proportion male; poo, po1, P10, P11 are the within-area cross-
classification frequencies.

To understand why controlling for confounding is in general impossible with
ecologic data we consider the simplest case of a binary exposure and a binary
confounder, which for ease of explanation we assume is gender. Table 1 shows the
distribution of the exposure and confounder within a generic area. The complete

within-area distribution of exposure and confounder can be described by three
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Ecologic Studies Revisited : 11

frequencies, but the ecologic data usually consist of the proportion exposed, Z,

and the proportion male, Z, only. From (7) the aggregate form is

Ecologic Risk = pgoe® + p106*t? + po1e®7 + pyye®+HA+Y
= (1-T-Z+pn)e*

+ (T —p1)e*™P + (Z— pu)e*™ + pre®tPH (8)

showing that the marginal prevalances, Z,Z, alone, are not sufficient to cha.ra;c-
terise the joint distribution unless z and z are independent, in which case z is not
a within-area confounder. This scenario has been considered in detail elsewhere
(41), where it was argued that if the proportion of exposed males (p1) is missing
it should be estimated by the marginal prevalences (T x Z); it is not pdssible
to determine the accuracy of this approximation without individual-level data,
however. This is a recurring theme in the analysis of ecologic data, bias 'ca,n be
reduced under model assumptions, but estimation is crucially dependent on the
appropriateness of these assumptions, which are uncheckable without individual-
level data.

We now turn to the situation in which we have a binary exposure and a céntinu—
ous confounder. Let the confounders in the unexposed be denoted, z;, i = 1, ..., ng,
and the confounders in the exposed, z;, i = ng + 1, ...,m9 + n1. In this case the

ecologic form corresponding to (6) is
Ecologic Risk = ¢gg X rg+q1 X 11

where go = ng/n and q; = ny/n are the probabilities of being unexposed and

exposed, and

ea no ea+ﬁ no+ni
ro=—3 &%, m=—— ) &=
0 ;=1 1 i—ng+1

https://biostats.bepress.com/uwbiostat/paper308



12 . Ecologic Studies Revisited

so that rg and r; are the aggregated risks in the unexposed and exposed. This
makes clear that we need the confounder distribution within each exposure cat-
egory, unless z is not a within-area confounder. The requirement for stratum-
defined exposure distributions is closely related tp mutual standardization as
described in (60), which requires exposure distributions to be standardized with
respect to a confounder, if risk has been standardized to this confounder. Again

it is clear that if we fit the model:

Ecologic Risk = e® TA@+7"Z

where Z = %E;;l 2;, then the coefficient 8 has no relation to §° in the naive
ecologic model.
Often an attempt to control for confounding via expected numbers, E, using

the regression model:
Ecologic Risk = E x * AT

(17,18,22). This approach implicitly assumes that there is no within-area con-
founding, however, (77). For example, the expected numbers are often calcu-
lated on the basis of the age and gender distribution, but this only controls for
between-area confounding, and will only provide confounder control if the within-
area exposure distribution is the same across age and gender stratum, and for age
in particular this will be unlikely to hold. Whenevgr an ecologic study is consid-
ered the ability to control for known confounders for the disease/exposure under
investigation should be considered. For most chronic diseases known lifestyle
risk factors include one or more of smoking, alcohol, and diet. In an ecologic
study individual-level information on these variables is not available and it has

become popular to attempt to control for these variables using area-level mea-
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sures of socio-economic status, e.g. (46). While these measures may be strongly
correlated with lifestyle variables, (19), they cannot pick up the subtleties of
within-area confounding and so unless the association of interest is strong, eco-
logic results controlled for confounding in this way should be interpreted with
great caution. |

The extension to general exposure and confounder scenarios is obvious from the
above. If we have true confounders that are constant within areas (for example,
access to health care) then they are analogous to conventional confounders, since
the area is the unit of analysis, and so the implications are relatively éasy to
understand and adjustment is straightforward.

Without an interaction between exposure and confounder the parameters of a
linear model are estimable from marginal information only, though if an interac-

tion is present within-area information is required.

