On Parametrization, Robustness and Sensitivity Analysis in a Marginal Structural Cox Proportional Hazards Model for Point Exposure

Eric J. Tchetgen Tchetgen∗ James M. Robins†

∗Harvard University, etchetge@hsph.harvard.edu
†Harvard School of Public Health, robins@hsph.harvard.edu

This working paper is hosted by The Berkeley Electronic Press (bepress) and may not be commercially reproduced without the permission of the copyright holder.

http://biostats.bepress.com/harvardbiostat/paper141

Copyright ©2012 by the authors.
On parametrization, robustness and sensitivity analysis in a marginal structural Cox proportional hazards model for point exposure

Eric J. Tchetgen Tchetgen and James Robins
Departments of Epidemiology and Biostatistics, Harvard University

February 11, 2012

Abstract

In this paper, some new statistical methods are proposed, for making inferences about the parameter indexing a Cox proportional hazards marginal structural model for point exposure. Under the key assumption that unmeasured confounding is absent, we propose a new class of closed-form estimators that are doubly robust in the sense that they remain consistent and asymptotically normal for the effect of treatment provided the marginal structural model is correctly specified and, at least one of the following holds: (i) a model for the treatment assignment mechanism is correctly specified or, (ii) a model for part of the observed data likelihood not involving the treatment assignment mechanism is correctly specified. In order to ensure that condition (ii) provides a genuine opportunity for valid inference, we propose a new parametrization of the observed data law, that is congenial with the marginal proportional hazards assumption. In addition, because the assumption of no unmeasured confounding can seldom be established with certainty with observational data, a second contribution of the current paper is to propose a general framework for estimation without the assumption of no unmeasured confounding. For this purpose, a sensitivity analysis technique is developed, that allows an investigator to assess, under model (i), the extent to which unmeasured confounding may alter inferences about causal effects.

The current article concerns the development of improved statistical methods for making inferences about the parameter indexing a Cox proportional hazards marginal structural model for point exposure. Under the key assumption that unmeasured confounding is absent, inverse-probability-of treatment-weighted estimation and augmented inverse-probability-of treatment-weighted estimation have previously been described, to obtain consistent and asymptotically normal estimators for this model. Unfortunately, estimators obtained using these previous methods rely on the crucial assumption that the treatment mechanism is consistently estimated. Furthermore, the assumption that there is no unmeasured confounding may be inappropriate, if the investigator fails to collect at least one key risk factor which predicts treatment assignment. In observational studies, investigators tend to collect and adjust for a large number of confounders, precisely to minimize the presence of unmeasured confounding. As a result, whether successful in their effort to reduce unmeasured confounding or not, the curse of dimensionality implies that for good finite sample performance, parametric or semi-parametric models must be used to estimate the treatment mechanism. In the event that this latter model is incorrect, the corresponding inferences are likely to be
severely biased even when all confounders are observed. As a remedy, here we develop a new class of estimators that are doubly robust when confounding is absent. In a marginal structural model, an estimator is doubly robust if it remains consistent and asymptotically normal for the effect of treatment provided that there is no unmeasured confounding, the marginal structural model is correctly specified and, at least one of the following holds:

i) the model for the treatment assignment mechanism M_1 is correctly specified or,

ii) the model for part of the observed data likelihood not involving the treatment assignment mechanism M_2 is correctly specified.

Doubly robust estimation extends inverse-probability-of-treatment weighted estimation of marginal structural models and offers at least two major advantages over the latter which we emphasize. Firstly, as stated above, doubly robust estimation is more robust to model misspecification in the estimated weights used in inverse-probability weighting, and thus, an estimator that is doubly robust, is consistent and asymptotically normal under many more laws than one that is not. Secondly, doubly robust estimation can lead to more efficient estimation than inverse-probability-of-treatment-weighting. Existing literature on the theory of double robustness is too rich to summarize here; but see Sharfstein, Rotnitzky and Robins (1999), Robins (2000), Robins and Rotnizky (2001), van der Laan and Robins (2003) and Tsiatis (2006). van der Laan and Robins (2003). Yu and van der Laan (2003), and Tchetgen Tchetgen (2006) previously considered doubly robust methods for the Cox proportional hazards model in a more general setting which allowed for time-varying exposure and time-varying confounding. The current setting differs in two crucial ways. First, because studies with a point exposure play a pivotal role in several fields, including epidemiology, economics, biostatistics, political science and other social sciences, here we focus on the setting of a point exposure. The time-varying setting will be addressed elsewhere. Second, whereas all previous methods used a pooled logistic regression approximation to the Cox regression model, no such approximation is needed here, and inferences are obtained for a structural regression model in which the proportional hazards assumption is exact. Lastly, our proposed estimators are closed form, which is generally not the case in the time-varying setting, even under a pooled logistic regression approach. We emphasize that the proposed approach is new and does not immediately follow from available results on doubly robust estimation of pooled logistic regression.

Whilst the assumption of no unmeasured confounding may be enforced in an experimental context, mainly by randomizing treatment; there is seldom a guaranty that this assumption holds in an observational study. In addition, because this latter assumption is empirically untestable from nonexperimental data, a second contribution of the current paper is to propose a general framework for estimation without the assumption of no unmeasured confounding. For this purpose, a new sensitivity analysis technique is developed, that allows an investigator to assess, under model M_1, and thus under the assumption that the treatment process is consistently estimated given the observed data, the extent to which unmeasured confounding may alter inferences about causal effects. We emphasize that to the best of our knowledge, there currently exist no sensitivity analysis methodology for unmeasured confounding under a marginal Cox regression model, therefore the current paper aims to directly address this important gap in the causal inference literature.

