
University of California, Berkeley
U.C. Berkeley Division of Biostatistics Working Paper Series

Year  Paper 

Survival Point Estimate Prediction in Matched
and Non-Matched Case-Control Subsample

Designed Studies

Annette M. Molinaro∗ Mark J. van der Laan†

Dan H. Moore‡ Karla Kerlikowske∗∗

∗Division of Biostatistics, Epidemiology and Public Health, Yale University , an-
nette.molinaro@yale.edu
†Division of Biostatistics, School of Public Health, University of California, Berkeley,

laan@berkeley.edu
‡Dept. of Epidemiology & Biostatistics, University of California, San Francisco,

dmoore@cc.ucsf.edu
∗∗Dept. of Medicine & Dept. of Epidemiology and Biostatistics, University of California, San

Francisco, kerliko@itsa.ucsf.edu
This working paper is hosted by The Berkeley Electronic Press (bepress) and may not be commer-
cially reproduced without the permission of the copyright holder.

http://biostats.bepress.com/ucbbiostat/paper149

Copyright c©2005 by the authors.



Survival Point Estimate Prediction in Matched
and Non-Matched Case-Control Subsample

Designed Studies

Annette M. Molinaro, Mark J. van der Laan, Dan H. Moore, and Karla
Kerlikowske

Abstract

Providing information about the risk of disease and clinical factors that may in-
crease or decrease a patient’s risk of disease is standard medical practice. Al-
though case-control studies can provide evidence of strong associations between
diseases and risk factors, clinicians need to be able to communicate to patients the
age-specific risks of disease over a defined time interval for a set of risk factors.

An estimate of absolute risk cannot be determined from case-control studies be-
cause cases are generally chosen from a population whose size is not known (nec-
essary for calculation of absolute risk) and where duration of follow-up is not
known (necessary for calculation of incidence). This problem can sometimes be
overcome by using a nested case-control design.

We have collected data on a National Cancer Institute funded population-based
cohort study. This study contains a matched set of cases and controls within the
cohort. This design is more cost-efficient than a full cohort study since expen-
sive predictor variables (genomic measures, sex hormone levels, mammographic
breast density) are measured on all of the cases, but on only a sample of the co-
hort who did not develop the outcome of interest (the controls). In addition, this
design avoids the potential biases of conventional case-control studies that draw
cases and controls from different populations. Importantly, the presence or ab-
sence of the outcome of interest has been established for the entire cohort within
the same time period.



The specifics of the sampling in our study do not adhere to the assumptions for
absolute risk estimation methods previously developed in the literature. Here we
introduce a novel method which provides locally efficient estimators to predict
the absolute risk of a cohort from measures only taken on the matched case-
control participants. The proposed method is evaluated using simulation stud-
ies and survival data from women with ductal carcinoma in situ, a non-invasive
form of breast cancer. A generalization of the proposed method is related to other
similar sampling designs such as nested case-control, case-cohort, and two-stage
case-control.
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1 Introduction

Providing information about the risk of disease and clinical factors that may
increase or decrease a patient’s risk of disease is standard medical practice.
For example, a clinician may inform a 50-year-old woman that her lifetime
risk of breast cancer is 1 in 8, but that her risk of breast cancer in the next ten
years is 2.5%. If the same 50-year-old woman has mammographically dense
breasts, case-control studies suggest she has a relative increase in the risk of
breast cancer of 3-fold compared to a 50-year old who does not have dense
breasts. Although case-control studies provide evidence of strong associations
between diseases and risk factors in the form of relative risks or of odds ratios,
clinicians need to assess and express to patients the age-specific absolute risk
of disease for a given time period and set of risk factors. Thus, for the 50-
year-old woman with mammographically dense breasts, her clinician needs
to be able to communicate the absolute risk of breast cancer in the next ten
years given her present age and mammographically dense breasts.

