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1. Introduction

Pharmacokinetics is the study of the time course of a drug and its metabo-

lites after introduction into the body. Pharmacokinetic studies are carried

out extensively in drug development as they provide an invaluable aid in

describing a drug’s absorption, distribution and elimination characteristics.

In this paper we consider an alternative to the traditional compartment

models used for pharmacokinetic data, based on a generalized linear model.

Wakefield (2004) briefly considered such models for a single individual; here

we provide more details and extend the approach to multiple individuals.

The structure of this paper is as follows. In Section 2 we review compart-

mental models and inference for such models. Sections 3 and 4 describe the

log-linear gamma generalized linear models (GLMs) for single and multiple

individuals, respectively. The use of these models is demonstrated in Section

5 and a concluding discussion is provided in Section 6.

2. Compartmental Models

Traditionally, to carry out statistical analysis of pharmacokinetic data the

body is modeled as a system of compartments within which drug kinetics

are assumed to be homogeneous, leading to concentration-time profiles that

are sums of exponential. Gibaldi and Perrier (1982) provide a comprehensive

account of pharmacokinetic models and principles, and Godfrey (1983) an ac-

count of compartmental modeling in general. Pharmacokinetic modeling via

a compartmental system is a convenient visualization but the compartments

often have no physiological meaning. Given the simplicity of such systems,

the belief in the specific model chosen is often questioned, but certain phys-

iological parameters are important for clinical application. For example the
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clearance, which is defined as the volume of blood that is cleared of drug in

unit time, is of fundamental interest, as are the elimination half-life, that is

the time taken for the drug concentration to drop by 50%, and, for oral doses,

the maximum concentration and the time to maximum concentration. The

classic text due to Rowland and Tozer (1995) takes a “model-free” approach

to pharmacokinetics in that the emphasis is on the physiological parame-

ters, rather than on compartmental systems. Other authors (Weiss (1986),

Weiss (1987)) have also strayed from compartmental models, and instead

concentrated upon the estimation of model-free quantities of interest via a

convenient representation.

For an intravenous bolus dose of size D, a p compartment model with

first-order kinetics leads to the time course of the concentration

µ(t) =
D

V

p∑
k=1

Ak exp (βkt) , (1)

a sum of exponentials. The parameter V is an “apparent” volume that

converts total amounts of drug to concentrations; it is an apparent volume

since it may exceed the total volume of blood in the body due to binding,

etc. The Ak parameters describe the relative contributions of each of the p

exponentials. The stochastic part of the model includes measurement error

and errors due to model misspecification. Let y(tij) be the jth measured

concentration for the ith individual at time tij . Assay precision is often

found to increase with increasing true concentrations and models of the form

y(tij) = µ(tij) + δ(tij)

where δ(tij) ∼ind N {0, µ(tij)
γσ2

δ} with γ > 0 have been used (e.g. Davidian

and Giltinan (1995)). An alternative, with constant coefficient of variation,

4

https://biostats.bepress.com/uwbiostat/paper309



is

log y(tij) = log µ(tij) + ε(tij)

with ε(tij) ∼iid N(0, σ2). Lindsey et al. (2000) have suggested combining a

compartmental model mean with a gamma error model.

We consider in detail the one-compartment model with first-order absorp-

tion and elimination. Let wk(t) represent the amount of drug in compartment

k, k = 0, 1 at time t, with compartment 0 representing the site from which

absorption occurs; compartment 1 may be nominally thought of as corre-

sponding to blood. The drug flow between the compartments is described

by the differential equations

dw0

dt
= −kaw0,

dw1

dt
= kaw0 − kew1,

where ka is the absorption rate constant associated with the flow from com-

partment 0 to compartment 1, and ke is the elimination rate constant. At

time zero the initial dose is w0(0) = D, and given V , the volume of distribu-

tion, we have

µ(t) =
Dka

V (ka − ke)
{exp(−ket) − exp(kat)} . (2)

A common error model is:

log yij = log µij + εij

with εij ∼iid N(0, σ2), where yij = y(tij) and µij = µ(tij). Model (2) is some-

times known as the “flip-flop” model because there is non-identifiability; the

parameters (V, ka, ke) give the same curve as the parameters (V ke/ka, ke, ka).
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To enforce identifiability it is typical to assume that ka > ke > 0. This

identifiability issue become worse as the number of compartments increases.