1 Notation

We use capital letters to represent random variables and lower-case letters to represent possible realizations (values) of random variables. A_i is the dichotomous treatment variable, $i = 1, \ldots, n$. L_i is
a vector of relevant prognostic factors for survival measured prior to treatment. We shall suppress
the i subscript denoting individual, because we assume that the random vector for each subject is
drawn independently from a distribution common to all subjects. Let T denote the underlying
failure time of interest. Because of censoring, we observe \(\Delta = I(T \leq C) \) and \(T^* = \min(T, C) \)
where C denotes an individual’s right censoring time. Throughout, to focus our exposition, we assume
that censoring is independent of \((L, A, T)\), that is

\[C \perp (L, A, T) \]

although in the appendix, this latter assumption is relaxed, and our methods are extended to
produce inferences under the weaker assumption:

\[C \perp T|A, L \]

The symbol \(\perp \) is used to indicate statistical independence. We assume that there exist counter-
factual variables \((T_0, T_1)\) corresponding to the outcome had possibly contrary to fact the treatment
taken the value \(a = 0, 1 \). Finally, we define \(\mathbb{P}_n(\cdot) = \sum_{i=1}^{n} (\cdot)_i / n. \)

2 The Cox proportional hazards Marginal Structural Model

The Cox structural model of interest is a model for \(f_{T_a}(t) \) that assumes a proportional
hazards model:

\[\lambda_{T_a}(t) = \lambda_0(t) \exp(\beta_0 a) \]

and therefore, the parameter \(\exp(\beta_0) \) can be interpreted as the causal hazards ratio for the total
effect of \(A \), so that \(\beta_0 = 0 \) encodes the null hypothesis of no treatment effect. Identification of total
causal effects requires additional assumptions. To proceed, we make the consistency assumption:

\[\text{if } A = a \ , \text{ then } T_a = T \text{ almost surely} \]

In addition, we assume no unmeasured confounding:

\[T_a \perp A|L, a = 0, 1. \]

paired with a standard positivity assumption:

\[\text{if } f_L(L) > 0 \text{ then } f_{A|L}(a|L) > 0, \ a = 0, 1. \]

where \(f_{A|L} \) is the density of \([A|L]\) and \(f_L \) is the density of \(L \). Then, under assumptions (1)-(4), the
survival curve of \(T_a \ , S_{T_a} \) is identified by the g-formula of Robins (1998):

\[S_{T_a}(t) = \int S_{T|A,L}(t|A = a, L = l) dF_L(l) = \exp \left\{ - \exp(\beta a) \int_0^t \lambda_0(u) du \right\} \]

For estimation, Robins (1998) proposed using inverse-probability-of-treatment weighting, which
entails finding an estimator \(\hat{\beta}_{ipw}^* = \hat{\beta}_{ipw}(\hat{g}^*) \) of \(\beta_0 \) by solving the weighted estimating equation:

\[
0 = \mathbb{P}_n \left\{ \tilde{U}_{ipw}^{ph}(\beta; \hat{g}^*) \right\} = \mathbb{P}_n \left\{ \tilde{U}_{ipw}^{ph}(\beta; \hat{g}^*; \hat{f}_{A|L}) \right\} \\
= \mathbb{P}_n \left(\int \frac{dN^*(t)}{\hat{f}_{A|L}(A|L)} \hat{g}^*(A, t) \right) - \mathbb{P}_n \left\{ \frac{\hat{g}^*(A, t)}{\hat{f}_{A|L}(A|L)} Y(t) \right\} \]

\[\frac{\hat{g}^*(A, t)}{\hat{f}_{A|L}(A|L)} Y(t) \]
where \(N^*(t) = I(T^* \leq t, \Delta = 1) \) is the counting process of an individual’s failure time, \(Y(t) \) is a 0-1 predictable process indicating, by the value 1, whether the subject is at risk at time \(t \); \(\widehat{f}_{A|L} \) is an estimator of \(f_{A|L} \) and \(\widehat{g}^*(A, t) \) is a user-specified function of \(A \) and \(t \), and may be data dependent. In the following, it is convenient to choose

\[
\widehat{g}^*(A, t) = \exp (-\beta A) \left[\widehat{g}(A, t) - \frac{\mathbb{P}_n \left\{ \widehat{g}(A, t) Y(t) \widehat{f}_{A|L}(A|L)^{-1} \right\}}{\mathbb{P}_n \left\{ Y(t) \widehat{f}_{A|L}(A|L)^{-1} \right\}} \right]
\]

for a user-specified function \(\widehat{g}(A, t) \) of \(A \) and \(t \), that may be data dependent; which yields the simple closed-form estimator

\[
\widehat{\beta}_{ipw} = \widehat{\beta}_{ipw}(\widehat{g}) = \log \frac{-\mathbb{P}_n \left\{ \int \frac{I(A=1) dN^*(t)}{\widehat{f}_{A|L}(A|L)} \left[\widehat{g}(A, t) - \frac{\widehat{\xi}^{ipw}_j(t; \widehat{g})}{\xi^{ipw}_j(t; \widehat{g})} \right] \right\}}{\mathbb{P}_n \left\{ \int \frac{I(A=0) dN^*(t)}{\widehat{f}_{A|L}(A|L)} \left[\widehat{g}(A, t) - \frac{\widehat{\xi}^{ipw}_j(t; \widehat{g})}{\xi^{ipw}_j(t; \widehat{g})} \right] \right\}}
\]

where \(\widehat{\xi}^{ipw}_j (t; \widehat{g}) \) is an estimator of \(\xi^{ipw}_j (t; g) \), with

\[
\xi^{ipw}_j (t, g) = \mathbb{E} \left\{ g(A, t) I_j f_{A|L}(A|L)^{-1} Y(t) \right\}, \quad j = 0, 1
\]

and thus

\[
\widehat{\xi}^{ipw}_j (t, \widehat{g}) = \widehat{\xi}^{ipw}_j \left(t, \widehat{g}, \widehat{f}_{A|L} \right) = \mathbb{P}_n \left\{ \widehat{g}(A, t) I_j \widehat{f}_{A|L}(A|L)^{-1} Y(t) \right\}, \quad j = 0, 1.
\]