3.3 Contextual Effects

A contextual variable represents a characteristic of individuals in a shared neigh-
borhood and in some scenarios (for example, the measurement of health dispari-
ties) such effects are of great interest. For example the mean income in an area,

in addition to individual income, has been hypothesized as being predictive of

health (37). We consider the simple individual-level linear model
ElYi|z;, 7] = a + Bw(z: — ) + BT - (9)

where (g is the between-area (contextual) effect, and Bw is the within-area

individual effect. The aggregate form is

E[Y|Z] = a + 8B7,
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14 Ecologic Studies Revisited

showing that both individual and contextual effeéts cannot be simultaneously
estimated without individual-level data. In a non-linear model both effects may
be estimable with ecologic data, but the amount of information concerning Sy is
small, (64) and, more importantly, the above derivation with the linear model re-
veals that estimation is crucially dependent on the form of the non-linear model,
and the form of the model is not checkable from the ecologic data only. Hence,
while sensitivity analyses to identify both parameters may be carried out, infer-
ence is totally unreliable with ecologic data only. It has also been pointed out,
(26), that when contextual effects are of interest they are susceptible to cross-level
bias when estimated from ecologic data.

It has been argued, in dietary and environmental contexts, that the contextual
exposure T may be a better estimate of exposure for an individual than z; when
individual-level measurement error is large. For example, (49) propose a design
that combines individual-level regression with ecologic comparisons in order to
attempt to combine the best aspects of each data source; individual-level analyses
are free of ecologic bias but may have poor power and measurement error in
exposures, each of which may be rectified in ecologic data.

In general, multi-level models have provided a popular framework for analyzing
associations at different geographical scales (for exmple, to estimate neighbor-
hood effects), but these models cannot control for confounding due to unmeasured
variables, and the interpretation of parameters is not always straightforward. The
usual interpretation of a parameter associated with a particular variable is re-
vealed by increasing the variable by one unit, while keeping all other variables
fixed. Consideration of model (9) illustrates the difﬁculties in applying this ap-

proach in cases in which the variable appears at more than one level. Suppose we
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Ecologic Studies Revisited 15

wish to interpret By ; if we increase z; by one unit, the mean also increasees by
1/n. To interpret B we must keep the mean in the area constant, for example
by reducing everyone else’s z by 1/(n — 1). Further discussion may be found in

(27), and interpretation of more complex models is provided in (2,67).

3.4 Semi-Ecologic Studies

Table 2 summarizes four distinct scenarios in terms of data availability, (40,64).
In a semi-ecologic study, sometimes more optimistically referred to as a “semi-
individual study”, (40), individual-level data are collected on outcome and con-
founders, with exposure information arising from another source. The Harvard
six-cities study, (16), provides an example in which the exposure was city-specific

and an average of pollution monitors over the follow-up of the study.

Exposure

Individual Ecologic

Outcome Individual | Individual Semi-Ecologic

Ecologic Aggregate Ecologic

Table 2: Study designs by level of outcome and exposure data.

We consider the risk for an individual in confounder stratum c; under aggre-

gation we have
N
Semi-Ecologic Risk in stratum ¢ = e®t7 Z ePTei
i=1

where z; are the exposures of individuals within stratum ¢, ¢ =1, ...,n., and v,

is the baseline risk in stratum c. A naive semi-ecologic model is:

Semi-Ecologic Risk in stratum ¢ = e* % +5%® (10)
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16 Ecologic Studies Revisited

where z is some summary exposure measure. Kunzli and Tager (40) argue that
semi-ecologic studies are free of ecologic bias, but fhere are two possible sources
of bias here; the first is that we have pure specification bias because we have not
acknowledged within-area variability in exposure, and the second is that we have
not allowed the exposure to vary by confounder stratum so we have not controlled
for within-area confounding. In an air pollution s{:udy in multiple cities z may
correspond to a monitor average or an average over several monitors. In this
case (10) will provide an approximately unbiased estimate of 3 if there is small
exposure variability in cities and if this variability is similar across confounder
stratum.

Semi-ecologic studies frequently have survival as an endpoint but there has been
less focus on the implications of aggregation in the context of survival models,

but (1,33) discuss some of the implications.

3.5 Spatial Dependence and Hierarchical Modeling

When data are available as counts from a set of contiguous areas we might expect
residual dependence in the counts, particularly for small-area studies, due to the
presence of unmeasured variables with spatial structure. The use of the word
“residual” here acknowledges that variables known to influence the outcome have
already been adjusted for in the mean model. Analysis methods that ignore the
dependence are strictly not applicable, with inappropriate standard errors being
the most obvious manifestation. A great deal of work has focused on models for
spatial dependence (3,5,10-12,15, 38,43); (55) provides an excellent review of
this literature. With respect to ecological bias the most important message is

that unless the mean model is correct, adjustment for spatial dependence is a
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pointless exercise (77).