Absolute risk is defined as the observed or calculated probability of an
event (e.g., occurrence of breast cancer) in the population under study. It
can be expressed as a simple probability in a cross-sectional study, or as a
hazard or survival function in a longitudinal study. In clinical longitudinal
studies, the most frequent events or outcomes of interest are times to initial
occurrence of disease, recurrence of disease, and death from disease. In either
a cross-sectional or a longitudinal study, if researchers were able to measure
all risk factors and observe all patients until the outcome of interest, e.g.,
recurrence of breast cancer, the absolute risk would be trivial to calculate.
However, this is rarely the case. Instead, researchers are faced with two
problems. First, at the end of a study, some patients may have dropped out,
been lost to follow-up, or not had the particular event of interest. In this
situation, the last date of follow-up or date at end of study is recorded and
referred to as the censored time to event.

A second problem is that interesting biologic and epidemiologic mark-
ers can be time consuming and expensive to collect, store, assess, and an-
alyze. To address this problem different sampling approaches have been
implemented. In the nested case-control study design an eligible cohort has
been recruited, and subsequently the participants with the event of interest,
e.g., recurrence of breast cancer, are identified and labeled as cases (Mantel,
1973; Lidel et al., 1977; Breslow, 1996). At the time of each individual case’s
event of interest a sample of those without current or previous events are
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selected and labeled as controls. This allows controls to be selected for more
than one case and cases still at risk to serve as controls for those cases who
have had preceding failures. A second sampling scheme is the case-cohort
design (Prentice, 1986). In this design a subcohort is randomly selected from
the entire cohort in addition to all cases occurring outside the subcohort al-
lowing a comparison group for all failure times. The third sampling is a more
general setting for the nested case-control: the two-stage case-control design.
The first stage is the recruitment and collection of data including the out-
come of a cohort; the second stage entails selecting subsamples of the cases
and controls from the first stage to assess the additional desired covariates
(Breslow and Cain, 1988). All three designs allow researchers the advan-
tage of only collecting the interesting biologic and epidemiologic markers on
those participants in the cohort assigned to the subsample (i.e., the nested,
subcohort, or stage two group) (Ernster, 1994; Wacholder, 1991). Once the
markers, or risk factors, are determined in the subsample, measures such as
the relative risk (RR) and odds ratio (OR) can be evaluated and extrapolated
to the entire cohort. Methods for estimating the RR and OR have been thor-
oughly explored for each of the three sampling designs (Goldstein et al., 1992;
Wacholder and Weinberg, 1994; Self and Prentice, 1988; Breslow and Zhao,
1988; Flanders and Greenland, 1991; Zhao and Lipsitz, 1992).

Other measures, such as the absolute risk of recurrence, are not as easy to
extrapolate to the entire cohort. Naive estimates of the absolute risk can be
skewed because the proportion with disease (i.e., cases) is higher in the sub-
sample than in the cohort. In nested case-control sampling designs, numerous
advances have been made in the last decade based on the known sampling
probabilities from the cohort (Goldstein et al., 1992; Benichou and Gail, 1990,
1995; Langholz and Goldstein, 1996; Borgan et al., 1995; Borgan and Langholz,
1993; Lanholz and Borgan, 1997). These methods use relative risk estimates
from the nested case-control study as well as assume a semi-parametric
model, i.e., the Cox Proportional Hazards model, to assess the risk for
the cohort. The same model assumption is made when assessing the ab-
solute risk in case-cohort studies (Self and Prentice, 1988). In two-stage
case-control studies incidence estimation has been explored with a Poisson
pseudo-likelihood approach (Benichou et al., 1997). The suggested absolute
risk procedure for the two-stage design assumes the same Cox Proportional
Hazards model and risk set sampling as in the nested case-control design
(Langholz and Goldstein, 1996).

We have collected data on a National Cancer Institute funded population-
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based cohort study. In this study, data were collected on 1036 women aged
40 and older diagnosed with ductal carcinoma in situ (DCIS) from 1983−94
treated by lumpectomy alone. The event of interest is disease recurrence,
defined as DCIS or invasive breast cancer diagnosed in the ipsilateral breast
of the initial DCIS lesion or at a distant site more than 6 months following
initial diagnosis and treatment of DCIS. The purpose of this study was to
identify epidemiological and histological variables associated with recurrence.
A detailed description can be found in Kerlikowske et al. (Kerlikowske et al.,
2003).

