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Introduction

Whether the goal is to cross-validate research findings in independent data,
to robustify results against technical differences between expression array
platforms, or simply to increase sample size, multi-study analysis adds value
to microarray experiments. However,

because of significant technical differences between microarray platforms,
and because of differences in study design, it can be difficult to combine
data. The ability to efficiently accumulate and integrate information from
related genomic experiments will be critical to realizing the full benefit of the
massive investment made on genomic studies.

We have developed a statistical measure of reproducibility that can be
applied to individual genes, measured in two different studies. This statis-
tic, which we call the Integrative Correlation Coefficient or Correlation of
Correlations, borrows strength across many genes to estimate the strength
of the relationship between expression values in the two studies. The inte-
grative correlation was independently described by investigators at Stanford
University, [5] and used to measure the cross-study reproducibility in mi-
croarrays, but not applied at the level of individual genes. The integrative
correlation coefficient is self contained, depending only on expression values
and not on supplemental sample data. It can be applied in situations where
standard measures of correlation cannot, when the samples in the two studies
are unrelated, and even when samples sizes differ. The integrative correla-
tion coefficient has demonstrated its utility in several applications [6, 2] and
herein we describe several important statistical properties as well.

Integrative correlation, and other tools for multi-study analysis are avail-
able in a software package called MergeMaid, [1] which is written in the
R language [4] and included as part of the Bioconductor [3] bioinformatics
software project.

Preliminaries: Definitions and Notation

Suppose that Sa and Sb are two microarray studies, with sample sizes of na

and nb respectively, and a total of m common genes. Assume (w.l.o.g. in
the following) that all genes in each study are individually standardized to
mean zero and variance one, and consider a particular gene x. The vector of
expression values for gene x in study Sa is designated xa, and A denotes the
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m− 1×na data matrix for study Sa with gene x deleted. Notation for study
Sb is, of course, identical.

Additionally, let [c]m denote the m×m matrix with every element equal
to c, and let Im denote the m × m identity matrix. Thus if v and w are
two random vectors of length m then [Im − [1/m]m]x returns x − x, and
cov(x, y) = yt[Im − [1/m]m]2x.

Genes are already mean subtracted, but we will need to calculate several
covariances over samples, so for convenience, let I = [Im− [1/m]m]2 and thus
cov(x, y) = ytIx.

The Integrative Correlation Coefficient

It is not possible to correlate the expression levels of gene x in study Sa with
expression levels in study Sb directly when the samples are not matched.
However, the studies can be matched at the gene level, and individual sam-
ples, from the same or different studies, can be correlated over common genes.
Thus our approach to measuring gene reproducibility is to construct virtual
samples corresponding to each gene, in each study, and then correlate those
across studies. The virtual samples are constructed very simply. Using study
Sa to illustrate, the sample corresponding to gene xa is a linear combination
of the columns in the data matrices A, where the coefficients are just the
expression intensities xa and so can be written compactly in matrix form as
Axt

a. Recollect that the data matrix A does not include gene x, and that xa,
as well as the rows of A are individually standardized in advance.

More formally, the integrative correlation coefficient for gene x in studies
Sa and Sb is defined as

xaA
tIBxt

b√
xaAtIAxt

a

√
xbBtIBxt

b

.

In this formulation, it is easy to see that there are natural definitions for
integrative covariance and integrative variance and as should be the case

icor(xa, xb) =
icov(xa, xb)√

ivar(xa)
√

ivar(xb)
.

The integrative covariance of gene x is thus

xaA
tIBxt

b,
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and the integrative variance of xa is

xaA
tIAxt

a.

The central object in the integrative variance of xa is the na× na sample
covariance matrix AtIA. In the covariance expression, there is an analagous
na×nb cross-covariance matrix AtIB. The i, j-th entry of the cross-covariance
matrix is the covariance between sample i of study a and sample j of study
b.

To interpret the integrative correlation, we first note the key assumption:
similar samples should have well correlated expression profiles even across
studies. This should be true when samples are correlated across the full
set of common genes, and for the reproducible set, it should be true at the
individual gene level as well. Thus we assume that a well measured gene
will weigh like samples We will also assume that the studies are selected to
include comparable cohorts. Thus, if gene x is reproducibly measured in the
two studies, then the linear combinations that x defines on the samples in
each study should weigh like subclasses of the cohorts in the same way. We
do not believe that the assumptions implicit in this argument need to be
explicitly verified before applying an integrative correlation analysis. If there
is a Fundamental Theory of Expression Array Analysis it is that phenotype
is reflected in the expression profile for a sample. If this is not true, then the
failure of the integrative correlation is the least of our problems. Nonetheless,
later on in this paper we do consider ways of determining when two studies
are appropriate for integrative correlation analysis.