In a much-cited book (39) a hierarchical model was proposed for the analysis
of ecologic data in a political science context, as “a solution to the ecological
inference problem”. Identifiability in this model is imposed through the random
effects prior, however, and it is not possible to check the appropriateness of this

prior from the ecological data alone (23,75).

4 Combining Ecologic and Individual Data

As we saw in Section 3 the only solution to the ecologic inference problem that
does not require uncheckable assumptions is the supplementation of ecologic-
level with individual-level data. We stress that ecologic data can also supplement
already available individual data, in order to improve power. Here we briefly
review some of the proposals for such an endeavor. The obvious approach is to
collect a random sample of individuals within areas. For a continuous outcome,
Raghunathan et al. (54) show that moment and maximum likelihood estimates
of a common within group correlation coefficient will improve when aggregate
data are combined with individual data within groups, and Glynn et ai. (24)
derive optimal design strategies for the collection of individual-level datg. when
the model is linear. With a binary non-rare outcome the benefits have also been
illustrated (69, 75).

For a rare disease few cases will be present in the individuals within the sample,
and so only information on the distribution of exposures and confounders will be
obtained via a random sampling strategy (which is therefore equivalent to using a
survey sample of covariates only). This prompted the derivation of the so-called

aggregate data method of Prentice and Sheppard (53,65,66), Table 2. Inference
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18 Ecologic Studies Revisited

proceeds by constructing a model based on the sample of m < n individuals in
each area and estimates the mean (which is given by (3) for the case of a single
exposure), based on the empirical averages. This is an extremely powerful design
since estimation is not based on any assumptions with respect to the within-area
distribution of exposures and confounders (though this distribution may not be
well characterized for small samples, (62)). Ecologic bias is reduced to a greater
extent than in the semi-ecologic study since withiﬁ-area variability in exposures
and confounders is acknowledged.

An alternative approach is to assume a parametric distribution for the within-
area distribution of exposures and confounders, (57,76) though this implicitly
assumes that a sample of these is available; see aléo (34,35). As an example, if
we assume that exposures in an area are normally distributed with mean = and
variance s? then the implied ecologic risk is e®+A2+8%s*/2 and this model may be
fitted to ecologic data, if T and s? are available in each area, (4). More recently an
approach has been suggested that takes the mean as a combination of these two
approaches, with the parametric approach dominating for small samples (when
the aggregate data method can provide unstable inference), (62).

A different approach in the context of a rare disease is outcome dependent sam-
pling, which avoids the problems of zero cases encountered in random sampling.
For the situation in which ecologic data are supplemented with individual case-
control information gathered within the constituent areas, inferential approaches
have been developed, (30-32). The case-control data remove ecologic bias while
the ecologic data provide increased power and constraints on the sampling dis-
tribution of the case-control data, which improves the precision of estimates.

Two-phase methods have a long history in statistics and epidemiology (7,8,78,
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Ecologic Studies Revisited 19

80) and are based on an initial cross-classification by outcome and confounders
and exposures; this classification providing a sampling frame within which addi-
tional covariates may be gathered via the sampling of individuals. Such a design
may be used in an ecologic setting, where the initial classification is based on
one or more of area, confounder stratum, and possibly error-prone measures of
exposure, (72).

In all of these approaches it is clearly vital to avoid response bias in the survey
samples, or selection bias in outcome-dependent sampling, and establishing a

relevant sampling frame is essential.

5 Concluding Remarks

The use of ecological data are ubiquitous. This article has concentrated on area-
aggregated data, but many other variables can be collapsed over. For example, it
is common practice to collapse continuous age into 5-year age bands; this results
in a loss of information, but within each age bands the changes in risk are small
and so ecologic bias will be ignorable.