As previously mentioned, because of the curse of dimensionality due to a high dimensional \(L \), nonparametric estimation will likely be impractical for estimating \(f_{A|L} \) at sample sizes encountered in practice, and thus a parametric/semiparametric model \(M_1 \) is typically used. We briefly note that the two sets of estimators \(\{ \widehat{\beta}_{ipw} (g^*) : g^* \) unrestricted \} and \(\{ \widehat{\beta}_{ipw} (g) : g \) unrestricted \} are equivalent. Hence, our decision to work with the latter representation is merely for the convenience of having a closed-form estimator. Nonetheless, under either representation, the estimator \(\widehat{\beta}_{ipw} \) (as well as \(\widehat{\beta}^*_{ipw} \)) has two important potential limitations. Firstly, one should be concerned that model mis-specification of \(\widehat{f}_{A|L} \) could potentially result in a biased estimate of \(\beta_0 \). Secondly, in the event that \(\widehat{f}_{A|L} \) is consistent, \(\widehat{\beta}_{ipw} \) is well known to be inefficient under the semiparametric model \(M_1 \). The first difficulty is addressed below. To resolve the second difficulty, Robins (1998) proposed to improve efficiency for estimating \(\beta_0 \) under \(M_1 \) by subtracting from \(\widehat{U}^{ph}_{ipw} (\beta; \widehat{g}^*) \), an estimate of its orthogonal projection onto the tangent space for the treatment process in a model for the observed data in which, except for the no unmeasured confounding and positivity assumptions, the latter is nonparametric. The tangent space for the treatment process is given by the closed linear span of scores for the treatment mechanism in the nonparametric model. Let \(M_2 \) denote a working model for the conditional survival curve \(S_{T|A,L} \), and let \(\widehat{S}_{T|A,L} \) be an estimator under this working model. The result of Robins (1998) produces the following estimator:

\[
\widehat{\beta}_{aug} = \widehat{\beta}_{aug}(\widehat{g}) = \log \frac{-\mathbb{P}_n \int \left\{ \int \frac{I(A=1) dN^*(t)}{\widehat{f}_{A|L}(A|L)} + d\widehat{S}_{T|A,L}(t|1, L) \left\{ \frac{I(A=1)}{\widehat{f}_{A|L}(A|L)} - 1 \right\} \widehat{S}_C(t) \left\{ \widehat{g}(1, t) - \frac{\widehat{\xi}^{ph}_j(t; \widehat{g})}{\xi^{ph}_j(t; \widehat{g})} \right\} \right\}}{\mathbb{P}_n \int \left\{ \int \frac{I(A=0) dN^*(t)}{\widehat{f}_{A|L}(A|L)} + d\widehat{S}_{T|A,L}(t|0, L) \left\{ \frac{I(A=0)}{\widehat{f}_{A|L}(A|L)} - 1 \right\} \widehat{S}_C(t) \left\{ \widehat{g}(0, t) - \frac{\widehat{\xi}^{ph}_j(t; \widehat{g})}{\xi^{ph}_j(t; \widehat{g})} \right\} \right\}}
\]
with \(\hat{S}_C \) the Kaplan-Meier estimator of the survival function of censoring. A result due to Robins (1998) implies that in the absence of model misspecification, \(\hat{\beta}_{aug} (\hat{g}) \) is consistent, with large sample variance guaranteed to be no larger than the large sample variance of \(\hat{\beta}_{ipw} (\hat{g}) \). In the event that \(\mathcal{M}_1 \) is incorrect, \(\hat{f}_{A|L} \) will fail to converge to \(f_{A|L} \) due to model misspecification and \(\hat{\beta}_{aug} (\hat{g}) \) will generally not be consistent, even if \(\hat{S}_{T|A,L} \) is consistent. It is straightforward to see that this is mainly because of model misspecification \(\hat{\xi}_{j}^{ph} \left(t; \hat{\beta}_{aug}\right) \) will also be inconsistent. As a remedy we propose an alternative estimator that is doubly robust; more precisely, we develop an estimator of \(\beta_0 \) that remains consistent in the union model \(\mathcal{M}_1 \cup \mathcal{M}_2 \). To do so, we proceed by first obtaining an estimator of \(\hat{\xi}_{j}^{ph} \left(t; \beta\right) \) that remains consistent in \(\mathcal{M}_1 \cup \mathcal{M}_2 \), and subsequently substitute this estimator for \(\hat{\xi}_{j}^{ph} \left(t; \cdot\right) \) in evaluating the augmented estimator given in the display above. To formally state the result, Let

\[
\hat{\xi}_{j,dr}^{ph} (t; \hat{g}) = \mathbb{P}_n \left\{ \hat{g}(A, t)^{\top} \hat{f}_{A|L} (A|L)^{-1} \left\{ Y(t) - \hat{S}_{T|A,L} (t|A, L) \hat{S}_C(t) \right\} \right. \\
+ \left. \mathbb{P}_n \left\{ \hat{S}_C(t) \sum_{a=0}^{1} \hat{S}_{T|A,L} (t|A = a, L) \hat{g}(a, t)^{\top} \right\} \right\}
\]

and define \(\hat{\beta}_{dr} (\hat{g}) \) as \(\hat{\beta}_{aug} (\hat{g}) \) but with \(\hat{\xi}_{j,dr}^{ph} (t; \hat{g}) \) replacing \(\hat{\xi}_{j}^{ph} \left(t; \hat{g}\right) \).