Epidemiological variables were collected on all participants in the cohort.
However, due to constraints on tissue collection and the cost of certain bio-
logical markers, the histological variables were collected only in the matched
case-control study (Figure 1). The matching variable, year of diagnosis, was
chosen with the intent of insuring an equivalent time for cases and controls
to recur. Due to this matching, the assumption that only at a case’s failure
time are the controls chosen is not valid. Thus, these data deviate from the
assumptions made in the three sampling designs and corresponding absolute
risk estimation methods. The goal of this paper is to explore a new method
which addresses the aforementioned question of estimating the absolute risk
as a missing data problem. The proposed approach is substantially different
from assuming a parametric or semi-parametric model, inheriting the esti-
mated relative risk, and/or making the previously mentioned assumptions on
the risk set. Additional interests in a new method are: to account for infor-
mative censoring, which has previously not been addressed in this setting; to
develop locally efficient point estimators of the survival distributions; and,
to construct an estimator which accommodates partial data (e.g., censored
time to event and missing measurements on variables only collected in the
subsample) that reduces to the proper estimator when all data are available.

2 General Methodology

Case-cohort, nested case-control, and two-stage case-control studies are set
up to capture extensive information provided by all (or most) of the subjects
with events in a cohort, subsequently labeled as cases, as well as a sample
of the subjects with non-events, subsequently labeled as controls. In a gen-
eralization of these study designs, there are two types of missingness: the
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Figure 1: Depiction of the NCI Cohort with Case-Control Subsample Study
Design. Once disease status is ascertained on eligible patients assignment
into the case-control study is made and valuable markers are assessed.

censored observations (i.e., the non-event’s follow-up time) and the missing
measurements for the variables collected only within the subsample and not
on the entire cohort. We refer to the entire cohort with all information
collected as the full data world (Section 2.1) and that which has the afore-
mentioned two levels of missingness as the observed data world (Section 2.2).
A question of interest in this setting is how to estimate absolute risk of the
cohort based on those variables measured only within the subsample.

It is the purpose of this manuscript to derive estimators of the cohort’s
absolute risk that link the full and observed data worlds with the following
two requirements. First, when applied to complete data, the observed data
methodology should reduce to the full data methodology. Second, we wish
to incorporate external (to the estimator) covariate processes to allow for
informative censoring and a gain in efficiency. In Section 2.3, we propose to
use the general estimating function methodology of van der Laan and Robins
(2002) to map the full data estimating function into an observed data esti-
mating function having the same expected value and leading to an efficient
estimator.

5
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2.1 Full data structure

In the full data world, suppose one observes n independent and identically
distributed (i.i.d) observations, X1, . . . , Xn, of a full data structure X =
(T, E,E∗). Let T denote the event time. This event could be initial occur-
rence of a disease, recurrence of a disease, or death from disease. E and E∗

denote baseline covariates. These two types of baseline covariates designate
those measured when a patient enters the study, E, and those measured upon
assignment to the subsample, E∗. Although E∗ are collected subsequent to
E they are measurements on materials collected at baseline, e.g., histopatho-
logic evaluation of nuclear grade for the initial tumor. In the DCIS study all
E∗ are discrete, e.g., nuclear grade of high, medium, or low. As such, for the
purposes of this discussion E∗ is discrete. Denote the distribution of the full
data structure X by FX . Our parameter of interest, ϑ(t, δ), is the probability
of no event up to time t given that the covariate of interest E∗ is equal to a
specific value δ, i.e.,

ϑ(t, δ) = Pr(T > t | E∗ = δ) =
E(I(T > t, E∗ = δ))

E(I(E∗ = δ))
=

µ(t, δ)

µ(δ)
, (1)

where δ ∈ {0, 1, · · ·}, and we can estimate µ(t, δ) and µ(δ) with the full data
estimating functions I(T > t, E∗ = δ) and I(E∗ = δ), respectively. The
absolute risk for time t and E∗ = δ is equal to 1− ϑ(t, δ).