This approach to cross-study reproducibility has clear strengths. First
of all of course, it permits the use of a standard correlation coeffient in a
setting where it would not otherwise be applicable. The integrative corre-
lation coefficient is closely related to classical canonical correlation analysis
as well. We will exploit these connections to develop statistical theory for
the measure. The integrative correlation does not incorporate phenotypic
information directly, but only insofar as phenotype is reflected in the expres-
sion profile. Thus genes can be filtered on the basis of integrative correlation
without biasing the selection process toward subsequent, higher level analy-
ses. And although it is computationally expensive to calculate the integrative
correlation exactly for a large number of genes, an accurate and efficient ap-
proximation is available.
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Some Statistical Properties of the Integrative

Correlation Coefficient

In this section, we describe theoretical properties of the integrative corre-
lation coefficient. Some of the most straightforward results are mentioned
briefly for completeness, and are not proved here. Along the way we point
out where open questions remain.

The integrative correlation is invariant to re-ordering of data columns, or
data rows (as long as rows are re-ordered in tandem in both studies).

After sample covariance values are calculated, the vectors xa and xb can
be re-scaled without changing integrative correlation. In particular, each can
be scaled so that the integrative variances are equal to 1, in which case the
integrative correlation takes the simple form xaA

tIBxt
b.

The largest possible integrative correlation coefficient can be calculated as
the largest canonical correlation coefficient of the two datsets, standardized
by gene. Likewise multiple regression can be used to calculate the largest in-
tegrative correlation coefficient that can obtained by changing a single value.

The Null Distribution

The idea behind our null distribution is to keep all genes and samples as
they are, and add new null genes one at a time, calculating the integrative
correlation against the background of the actual data. The null genes are to
have no correlation across studies, and so can be generated in each study as
independent random variates.

The matrix formulation of IntCor facilitates efficient sampling from the
null distribution. The within-study and cross=study empirical sample co-
variance matrices are used as is, while independent standard normal vectors
va and vb are substituted for xa and xb. The computational cost of each
iteration is proportional to the squared sample size rather than the square
of the number of genes.

Experiments with uniform, exponential and normal distribution random
variables for this, and all give exactly the same distribution of integrative
correlations. The qqplots are straight lines.

Conditioning on samples, the null distribution of CorCor scores has mean
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0 and variance

σ2 =

∑
ij ρ2

ij

na × nb

− µ(ρij)

where the ρij are the expected cross-study sample correlations.If sample size
na × nb →∞ then the asymptotic null distribution is Normal.

Outstanding problems and ongoing work

There are several outstanding problems associated with the integrative cor-
relation.

• What is the most natural and useful generalization to more than two
studies? We have considered averaging all pairwise correlations of cor-
relations...

• Is there a natural inter-study correlation coefficient, describing in a
single number the amount of information that is shared by two inde-
pendent studies measured on the same variables. The largest possible
integrative correlation may be such a coefficient.

Extensions

There are several places to go with this.

Calculation

The matrix formulation may significantly reduce computational costs. Sam-
ple covariance and cross-covariance matrices are calculated on the deleted
data sets. However if there are a lot of genes we can expect that these ma-
trices will not be sensitive to the inclusion of one gene more or less. In many
circumstances it is probably fine to use the entire, undeleted dataset as the
sole, common cross-covariance matrix. There is still a lot of computation,
but it may be possible to find other good approximations that further reduce
the cost.

If the matrices are the same for all genes, then it is easy to calculate all
integrative correlations at once. The vector of coefficients is obtained as

diag(
√

Σ−1
a AAtIBBt

√
Σ−1

b ),
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where Σa = diag(AAtIAAt), and since Σ is diagonal and positive, the square
root simply means the element-wise square root.

Generalizations

Think of the sample covariance and sample cross-covariance matrices as defin-
ing intersample similarity. Substitute other measures of similarity, like sam-
ple correlation and sample cross-correlation. Or use some phenodata to define
new within-study and cross-study sample similarity measures and substitute
those.

Put matrix and linear combination versions together to think about how
this works. A gene defines a linear combination on samples, or equivalently, a
kind of bi-quadratic form on sample covariances, as described in the matrix
version. Ideally, an alternative similarity measure, would correspond to a
data matrix with ”alternative” gene expression values, where the new sam-
ple similarities describe the sample information shared in the new expression
values. We should use the alternative expressions to define the linear combi-
nation in this setting, but since they don’t really exist, we have to work with
what we do have. The genes with high integrative correlation would then be
those whose (real) expressions happen to contain the information captured
by the virtual expressions.

Internal Integrative Correlation

Quishan Tao applied integrative correlation to a single study, comparing two
genes to one another, but borrowing strength across the entire set. The
formulation is just the same as above, except that in this instance there is
only one data matrix, so A = B, and the similarity matrix is the same for
both the integrative covariance and the integrative variances.

It is likelythe internal integrative correlation can be exploited. The key is
that genes with high internal integrative correlation share information about
the subjects profiled in the study; information that is sufficiently global as
to show up clearly in the other genes as well.
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