Theorem 1: Under the consistency, no unmeasured confounding and positivity assumptions, the estimator \(\hat{\beta}_{dr} \) is consistent in model \(\mathcal{M}_1 \cup \mathcal{M}_2 \).

We briefly note that \(\hat{\beta}_{aug} (\hat{g}) \) is invariant to the choice of \(\hat{g}(0, t) \) and thus it is convenient in practice, to set \(\hat{g}(0, t) = 0 \). Because \(\hat{\beta}_{dr} \) is regular and asymptotically normal under standard regularity conditions, inferences in the union model \(\mathcal{M}_1 \cup \mathcal{M}_2 \) are conveniently obtained via a version of the bootstrap.

2.1 A congenial parametrization of \(S_{T|A,L} \)

In order to hold true, Theorem 1 of the previous section implicitly assumes congeniality between the working model \(\mathcal{M}_2 \) of \(S_{T|A,L} \) with the underlying marginal structural Cox proportional hazards model. This is because, if \(\mathcal{M}_1 \) is incorrect, then a model \(\mathcal{M}_2 \) cannot be used to obtain valid inferences about \(\beta_0 \) unless the model agrees with the underlying structural assumption of proportional marginal hazards. As equation (5) reveals, \(S_{T|A,L} \) and the marginal Cox model are intimately related, since a model of the former must marginalize to a survival curve that satisfies the proportional hazards restriction. To ensure this property is always satisfied, we first observe that the survival curves \(S_{T|A,L} \) and \(S_{T_a} (t) \) are related by:

\[
S_{T|A,L} (t|A = a, L = l) = r(t, a, l) \times S_{T_a} (t)
\]

where

\[
\begin{align*}
 r(t, a, l) &= \exp \left\{ m(t, a, l) - \bar{m}(t, a) \right\} \\
 m(t, a, l) &= \log \frac{S_{T|A,L} (t|A = a, L = l)}{S_{T|A,L} (t|A = a, L = l_0)} \\
 \bar{m}(t, a) &= \log \left[\int \exp \left\{ m(a, l) \right\} dF_L (l) \right]
\end{align*}
\]
with \(l_0 \) a reference value of \(L \). Thus, a variation independent parametrization is obtained by directly modeling the quantities \(\{ m(t,a,l), F_L (l), S_{T_a} (\cdot) \} \) under the marginal Cox model. Let \(\{ m(t,a,l; \eta), F_L (l; \gamma), S_{T_a} (\cdot; \beta, \lambda_0) \} \) denote such a model indexed by variation independent parameters \((\eta, \gamma, \beta, \lambda_0) \in \Phi \times \Gamma \times \mathbb{R} \times \Omega \), where recall under the marginal structural Cox proportional hazards model, \(S_{T_a} (t; \beta, \lambda_0) = \exp \{- \exp (\beta a) \Lambda_0 (t) \} \) with \(\Lambda_0 = \Lambda_0 (\cdot) = \int_0^t \lambda_0 (u) du \), the unrestricted baseline cumulative hazard function; and \(m(t,a,l;\eta) \) is a smooth parametric model with respect to \(\eta \), that satisfies \(m(t,a,l_0;\eta) = m(t,a,l;0) = 0 \). For estimation, we note that equation (6) together with our choice of parametrization, implies the following model for the conditional hazard function \(\lambda_{T|A,L} \):

\[
\lambda_{T|A,L} (t|a,l; \eta, \gamma, \beta, \lambda_0) = \lambda_{T_a} (t; \beta, \lambda_0) + j (t, a, l; \eta, \gamma) = \lambda_0 (t) \exp (\beta a) + j (t, a, l; \eta, \gamma) \quad (7)
\]

where \(j (t, a, l; \eta, \gamma) = - \frac{\partial \log r(t,a,l;\eta,\gamma)}{\partial t} \) and \(\log r (t, a, l; \eta, \gamma) = m(t,a,l;\eta) - \overline{m} (t, a; \eta, \gamma) \). Suppose for the moment that \(\gamma \) is known, then under the Cox MSM, model (7) corresponds to an instance of the so-called additive-multiplicative hazards model of Lin and Ying (1995), who provide a general semiparametric methodology to estimate the unknown parameters \((\eta, \beta, \lambda_0) \), with \(\lambda_0 \) modeled nonparametrically. Since \(\gamma_0 \) is unknown, let \(\tilde{\nu} = (\tilde{\eta}, \tilde{\beta}, \tilde{\lambda}_0) \) denote their estimator which is given in the appendix, and is obtained upon replacing \(\gamma_0 \) with an estimator \(\tilde{\gamma} \) conveniently obtained by maximizing the partial log-likelihood \(\Pi_n \log f_L (L; \gamma) \). Finally, we may define \(\tilde{S}_{T|A,L} (t|a,l) \) as

\[
\tilde{S}_{T|A,L} (t|a,l) = \tilde{r} (t, a, l) \times \tilde{S}_{T_a} (t) = r (t, a, l; \tilde{\eta}, \tilde{\gamma}) \times S_{T_a} (t; \tilde{\beta}, \tilde{\lambda}_0)
\]

Because, as we have assumed throughout, \(L \) is likely high-dimensional with both discrete and continuous components; it may be difficult, if not impossible, to correctly specify a correct working model \(F_L (l; \gamma) \). Hence, to further be robust to model mis-specification, we propose to instead use the empirical estimator \(\tilde{F}_L (l) = \Pi_n I (L \leq l) \) so that for a fixed value of \(\eta \), \(\exp \{ \overline{m} (t, a; \eta) \} \) is now estimated by

\[
\int \exp \{ m(a,l;\eta) \} d\tilde{F}_L (l) = \Pi_n \exp \{ m(a,L;\eta) \}
\]

which is actually more convenient because it obviates the need for numerical integration with respect to a continuous \(L \).