The derived parameters of interest, given in terms of (V, ka, ke), are:

• the time to maximum concentration:

tmax =
1

ka − ke

log

(
ka

ke

)
;

• the maximum concentration:

cmax = µ(tmax) =
D

V

(
ke

ka

)ke/(ka−ke)

;

• the clearance (initial dose divided by the area under the concentration

curve):

Cl = V × ke;

• the elimination half-life:

t1/2 =
log 2

ke

.

The first three quantities may be viewed as model-free in the sense that for

any assumed functional concentration-time form they may be calculated. The

half-life depends on the dominant term for large times being an exponential

with positive ke.

Model (2) is a nonlinear regression model and inference may proceed

from either a frequentist or Bayesian perspective; Bates and Watts (1988)

discuss in detail the intrinsic non-linearity of compartment models, which

can lead to difficulties in both computation and asymptotic inference. For

a Bayesian approach (which may be essential if only sparse data is available

on a particular individual, Wakefield (1996)) we advocate prior specification
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in terms of the derived parameters of interest. Such priors are easier to

specify, though one disadvantage is that the transformation from priors on

derived parameters to model parameters may require numerical root-solving

which complicates computation. For example, this problem arises for the

transformation (cmax, tmax, t1/2) → (V, ka, ke).

3. Gamma Generalized Linear Models for Single Individuals

3.1 Model Description

We can rewrite the one-compartment model (2) as

µ(t) = D exp(β0 + β1t) [1 − exp{−(ka − ke)t}]

where β0 = log{ka/[V (ka − ke)]} and β1 = −ke. This suggests an alternative

to the compartment model, using a GLM and fitting the log-linear fractional

polynomial model:

E(yij) = µij = Di exp (β0 + β1tij + β2/tij) . (3)

Here, β2 determines the absorption, and we require β1 < 0 and β2 < 0 to

ensure an increasing absorption phase and a decreasing elimination phase.

The data are assumed to be gamma distributed, with yij ∼ Ga{φ−1, (µijφ)−1}

so that φ1/2 is the coefficient of variation.

Again, we are interested in the derived parameters, expressed in terms of

(β0, β1, β2):

• the time to maximum concentration:

tmax =

(
β2

β1

)
1/2

;

• the maximum concentration:

cmax = D exp[β0 − 2{β1β2)
1/2};
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• the clearance:

Cl =
(β1/β2)

1/2

2 exp(β0)K1[2(β1β2)1/2]
; (4)

where Kn[x] denotes a modified Bessel function of the second kind of

order n.

• the elimination half-life:

t1/2 = −
log 2

β1
.

3.2 Likelihood Inference

Since the form of (3) is a generalized linear model, estimation is straight-

forward using maximum likelihood for the fixed parameters, and a moment

estimator for the dispersion parameter.

Confidence intervals for the derived parameters of interest may be based

on the asymptotic distribution of the MLE using the delta method on the

log of the parameters; the variances of these are provided in the appendix.

3.3 Bayesian Inference

We would rather place priors on the derived parameters of interest since

pharmacokineticists find these more straightforward to think about and may

combine information from a variety of sources, and not just on previous

compartmental analyses. Model comparisons of mean models and error dis-

tributions via Bayes factors are also more interpretable since the same priors

may be used across models.

The posterior distribution is not tractable and so we resort to simulation-

based methods. A convenient way to implement the Bayesian approach for

low-dimensional posteriors with informative priors is via a rejection algo-

rithm which takes as generating density the prior distribution (Wakefield
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(1994)). This approach produces independent samples from the posterior

and so can be automated since it does not require subjective assessment of

burn-in or convergence. Unlike Markov chain Monte Carlo (MCMC) it also

allows straightforward calculation of Bayes factors for model comparison.