2.2 Observed data structure

In the observed data world, we rarely have measurements for all of the relevant
variables (e.g., E∗, T ) in the full data structure. Here we are confronted
with both missing covariate values for E∗ and missing event times. For the
former, E∗ is measured on the subsample participants, whereas for the cohort
members excluded from the subsample no E∗ is available. For the latter, we
observe, T̃ , the minimum of the event time T and a univariate censoring
variable C, i.e., T̃ = min(T, C). This missing, or censored, event data can
be due to drop out, CF , or the end of follow-up in a study, C∗. Here, we let
C denote the minimum of the two, i.e., C = min(CF , C∗). By convention, if
T occurs prior to C, we set C = ∞; thus, C is always observed.

In the observed data world, suppose one observes n i.i.d. observations,
O1, . . . , On, of the observed data structure,

O = (C, T̃ , ∆, E, ΦE∗, Φ),
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where Φ = I(E∗ is measured) and ∆ = I(C > T ). The random variable O
has a distribution indexed by the full data distribution, FX , and the con-
ditional bivariate distribution, G(· | X), of the censoring variable C and
missingness variable Φ given X, i.e., Oi ∼ P = PFX ,G. Let the empirical
distribution of O1, . . . , On be denoted by Pn. G(· | X) is referred to as the
censoring or coarsening mechanism. The survivor function for the censoring
mechanism is denoted by Ḡ(c | X) = Pr(C ≥ c | X).

An assumption we will make on the censoring mechanism is coarsening
at random (CAR). Detailed descriptions of CAR can be found in Gill et al.
(1997), van der Laan and Robins (2002) (Section 1.2.3, in particular), and
Robins and Rotnitzky (1992). For this particular observed data structure
and definition of full data structure, CAR is equivalent to:

g(c, φ | X) = Pr(C = c, Φ = φ | T,E, E∗) = m(c, φ, I(c > T ), E, φE∗)

for some measurable function m. We have the following factorization for
g(c, φ | X):

Pr(C = c, Φ = φ | T, E, E∗) = Pr(Φ = φ | C = c, T,E, E∗)× Pr(C = c | T, E, E∗). (2)

Thus CAR holds if the censoring density g(c, φ | X) is only a function
of the observed data O. We shall assume that the Lebesgue hazard λC(t |
T, E,E∗) corresponding to the censoring mechanism given the full data is
only a function of E, i.e., λC(t | T, E, E∗) = λC(t | E) for t < T .

Additionally, we shall assume that Pr(Φ = φ | C = c, T = t, E,E∗) =
m(I(c > t), E) and, thus, the missingness of E∗ is solely a function of the
always observed censoring time (as noted above if C > T then C = ∞) and
the baseline covariates E collected on all members of the cohort. There are
two scenarios which pertain to this assumption: when all recurrences are
included as cases and when only a random sample of the recurrences are
counted as cases. In the following, we provide examples and explanations of
both scenarios.

Scenario One: All recurrences are cases In this scenario, all partici-
pants in the cohort who have an event (e.g., recurrence of disease) have prob-
ability 1 of having E∗ measured. Those without an event, i.e., the censored
participants, have a probability of E∗ being measured equal to a function of
E. This can be written as:

Π(Φ = 1 | C = c, T, E, E∗) = I(c > T ) + I(c < T )× ρ2(E), (3)

7
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where ρ2(E) is a function of the always observed baseline covariates E.
Allotting a function of E allows us to include unmatched and matched

case-control study designs, varying levels of matching, e.g., one control to
one case or two controls to one case, and the case-cohort study design. For
example, in an unmatched one-to-one case-control study ρ2(E) might be a
constant, i.e., the probability of non-recurrences chosen for controls equals
the number of cases divided by the number of non-recurrences. In a case-
cohort study design, ρ2(E) might also be a constant defined by the desired
number in the subcohort divided by the number of non-recurrences in the
full cohort.