2.2 Sensitivity analysis for unmeasured confounding

In this section, we develop a semiparametric sensitivity analysis technique to assess the extent to which a violation of (3) might alter inferences about \(\beta_0 \). Let

\[
\pi (t, a, l) = \lambda_{T_a|A,L} (t|A = a, L = l) - \lambda_{T_a|A,L} (t|A = 1 - a, L = l)
\]

then

\[
T_a \uparrow A|L = l
\]

i.e. a violation of the no unmeasured confounding assumption, generally implies that \(\pi (t, a, l) \neq 0 \) for some \((t,a,l) \). Suppose that larger values of \(T \) are beneficial for health, then if \(\pi (t, 1, l) < 0 \) but \(\pi (t, 0, l) > 0 \) for all \(t \), then on average, individuals with \{\(A = 0, L = l \)\} have a higher hazard function for each of the potential outcomes \{\(T_1, T_0 \)\} than individuals with \{\(A = 1, L = l \)\}; i.e. healthier individuals are more likely to receive the treatment. On the other hand, if \(\pi (t, 0, l) < 0 \)
Lemma 1: Let
\[
\delta(t, a, l) = \delta(t, a, l, f_{A\mid L})
\]
\[
= f_{A\mid L}(A = a\mid L = l) + \{1 - f_{A\mid L}(A = a\mid L = l)\} \exp \left\{ - \int_0^t \tau(u, a, l) \, du \right\}
\]
and
\[
\dot{\delta}(t, a, l) = \frac{\partial \log \delta(u, a, l)}{\partial u} \bigg|_{u=t}
\]

Under the consistency assumption
\[
S_{T_{a\mid L}}(t \mid L) = S_{T\mid A=a,L}(t \mid A = a, L) \times \delta(t, a, l)
\]

Furthermore,
\[
\lambda_{T_{a\mid L}}(t \mid L = l) = \lambda_{T\mid A,L}(t \mid A = a, L = l) - \dot{\delta}(t, a, l)
\]

Lemma 1 implies that \(S_{T_{a}}(t)\) equals:
\[
\mathbb{E} \left(S_{T\mid A=a,L}(t \mid A = a, L) \times \delta(t, a, L) \right)
\]

(8)

Below, we use this result to obtain a consistent estimator of \(\beta_0\). A sensitivity analysis is then obtained by repeating this process and by reporting inferences for each choice of \(\tau(\cdot, \cdot, \cdot)\) in a set of user-specified functions \(\Gamma = \{\tau_\alpha(\cdot, \cdot, \cdot) : \alpha\}\) indexed by a finite dimensional parameter \(\alpha\) with \(\tau_0(\cdot, \cdot, \cdot) \in \Gamma\) corresponding to the no unmeasured confounding assumption, i.e. \(\tau_0(\cdot, \cdot, \cdot) \equiv 0\). Throughout, the working model for \(f_{A\mid L}\) is assumed to be correct. Thus, to implement the sensitivity analysis technique, we develop a semiparametric estimator of \(\beta_0\) in the model \(\mathcal{M}_{1,\alpha}\) that assumes the Cox marginal structural model holds, the model for \(f_{A\mid L}\) is correctly specified, and the selection bias function is known, that is \(\tau(\cdot, \cdot, \cdot) = \tau_{\alpha}(\cdot, \cdot, \cdot)\) for \(\alpha^*\) fixed.

For inference, we propose the following modified estimator of \(\beta_0\), which carefully incorporates the selection bias function:
\[
\hat{\beta}_{aug}^{(\alpha^*)} = \frac{\hat{\beta}_{aug}^{(\tilde{g}, \alpha^*)}}{\frac{1}{f_{A\mid L}(A \mid L)} \left(\frac{1}{I(A=1)} \left\{ \frac{dN^{*}(t) - \delta_{\alpha^*}(t,0,L)D^{*}(t)dt}{f_{A\mid L}(A \mid L)} \right\} + \frac{1}{I(A=0)} \left\{ \frac{dN^{*}(t) - \delta_{\alpha^*}(t,1,L)D^{*}(t)dt}{f_{A\mid L}(A \mid L)} \right\} \right) \delta_{\alpha^*}(t,1,L) \left\{ g(1,t) - \frac{\partial \tilde{g}(1,t;\alpha^*)}{\partial(1;\alpha^*)} \right\} g(1,t)}{-f_{A\mid L}(A \mid L) \left(\frac{1}{I(A=0)} \left\{ \frac{dN^{*}(t) - \delta_{\alpha^*}(t,0,L)D^{*}(t)dt}{f_{A\mid L}(A \mid L)} \right\} + \frac{1}{I(A=0)} \left\{ \frac{dN^{*}(t) - \delta_{\alpha^*}(t,1,L)D^{*}(t)dt}{f_{A\mid L}(A \mid L)} \right\} \delta_{\alpha^*}(t,0,L) \left\{ g(0,t) - \frac{\partial \tilde{g}(0,t;\alpha^*)}{\partial(0;\alpha^*)} \right\} g(0,t) \right)}
\]
and

\[\tilde{\beta}_{j,dr} (t; \tilde{g}, \alpha^*) = \mathbb{P}_n \left(\tilde{g}(A, t)^j \hat{f}_{A|L}(A|L)^{-1} \left[Y(t) - \hat{S}_{T|A,L} (t|A, L) \hat{S}_C(t) \right] \delta_{\alpha^*} (t, A, L) \right) + \mathbb{P}_n \left\{ \hat{S}_C(t) \sum_{a=0}^1 \hat{S}_{T|A,L} (t|A = a, L) \delta_{\alpha^*} (t, a, L) \tilde{g}(a,t)^j \right\} \]

Theorem 2: Suppose that model \(M_{1,\alpha^*} \) holds, then under the consistency and positivity assumptions, \(\beta_{aug} (\alpha^*) \) converges to \(\beta_0 \).