A sceptic might conclude from the litany of potential biases described in Sec-
tion 3 that ecologic inference should never be attempted, but this would be too
pessimistic a view. A useful starting point for all ecologic analyses is to write
down an individual-level model for the outcome-exposure association of interest,
including known confounders. Ecologic bias will be small when within—areg vari-
ability in exposures and known confounders is small, and for small-area studies in
particular this may be approximately true. A serious source of bias is that due to
confounding, since ecologic data on exposure are rarely stratified by confounder

strata within areas. If a small area study has been carried out with a correctly
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20 Ecologic Studies Revisited

aggregated individual-level model, then parameter estimates can be cautiously
interpreted at the individual-level and compared with other studies at the indi-
vidual level, and hence add to the totality of evidence for a hypothesis. When
comparing ecologic and semi-ecologic estimates with individual-level estimates it
is clearly crucial to have a common effect measure (e.g. a relative risk or a hazard
ratio). So, for example, it will be difficult to compare an ecologic correlation co-
efficient, which is a measure that is often reported, with an effect estimate from
an individual-level study.

Less well-designed ecologic studies can be suggestive of hypotheses to investi-
gate, if strong ecologic associations are observed. An alternative to the pessimistic
outlook expressed above is that when a strong ecological association, such as that
observed in Figure 1, is seen an attempt should be made to explain how such a
relationship could have arisen, if it is not due to the ecologic predictor.

There are a number of issues that we have not discussed. Care should be
taken in determining the effects of measurement error in an ecologic study since
the directions of bias may not be predictable. Folr example, in the absence of
pure specification and confounder bias for linear and log-linear models, if there
is non-differential measurement error in a binary exposure there will be overes-
timation of the effect parameter, in contrast to individual-level studies, (6). We
refer interested readers to alternative sources, (21; 71), for other issues such as
consideration of migration, latency perfods, and the likely impacts of inaccuracies
in population and health data.

Studies that investigate the acute effects of air pollution are another common
situation in which ecologic exposures are used. For example, daily disease counts

in a city are often regressed against daily and/or lagged concentration measure-
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ments taken from a monitor, or the average of a collection of monitors to estimate
the acute effects of air pollution. If day-to-day exposure variability is greater than
within-city variability then we would expect ecologic bias to be relatively small.

With respect to data availability, exposure information is generally not.aggre-
gate in nature (unless the “exposure” is a demographic or socio-economic vari-
able), and in an environmental epidemiological setting the modeling of pollutant
concentration surfaces will undoubtedly grow in popularity. However, an impor-
tant insight is that in a health-exposure modeling context it may be better to
use measurements from the nearest monitor, rather than model the concentration
surface, since the latter approach may be susceptible to large biases, particularly
when, as is usually the case, the monitoring network is sparse(73). A remaining
challenge is to diagnose when the available data are of sufficient abundance and
quality to support the use of complex models.

In Section 4 we described a number of proposals for the combination of ecologic
and individual data. Such endeavors will no doubt increase and will hopefully

allow the reliable exploitation of ecologic information.

Summary Points

1. Ecologic bias, defined as the difference between associations obtained from
individual and ecologic data, occurs because of within-group variability in
exposures and/or confounders. |

2. To understand the implications of the use of ecologic data in any setting it
is useful to first write down the individual-level model that would be fitted
it individual-level data were available. Aggregation of an individual-level

model allows the characterization of ecologic bias and reveals the individual-
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level data that would reduce the chance of ecologic bias.

3. Ecologic bias can only be safely removed by combining ecologic- and individual-
level data.
4. Semi-ecologic studies are less susceptible to ecologic bias, since some com-

ponents of bias are not possible, but again the implications of aggregation

should be carefully examined.

Mini Glossary

1. Ecological bias: The difference between associations at the individual and

ecologic level.

2. Ecological fallacy: The result of ecologic bias in which incorrect individual-

level inference is drawn from ecologic data.

3. Pure (or model) specification bias: Non-linear individual models do not
retain the same form under aggregation (unless there is no within-area
variability in exposure) and so using an ecologic model that is of the same

form as the individual-level model will lead to bias.

4. Semi-ecologic studies: Studies in which individual-level data is available on

outcome and confounders, with an ecologic exposure assessment.
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Figure 1: Stomach cancer mortality in 1991-1993 versus infant mortality rate in
1921-1923 in 27 countries. Reprinted, with permission, from the Annual Review

of Public Health, Volume 26 (c)2005 by Annual Reviews www.annualreviews.org.
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Figure 2: Proportion non-white births and risk of SIDS (x1000) across 100 coun-

ties of North Carolina, in the years 2001-2004.
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Figure 3: Maps of proportion non-white and risk across 100 counties of North

Carolina.
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