Let θ denoted the parameters, for example, the collection (t1/2, tmax, cmax,

cv), with prior distribution π(θ), and let M = supθ p(y|θ) be the maximized

likelihood. Then the rejection algorithm proceeds as follows:

1. Generate U ∼ U(0, 1) and θ ∼ π(θ), independently.

2. Accept θ if

U <
p(y|θ)

M
,

otherwise reject θ.

3. Return to 1.

This approach requires the prior to be proper; proper priors are in general

needed for compartmental models in order to ensure a proper posterior dis-

tribution. The acceptance probability of the algorithm is pa = p(y)/M , so

an estimate of the prior predictive is

p̃(y) = Mp̂a (5)

To compare models M0 and M1, the Bayes factor is

p(y|M0)

p(y|M1)
,

the ratio of the marginal distributions of the data under the two models. An

estimate of the marginal distribution can be obtained for each model using
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the observed acceptance rate via (5). Alternatively, an importance sampling

algorithm can be used; see Pauler, Wakefield and Kass (1999) for details.

Implementation via the rejection algorithm is straightforward for the

GLM, but for the compartment model requires root-solving to find ka, in-

creasing the computational burden. The samples may be transformed for

other quantities of interest, for example, the clearance can be calculated

directly via substitution of β samples into (4)

4. Gamma Generalized Linear Models for Multiple Individuals

4.1 Model Description

For multiple individuals we may use a generalized linear mixed model

(GLMM):

yij ∼ Ga{φ−1, (µijφ)−1} (6)

µij = Di exp (βi0 + βi1tij + βi2/tij) (7)

βi ∼ N(β,Σ) (8)

where βi = (βi0, βi1, βi2)
T and Σ is a 3 × 3 covariance matrix.

Here we have specified random effects for each element of β. However,

we require βi0 > 0, βi1 < 0, βi2 < 0 for the fitted curve to be meaningful;

one possibility is to re-parameterize and specify normal random effects for

{βi0, log(−βi1), log(−βi2)}.

4.2 Likelihood Inference

Model (8) is a straightforward GLMM and so can fitted using standard

software, for example, the lmer() function in R. Unfortunately, if we need

to re-parameterize the model it is no longer a GLM, and we need to use a

more general random effects fitting procedure (such as nlme() in R). Thus
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we lose one of the benefits of this formulation over the compartment model.

4.3 Bayesian Inference

In the Bayesian framework the illegal values in the parameter space can be

avoided using the prior, though the normality assumption of random effects

may be more reasonable on a transformed scale. It is perhaps more natural

to specify the random effects on the parameters of interest and so we combine

(6) and (7) with the alternative random effects model:

log θi ∼ N(µ, Σ) (9)

where θi = f(βi) = (ti1/2, ti max, ci max)
T transforms the likelihood parameter-

ization βi to the prior parameterization θi. The model is completed with

priors for φ, µ and Σ.

The rejection algorithm described for the fixed effects model is no longer

feasible for this model, as the acceptance probabilities are too small. How-

ever, samples may be generated using an MCMC algorithm. For example,

it is straightforward to express this model in WinBUGS (Spiegalhalter et al.

(2003)).

5. Application

We illustrate the models using data on 12 subjects given an oral dose of

the anti-asthmatic agent theophylline, with 10 concentration measurements

obtained from each individual over the subsequent 25 hours. The data are

shown in Figure 1; they were originally analyzed in Upton et al. (1982) and

are available from the Resource Facility for Population Kinetics at

http://www.rfpk.washington.edu.

[Figure 1 about here.]
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5.1 Individual Fitting

To compare the compartment and GLM models, we fit the single models

to each of the twelve individuals. The fitted curves in Figure 1, corresponding

to the MLEs for the compartmental and generalized linear models, are very

similar. The computation time for the frequentist models was slightly greater

for the GLM, though the fitting for all 12 individuals was negligible (less than

a third of a second for both model classes). For the Bayesian models we used

independent log-normal priors for t1/2, tmax, cmax, cv, with medians 8, 1.5,

9, 0.1 respectively and 90th percentiles 26, 6, 36, 10. We calculated Bayes

factors, as a side-product of the rejection method; using the guidelines given

in Kass and Raftery (1995) six individuals have positive evidence in favor

of the GLM, and two have positive evidence in favor of the compartmental

model, so that neither model is consistently preferred. Marginal inference for

the derived parameters of interest was consistent across models; for example,

Figure 2 shows similar histogram posterior representations for t1/2, tmax and

clearance for the first individual.