Thus, under model \(M_{1,\alpha^*} \) a sensitivity analysis entails reporting the set \(\{ \hat{\beta} (\alpha^*) : \alpha \} \) (and associated confidence intervals) which summarizes how sensitive inferences are to a deviation from the no unmeasured confounding assumption \(\alpha = 0 \).

It is helpful for practice, to briefly describe possible functional forms for the selection bias function \(\tau_\alpha (\cdot, \cdot, \cdot) \). In general, a single parameter model is attractive because it is most tractable, thus one may use one of the following:

\[
\begin{align*}
\tau_{\alpha,1} (t, a, l) &= \alpha (2a - 1) \\
\tau_{\alpha,2} (t, a, l) &= \alpha a \\
\tau_{\alpha,3} (t, a, l) &= \alpha t (2a - 1) \\
\tau_{\alpha,4} (t, a, l) &= \alpha t a \\
\tau_{\alpha,5} (t, a, l) &= \alpha (2a - 1) t l_1 \\
\tau_{\alpha,6} (t, e, m, x) &= \alpha a t l_1
\end{align*}
\]

where \(L_1 \) is a component of \(L \); and for each of the above functional forms, the scalar parameter \(\alpha \) encodes the magnitude and direction of unmeasured confounding for the mediator.

The functions \(\tau_{\alpha,1} \) and \(\tau_{\alpha,2} \) assume the selection bias is time invariant, whereas \(\tau_{\alpha,3}, \tau_{\alpha,4}, \tau_{\alpha,5} \) and \(\tau_{\alpha,6} \) model interactions with time and possibly a covariate \(L_1 \), thus allowing for heterogeneity in the selection bias function over time. Since the functional form of \(\tau_\alpha \) is not identified from the observed data, we generally recommend reporting results for a variety of functional forms.

References

APPENDIX

PROOF OF THEOREM 1: Let \(\{f_{A|L}, S_{T|A,L}^*\} \) denote the probability limit of \(\{\hat{f}_{A|L}, \hat{S}_{T|A,L}\} \).

First, suppose that \(\hat{f}_{A|L} \) is consistent, then \(\hat{\xi}^{ph}_{j,dr} (t; \hat{g}) \) converges to

\[
\mathbb{E} \left\{ g(A, t)^{j} f_{A|L} (A|L)^{-1} \left\{ Y(t) - S_{T|A,L}^* (t|A, L) S_C(t) \right\} \right. \\
+ \left. \mathbb{E} \left\{ S_C(t) \sum_{a=0}^{1} S_{T|A,L}^* (t|A = a, L) g(a, t)^{j} \right\} \right. \\
= \mathbb{E} \left\{ g(A, t)^{j} f_{A|L} (A|L)^{-1} Y(t) \right\} \\
= \mathbb{E} \left\{ S_C(t) \sum_{a=0}^{1} S_{T|A,L} (t|A = a, L) g(a, t)^{j} \right\}
\]

Similarly, if \(\hat{S}_{A|L} \) is consistent, then \(\hat{\xi}^{ph}_{j,dr} (t; \hat{g}) \) converges to

\[
\mathbb{E} \left\{ g(A, t)^{j} f_{A|L}^* (A|L)^{-1} \left\{ Y(t) - S_{T|A,L} (t|A, L) S_C(t) \right\} \right. \\
+ \left. \mathbb{E} \left\{ S_C(t) \sum_{a=0}^{1} S_{T|A,L} (t|A = a, L) g(a, t)^{j} \right\} \right. \\
= \mathbb{E} \left\{ g(A, t)^{j} f_{A|L}^* (A|L)^{-1} \left\{ \mathbb{E} \{ Y(t)|A, L \} - S_{T|A,L} (t|A, L) S_C(t) \right\} \right\} \\
+ \left. \mathbb{E} \left\{ S_C(t) \sum_{a=0}^{1} S_{T|A,L} (t|A = a, L) g(a, t)^{j} \right\} \right. \\
= \mathbb{E} \left\{ S_C(t) \sum_{a=0}^{1} S_{T|A,L} (t|A = a, L) g(a, t)^{j} \right\}
\]

Therefore in the union model \(\exp(\hat{\beta}_{aug}) = - \exp \left\{ \hat{\beta}_{aug} (\hat{g}) \right\} \) converges to