In a matched case-control study, patients are typically matched on a vari-
able with an effect for which the study designers wish to control. We denote
this variable as Ematch and note that it is an element of E. The matching can
be one case to one control (1 : 1), one case to two controls (1 : 2), one case
to three controls (1 : 3), etc. In 1 : j matching, a recurrence with Ematch = e
is matched to j non-recurrence(s) from the pool of all non-recurrences with
the value e for Ematch. Thus, the probability of a non-recurrence having E∗

measured (i.e., being chosen as a control) is a function of Ematch as well as
the number of recurrences with the same value, thus a function of Ematch.

Scenario Two: Random sample of recurrences are cases A second
scenario is when not all of the participants with events have E∗ measured.
For example, this may occur when the pathologist has not finished reading
all of the slides or when for purposes of cost-effectiveness not all recurrences
will be measured. In this situation the probability of E∗ being measured
given that the person had an event is not equal to 1. One way to write this
is:

Π(Φ = 1 | C = c, T, E, E∗) = I(c > T )× ρ1 + I(c < T )× ρ2(E), (4)

where ρ2(E) is a function of the always observed baseline covariates and ρ1 is
a constant, e.g., the proportion of recurrences with E∗ measured of the total
number of recurrences.

For either Scenario One or Two, we can define ρ2(E) = kP (∆=1|E)
P (∆=0|E),

where
k is the number of controls for every case, E represents the always observed
baseline covariates (Note: as above, any matching variable Ematch is in the
set E), and ∆ = 1 for cases and ∆ = 0 for controls.
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In the following section we outline how to map the full data world as
described in Section 2.1 into the observed data world as described in Section
2.2 for the purpose of estimating the parameter of interest, ϑ(t, δ).

2.3 Mapping the full data world to the observed data
world

Our stated goal is to find an estimator of the parameter of interest, ϑ(t, δ),
the probability of no event up to time t given that E∗ = δ. In the full data
world, where we have both T and E∗ on every participant in the cohort, we
can use full data estimating functions for this parameter. In the numerator
of Equation 1, we write µ(t, δ) as the expected value of a full data estimating
function, i.e., µ(t, δ) = EFX

[D(t,δ)(X)], where,

D(t,δ)(X) = I(T > t, E∗ = δ). (5)

Similarly, for the denominator of Equation 1, we write µ(δ) as the expected
value of a full data estimating function, i.e., µ(δ) = EFX

[Dδ(X)], where,

D(δ)(X) = I(E∗ = δ). (6)

However, in the observed data world, we are faced with censoring on the
event time and missingness on E∗, both affecting the numerator, µ(t, δ), and
denominator, µ(δ), of our parameter of interest. In order to address the
censoring and missingness we must replace the full data estimating functions
above with observed data estimating functions which have the same expected
value.

The general estimating function methodology of van der Laan and Robins
(2002) can be used expressly for this purpose. Specifically, the methodology
allows full data estimating functions, D(X), to be mapped into observed
data estimating functions, IC(O | Q,G, D) (Note: IC is an abbreviation
for influence curve as denoted in van der Laan and Robins (2002)), indexed
by nuisance parameter G and, possibly, Q = Q(FX). Furthermore, the ob-
served data estimating functions have the same expected value as the full
data estimating function, i.e.,

EP [IC(O | Q0, G0, D)] = EFX
[D(X)] if G0 = G or Q0 = Q(FX).

There are several candidates of the mapping D(X) → IC(O | Q,G, D); in
particular, we are interested in the inverse probability of censoring weighted

9
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and the doubly robust inverse probability of censoring weighted estimating
functions. In the following section we outline the first and refer the reader to
descriptions of the latter. For the interested reader thorough descriptions of
both can be found in van der Laan and Robins (van der Laan and Robins,
2002).

2.4 Inverse probability of censoring weighted estimat-
ing function.

The inverse probability of censoring weighted (IPCW) estimating function
was introduced by Robins and Rotnitzky (1992). Its name derives from the
fact that the full data estimating function D(X) is weighted by the inverse
of a censoring probability. The general IPCW estimating function is written
as:

D(X)
I(X is observed)

P (X is observed | X)
,

Thus, the IPCW estimating equation which accounts for censoring and the
missingness on E∗ for µ(t, δ) in Equation 1 is:

IC
µ(t,δ)
0 (O | G,D) = D(t,δ)(X)

I(∆ = 1, Φ = 1)

Pr(∆ = 1, Φ = 1 | X)
, (7)

where D(t,δ)(X) is defined in equation 5, Φ = I(E∗ is measured), and ∆ is
the event indicator, i.e., ∆ = I(C > T ).