[Figure 2 about here.]

Plots of the likelihood surfaces for the frequentist models (Figure 3)

show more regular elliptical surfaces for the GLM model which suggests

that asymptotic inference would be more reliable for the GLM. Although

we should be wary of generalizing these results, there seems to be little dif-

ference between the two models in terms of fit, with some possible advantages

to the GLM model.

[Figure 3 about here.]
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In fitting the frequentist models, one individual produced invalid param-

eter estimates under the GLM, with β2 slightly greater than zero. On closer

examination we found that this individual had a different profile from the

others, with a much higher initial concentration, and lower time to maximum

concentration, suggesting the model may be inappropriate for this individual.

In the Bayesian analysis the problem of positive β2 was avoided because the

prior excluded such possibilities.

5.2 Population Fitting

We fitted generalized linear and non-linear mixed effects models, with all

parameters random; results are summarized in Table 1. For the Bayesian

models we used independent lognormal priors on the fixed effects, with me-

dian and 90th percentile as in the individual fitting, and an inverse Wishart

prior for Σ−1, which requires specification of a scale matrix and a degrees

of freedom. For the former we choose a diagonal matrix with elements 0.04,

which corresponds to 20% coefficient of variation for the parameters on the

non-logarithmic scale (Wakefield et al. (1994)). Lower degrees of freedom

correspond to flatter distributions and so we chose a value of three, which

is the lowest value that produces a proper posterior. The GLMM ran much

faster than the non-linear MEM; 0.66 seconds versus 36.5 seconds. The

Bayesian models are more difficult to compare since the GLMM was imple-

mented in WinBUGS while the compartmental model required specific R code

to be written (because of the need for root-solving).

[Table 1 about here.]

The frequentist GLMM gives slightly different results to the other models,

since the random effects are normal on the β scale, rather than log-normal.
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As before, there is little difference between estimates from the GLM and com-

partment models. With only 12 individuals we might question the sensitivity

to the scale matrix in the Wishart distribution. For this example, however,

inference was relatively insensitive to this choice. When we chose diagonal

elements 0.01 and 0.25 (corresponding to approximate coefficients of varia-

tion of 10% and 50%, respectively); the medians were largely unchanged and

the interval estimates moved in the expected directions. For example, for

the GLMM the biggest changes were for t1/2 and cmax. For t1/2 the interval

estimates were (7.04,8.33), (6.99,8.42), (6.83,8.71) under diagonal elements

0.01, 0.04, 0.25, and for cmax the corresponding estimates were (8.08,9.64),

(8.05,9.70), (7.83,9.92).

6. Discussion

We have presented an alternative formulation to compartment models for

pharmacokinetic data with single doses. If multiple doses are considered

the mean function does not correspond to a GLM and so the models lose a

lot of their appeal. We would also not advocate the use of the GLM mean

function for predicting pharmacokinetic behavior under multiple doses, since

the steady-state behavior has not been investigated.

An advantage of the GLM is that it is generally easier to fit. For single

individuals it takes the form of a standard GLM, and likelihood surfaces

are more regular. From a computational point of view the Bayesian models

benefit from the straightforward conversion between the β model parameters

and θ the derived parameters of interest; the compartment model needs to

use numerical root-solving for this conversion.

A disadvantage of the GLM model is that it is only interpretable for
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β1 < 0, β2 < 0, and it is possible to obtain estimates that do not correspond

to real-valued estimates of the parameters of interest. When we observed this

in our data it seemed to indicate that the model was inappropriate, suggesting

model refinement was required. The problem of uninterpretable estimates

may be overcome in the Bayesian approach by placing priors directly on the

parameters of interest, since this imposes the constraints as illegal values

have no support under the prior. We can reparameterize for the frequentist

approach, but the model is no longer a GLM though retains the advantage

of being able to easily convert between parameterizations without requiring

root-solving.