\[
\mathbb{E} \left\{ \int \frac{f_{A|L} (1, t)}{f_{A|L}^* (A|L)} + dS_{T|A,L}^* (t|1, L) \left\{ \frac{f_{A|L} (1, t)}{f_{A|L}^* (A|L)} \right\} - 1 \right\} \left\{ S_C(t) \left\{ g(1,t) - \frac{\phi^{ph}_{t}(t_0)}{\phi^{ph}_{t}(t_0)} \right\} \right\} \\
= \mathbb{E} \left\{ \int \frac{f_{A|L} (0, t)}{f_{A|L}^* (A|L)} + dS_{T|A,L}^* (t|0, L) \left\{ \frac{f_{A|L} (0, t)}{f_{A|L}^* (A|L)} \right\} - 1 \right\} \left\{ S_C(t) \left\{ g(0,t) - \frac{\phi^{ph}_{t}(t_0)}{\phi^{ph}_{t}(t_0)} \right\} \right\} \\
= \mathbb{E} \left\{ \int \left\{ S_{T|A,L} (t|1, L) \right\} \left\{ g(1,t) - \frac{\phi^{ph}_{t}(t_0)}{\phi^{ph}_{t}(t_0)} \right\} \right\} \\
= \mathbb{E} \left\{ \int \left\{ S_{T|A,L} (t|0, L) \right\} \left\{ g(0,t) - \frac{\phi^{ph}_{t}(t_0)}{\phi^{ph}_{t}(t_0)} \right\} \right\} \\
= \exp(\beta) \frac{\mathbb{E} \left\{ \int \left\{ S_{T|A,L} (t|1, L) \right\} \left\{ g(1,t) - \frac{\phi^{ph}_{t}(t_0)}{\phi^{ph}_{t}(t_0)} \right\} \right\} dt}{\mathbb{E} \left\{ \int \left\{ S_{T|A,L} (t|0, L) \right\} \left\{ g(0,t) - \frac{\phi^{ph}_{t}(t_0)}{\phi^{ph}_{t}(t_0)} \right\} \right\} dt}
\]

which proves the result because
\[
\int \mathbb{E}\left\{ S_{T|A,L}(t|1,L) \right\} S_C(t) \left(g(1,t) - \frac{\text{exp}(t^2)}{2} \right) dt
\]

\[
\int \mathbb{E}\left\{ S_{T|A,L}(t|0,L) \right\} S_C(t) \left(g(0,t) - \frac{\text{exp}(t^2)}{2} \right) dt
\]

\[
= \int \mathbb{E}\left\{ S_{T|A,L}(t|1,L) \right\} S_C(t) \left(g(1,t) - \frac{\mathbb{E}\{S_C(t)\} \sum_{a=0}^{1} S_{T|A,L}(t|A=a,L) g(a,t)}{\mathbb{E}\{S_C(t)\} \sum_{a=0}^{1} S_{T|A,L}(t|A=a,L) g(a,t)} \right) dt
\]

\[
= \int \mathbb{E}\left\{ S_{T|A,L}(t|0,L) \right\} S_C(t) \left(g(0,t) - \frac{\mathbb{E}\{S_C(t)\} \sum_{a=0}^{1} S_{T|A,L}(t|A=a,L) g(a,t)}{\mathbb{E}\{S_C(t)\} \sum_{a=0}^{1} S_{T|A,L}(t|A=a,L) g(a,t)} \right) dt
\]

\[
= \int \left\{ g(1,t) \mathbb{E}\left\{ \sum_{a=0}^{1} S_{T|A,L}(t|A=a,L) g(a,t) \right\} \mathbb{E}\left\{ S_{T|A,L}(t|1,L) \right\} \right\} dt
\]

\[
= \int \left\{ g(0,t) \mathbb{E}\left\{ \sum_{a=0}^{1} S_{T|A,L}(t|A=a,L) g(a,t) \right\} \mathbb{E}\left\{ S_{T|A,L}(t|0,L) \right\} \right\} dt
\]

\[
= \left\{ \mathbb{E}\left\{ S_{T|A,L}(t|A=1,L) \right\} \mathbb{E}\left\{ S_{T|A,L}(t|0,L) \right\} + \mathbb{E}\left\{ S_{T|A,L}(t|A=0,L) \right\} \mathbb{E}\left\{ S_{T|A,L}(t|1,L) \right\} \right\} dt
\]

\[
= \left\{ \mathbb{E}\left\{ S_{T|A,L}(t|A=1,L) \right\} \mathbb{E}\left\{ S_{T|A,L}(t|0,L) \right\} - \mathbb{E}\left\{ S_{T|A,L}(t|A=1,L) \right\} \mathbb{E}\left\{ S_{T|A,L}(t|1,L) \right\} \right\} dt
\]

\[
= -1
\]

\[
\square
\]

PROOF OF LEMMA 1: First note that

\[
S_{T|A,L}(t|A=A, L) = f_{A|L}(A=A|L=L) S_{T|A=A,L}(t|A=A, L)
\]

\[+ \left\{ 1 - f_{A|L}(A=A|L=L) \right\} S_{T|A=A,L}(t|A=1-A, L)\]

\[
= \left[1 - f_{A|L}(A=A|L=L) \right] S_{T|A=A,L}(t|A=1-A, L) + f_{A|L}(A=A|L=L) S_{T|A=A,L}(t|A=A, L)
\]

\[= S_{T|A=A,L}(t|A=A, L) \left[f_{A|L}(A=A|L=L) + \left\{ 1 - f_{A|L}(A=A|L=L) \right\} \exp \left\{ - \int_0^t \gamma(u, a, L) du \right\} \right]
\]

Differentiating wrt \(t \) yields:

\[-\lambda_{T|A,L}(t|L) S_{T|A,L}(t|L)\]

\[= -S_{T|A=A,L}(t|A=A, L) \lambda_{T|A=A,L}(t|A=A, L) \delta(t, a, l)\]

\[+ S_{T|A=A,L}(t|A=A, L) \partial \delta(t, a, l) / \partial t\]

which is equivalent to

\[
\lambda_{T|A,L}(t|L) = \frac{S_{T|A=A,L}(t|A=A, L)}{S_{T|A=L}(t|L)} \lambda_{T|A=A,L}(t|A=A, L) \delta(t, a, l)
\]

\[
= \lambda_{T|A=A,L}(t|A=A, L) \delta(t, a, l)
\]

\[
\square
\]

PROOF OF THEOREM 2: We begin by observing that by Lemma 1

\[
\mathbb{E}\left\{ dN^*_t(t|A=a, L) Y(t) dt | A = a, L \right\}
\]

\[= \left\{ \lambda_{T|A=A,L}(t|A=A, L) - \delta_{a^*}(t, 1, L) \right\} S_C(t) S_{T|A=A,L}(t|A=A, L) \times \delta(t, a, L) dt
\]

11
\[= \lambda_{T|A,L}(t|L)S_{T|A,L}(t|L)S_C(t)dt \]
and
\[\mathbb{E}\left[g(A,t)j\int f_{AL}(A|L)^{-1}\{Y(t) - S_{T|A,L}(t|A,L)S_C(t)\} \delta_{\alpha^*}(t, A, L)\right] \]
\[+ \mathbb{E}\left[S_C(t)\sum_{a=0}^{1}S_{T|A,L}^*(t|A = a, L) \delta_{\alpha^*}(t, a, L)g(a, t)^j\right] \]
\[= \mathbb{E}\left[g(A,t)j\int f_{AL}(A|L)^{-1}S_{T|A,L}(t|A,L)S_C(t)\delta_{\alpha^*}(t, A, L)\right] \]
\[= \mathbb{E}\left[g(A,t)j\int f_{AL}(A|L)^{-1}S_{Tn|L}(t|L)S_C(t)\right] \]

The result then holds by Theorem 1.

ESTIMATION APPROACH OF LIN AND YING (2005) OF AN ADDITIVE-MULTIPlicative HAZARDS MODEL

Given an estimator \(\hat{\pi} \) of \(\pi_0 \), we wish to estimate \(\nu = (\eta_0, \beta_0, \lambda_0) \) under the additive-multiplicative hazards model \(\lambda_{T|A,L}(t|a, l; \eta, \gamma, \beta, \lambda) \) given by equation (7). The estimator proposed by Lin and Ying (2005) is given by \(\hat{\nu} = (\hat{\eta}, \hat{\beta}, \hat{\lambda}) \) where \((\hat{\eta}, \hat{\beta}) \) solves the equation

\[P_n \left[\int \{dN^*(t) - j(t, a, l; \hat{\eta}, \hat{\gamma}) Y(t)\} \left\{h(A, L, t) - P_n \left\{h(A, L, t)Y(t) \exp(\beta A)\right\}\right]\right] = 0 \]

and

\[\hat{\lambda}_0(t) = \frac{\int_0^t P_n \left\{dN^*(u) - j(u, a, l; \hat{\eta}, \hat{\gamma}) Y(u)\right\}}{\int_0^t P_n \left\{Y(u)\right\}} \]

ESTIMATION UNDER THE ASSUMPTION C \(T|A,L \)

Under this assumption, let \(\hat{S}_{C|A,L} \) denote a estimate of \(S_{C|A,L} \) the survival curve of censoring under a parametric or semiparametric model. To model \(S_{C|A,L} \), one may proceed as in Robins and Rotnizky (1992) who use a Cox Proportional hazards model, or alternatively, one may adapt the additive hazards model of Satten et al (2001). Then, redefine

\[\hat{\beta}_{aug} = \hat{\beta}_{aug} (\hat{g}) = \frac{P_n \left\{\int \left\{(I(A=1)dN^*(t)) \hat{f}_{AL}(A|L)\hat{S}_{C|A,L}(t|A,L)\right\}^{-1}\{Y(t) - \hat{S}_{T|A,L}(t|A,L)\} \right\}}{P_n \left\{\int \left\{(I(A=0)dN^*(t)) \hat{f}_{AL}(A|L)\hat{S}_{C|A,L}(t|A,L)\right\}^{-1}\{Y(t) - \hat{S}_{T|A,L}(t|A,L)\} \right\}} \]

Then, Theorem 1 continues to hold upon redefining \(\mathcal{M}_1 \) to be the submodel in which models for both \(f_{AL} \) and \(S_{C|A,L} \) are correctly specified. Similarly, to Theorem 2 continues to hold upon redefining \(\hat{\beta}_{aug} (\alpha^*) = \hat{\beta}_{aug} (\hat{g}, \alpha^*) \)

\[= \frac{P_n \left\{\int \left\{(I(A=1)dN^*(t)) - \delta_{\alpha^*}(t,1,L)Y(t)\right\} \hat{f}_{AL}(A|L)\hat{S}_{C|A,L}(t|A,L)\right\}^{-1}\{Y(t) - \hat{S}_{T|A,L}(t|A,L)\} \right\}}{P_n \left\{\int \left\{(I(A=0)dN^*(t)) - \delta_{\alpha^*}(t,0,L)Y(t)\right\} \hat{f}_{AL}(A|L)\hat{S}_{C|A,L}(t|A,L)\right\}^{-1}\{Y(t) - \hat{S}_{T|A,L}(t|A,L)\} \right\}} \]

http://biostats.bepress.com/harvardbiostat/paper141
and
\[
\tilde{\xi}^{\text{ph}}_{j,dr}(t; \tilde{g}, \alpha^*) = \mathbb{P}_n \left(\tilde{g}(A, t)^j \left\{ \tilde{S}_{C|A,L}(t|A,L) \tilde{f}_{A|L}(A|L) \right\}^{-1} [Y(t) - \tilde{S}_{T|A,L}(t|A,L) \delta_\alpha^*(t, A, L)] \right) \\
+ \mathbb{P}_n \left\{ \sum_{a=0}^{1} \tilde{S}_{T|A,L}(t|A = a, L) \delta_\alpha^*(t, a, L) \tilde{g}(a, t)^j \right\}
\]