This paper has concentrated on the GLM as an alternative to the one-

compartment model with first-order absorption. However, the approach may

easily be extended to mimic the behavior of multiple compartment models by

inclusion of extra terms, for example t−2 and/or t−1/2. We might for example

consider a model of the form

µ(t) = D exp
(
β0 + β1t + β2/t + β3/t

2
)
. (10)

The aim is to provide a simple class of model that mimic the qualitative

behavior of compartmental models. For any given GLM formulation we

can calculate the parameters of interest, though this may require numerical

methods. We should take care to ensure that the area under the curve is

finite for any prospective model, to ensure finite clearance. For example, the

canonical reciprocal link does not provide a finite area when combined with

mean function (3).

For compartment models it is common to model volume of distribution

as a function of covariates, such as weight. The term exp(β0) is related to
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the volume, suggesting that covariates could be included in β0 for the GLM

formulation. Thus an obvious extension is to incorporate covariates Z in the

natural way, by multiplying the mean concentration by exp(γT Z).

Appendix

We give the variances for the logs of estimators of parameters of interest in

the one-compartment model:

var(log ĉv) ≈
φ2var(φ−1)

4

var(log t̂1/2) ≈
var(β1)

β2
1

var(log t̂max) ≈
var(β1)

4β2
1

+
var(β2)

4β2
2

−
cov(β1, β2)

4β1β2

var(log ĉmax) ≈ var(β0) +

(
β2

β1

)
var(β1) +

(
β1

β2

)
var(β2) + 2cov(β1, β2)

−2

(
β2

β1

)
1/2

cov(β0, β1) − 2

(
β1

β2

)
1/2

cov(β0, β2)

The variance for clearance is more complex but can be calculated as

D1 =
1

β1
−

(
β2

β1

)
1/2

K0[2(β1β2)
1/2]

K1[2(β1β2)1/2]

D2 = −

(
β1

β2

)
1/2

K0[2(β1β2)
1/2]

K1[2(β1β2)1/2]

var(log Ĉl) = var(β0) + D2
1var(β1) + D2

2var(β2) − 2D1cov(β0, β1)

−2D2cov(β0β2) + 2D1D2cov(β1, β2)

Acknowledgements

The work of the first author is supported by the Bath Institute for Complex

Systems (EPSRC Grant GR/S86525/01). The dataset used in this paper is

made available by the National Institutes of Health grant EB-01975. The

16

https://biostats.bepress.com/uwbiostat/paper309



authors appreciate the constructive comments of an associate editor and two

referees.

References

Bates, D. and Watts, D. (1988). Non-linear Regression Analysis and Its

Applications. Wiley.

Davidian, M. and Giltinan, D. (1995). Nonlinear Models for Repeated Mea-

surement Data. Chapman and Hall, London.

Gibaldi, M. and Perrier, D. (1982). Drugs and the Pharmaceutical Sciences,

Volume 15: Pharmacokinetics, Second Edition. Marcel Dekker.

Godfrey, K. (1983). Compartmental Models and their Applications. Academic

Press, London.

Kass, R. and Raftery, A. E. (1995). Bayes factors. Journal of the American

Statistical Association 90, 773–95.

Lindsey, J., Byrom, W., Wang, J., Jarvis, P. and Jones, B. (2000). General-

ized nonlinear models for pharmacokinetic data. Biometrics 56, 81–88.

Pauler, D., Wakefield, J. and Kass, R. (1999). Bayes factors for variance

component models. Journal of the American Statistical Association 94,

1242–53.

Rowland, M. and Tozer, T. (1995). Clinical Pharmacokinetics, Third Edition.

Williams and Wilkins.

Spiegalhalter, D., Thomas, A., Best, N. and Lunn, D. (2003). WinBUGS

User Manual Version 1.4. Medical Research Council Biostatistics Unit,

Cambridge.

Upton, R., Thiercelin, J. F., Guentert, T. W., Wallace, S., Powell, J., San-

17

Hosted by The Berkeley Electronic Press



som, L. and Riegelman, S. (1982). Intraindividual variability in theo-

phylline pharmacokinetics: statistical verification in 39 of 60 healthy

young adults. Journal of Pharmacokinetics and Biopharmaceutics 10,

123–34.

Wakefield, J. (1994). An expected loss approach to the design of dosage

regimens via sampling-based methods. The Statistician 43, 13–29.

Wakefield, J. (1996). Bayesian individualization via sampling-based methods.

Journal of Pharmacokinetics and Biopharmaceutics 24, 103–131.

Wakefield, J. (2004). Non-linear regression modelling and inference. In

Adams, N., Crowder, M., Hand, D. and Stephens, D., editors, Methods

and Models in Statistics, pages 119–153. Imperial College Press, London.

Wakefield, J., Smith, A., Racine-Poon, A. and Gelfand, A. (1994). Bayesian

analysis of linear and non-linear population models using the gibbs sam-

pler. Applied Statistics 43, 201–221.

Weiss, M. (1986). Generalizations in linear pharmacokinetics using proper-

ties of certain classes of residence time distributions. I. Log-convex drug

disposition curves. Journal of Pharmacokinertics and Biopharmaceutics

14, 635–657.

Weiss, M. (1987). Generalizations in linear pharmacokinetics using prop-

erties of certain classes of residence time distributions. II. Log-concave

concentration-time curves following oral administration. Journal of Phar-

macokinertics and Biopharmaceutics 15, 57–74.

18

https://biostats.bepress.com/uwbiostat/paper309



0 5 15 25

0
2

4
6

8
10

12

time

co
nc

en
tra

tio
n

0 5 15 25

0
2

4
6

8
10

12

time

co
nc

en
tra

tio
n

0 5 15 25

0
2

4
6

8
10

12

time

co
nc

en
tra

tio
n

0 5 15 25

0
2

4
6

8
10

12

time

co
nc

en
tra

tio
n

0 5 15 25

0
2

4
6

8
10

12

time

co
nc

en
tra

tio
n

0 5 15 25

0
2

4
6

8
10

12

time

co
nc

en
tra

tio
n

0 5 15 25

0
2

4
6

8
10

12

time

co
nc

en
tra

tio
n

0 5 15 25

0
2

4
6

8
10

12

time

co
nc

en
tra

tio
n

0 5 15 25

0
2

4
6

8
10

12

time

co
nc

en
tra

tio
n

0 5 15 25

0
2

4
6

8
10

12

time

co
nc

en
tra

tio
n

0 5 15 25

0
2

4
6

8
10

12

time

co
nc

en
tra

tio
n

0 5 15 25

0
2

4
6

8
10

12

time

co
nc

en
tra

tio
n

Figure 1. Concentrations of Theophylline versus time for 12 individuals,
along with fitted curves; the solid lines correspond to the GLM and the
dashed lines to the compartmental model.
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(bottomrow).
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Figure 3. Likelihood surfaces for the first individual for the compartment
model and the GLM.
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Table 1

Comparison of fixed effects for mixed effects analyses: parameter estimates
(for the Bayesian analyses posterior medians are given) and 95% interval

estimates. Estimates for the maximum concentration are for a dose of 5mg.

Compartment GLM
Parameter Fixed effect (95% interval) Fixed effect (95% interval)

FREQUENTIST
t1/2 7.75 ( 7.06, 8.51 ) 7.58 ( 6.88, 8.35 )
tmax 2.26 ( 1.73, 2.96 ) 2.17 ( 1.89, 2.49 )
cmax 9.06 ( 8.15, 10.1 ) 8.67 ( 7.74, 9.71 )
Cl × 103 40.3 ( 35.0, 46.4 ) 40.5 ( 35.0, 46.9 )
cv × 102 17.1 ( 15.1, 19.5 ) 10.8 ( 9.5, 12.2 )

BAYESIAN
t1/2 7.78 ( 6.80, 8.72 ) 7.66 ( 6.99, 8.42 )
tmax 2.21 ( 1.65, 2.85 ) 2.01 ( 1.68, 2.38 )
cmax 8.73 ( 7.72, 10.0 ) 8.82 ( 8.05, 9.70 )
Cl × 103 41.9 ( 32.4, 54.6 ) 39.8 ( 38.7, 40.8 )
cv × 102 17.2 ( 15.3, 19.8 ) 12.9 ( 11.4, 14.8 )
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