Scenario One As described in Scenario One of Section 2.2, every partic-
ipant who has an event (subsequently defined as a case) also has E∗ mea-
sured Φ = 1. Thus, we can replace the denominator of Equation 7 with
Pr(∆ = 1 | X). Now given

E[∆Φ | X] = Pr(∆ = 1, Φ = 1 | X) = Ḡ(T | E) > 0, FX-a.e.,

the IPCW estimating function can be shown to have the same expected value
as the full data estimating function:

E

[
D(t,δ)(X)I(∆ = 1, Φ = 1)

Ḡ(T | E)

]
= E

[
E

[
D(t,δ)(X)I(∆ = 1, Φ = 1)

Ḡ(T | E)
| X

]]

= E

[
D(t,δ)(X)E[∆Φ | X]

Ḡ(T | E)

]

= E
[
D(t,δ)(X)

]
= µ(t, δ).
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Scenario Two In Scenario Two of Section 2.2, not every patient who has
an event has E∗ measured, instead there is a random sampling of subjects
with events that become cases. Given the example in Equation 4 for Pr(Φ =
φ | C = c, T, E, E∗), we can write:

Pr(Φ = 1, C ≥ T | T,E, E∗)

=
∫ ∞

c=T
Pr(Φ = 1, C = c | X)

=
∫ ∞

c=T
Pr(Φ = 1 | C = c,X)Pr(C = c | X)

=
∫ ∞

c=T
[I(T < c)ρ1 + I(T > c)ρ2(E, ∆)]Pr(C = c | X)

=
∫ ∞

c=T
I(T < c)ρ1Pr(C = c | X) + I(T > c)ρ2(E, ∆)Pr(C = c | X)

=
∫ ∞

c=T
ρ1 × Pr(C = c | X)

= ρ1 × Ḡ(T | E)

Thus, the denominator of Equation 7 can be replaced with ρ1 × Pr(∆ = 1 |
X), where ρ1 is a constant. In this scenario,

E[∆Φ | X] = Pr(∆ = 1, Φ = 1 | X) = ρ1 × Ḡ(T | E) > 0, FX-a.e.,

and thus we can show that

E

[
D(t,δ)(X)I(∆ = 1, Φ = 1)

ρ1 × Ḡ(· | E)

]
= E

[
D(t,δ)(X)

]
= µ(t, δ),

in the same fashion as in Scenario One.
The fundamental procedure as illustrated in Scenario One and Two sug-

gests the utility of the IPCW observed data estimating function, IC
µ(t,δ)
0 (O |

G,D(t,δ)(X) = I(T > t, E∗)), with nuisance parameter G. For Scenario One,
the corresponding numerator of the parameter of interest in Equation 1 is
the empirical mean:

µ̂(t, δ) =
1

n

n∑

i=1

I(Ti > t, E∗
i = δ)I(∆i = 1, Φi = 1)

Ḡn(T | Ei)
, (8)

where Ḡn is an estimator of the nuisance parameter Ḡ. One can estimate
the nuisance parameter Ḡ in the IPCW using any of the covariates in E in
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order to allow for informative censoring and a gain in efficiency. (Note: For
Scenario Two the denominator in Equation 8 is replaced by ρ1× Ḡn(T | E)).

Equation 8 is shown with a ’global’ indicator of event, i.e., ∆ = ∆global =
I(C > T ); however, one may be interested in a time specific indicator of
event, e.g., ∆t = I(C > t), where t is the time of interest. Then, in Equation
8, Ḡn(T | Ei) is replaced by Ḡn(t | Ei), and I(∆i = 1, Φi = 1) is replaced
by I(∆t

i = 1, Φi = 1). Unless otherwise indicated, ∆ refers to ∆global in this
manuscript.

If a Cox proportional hazards model is assumed for the censoring mech-
anism G, then

λC(t | E) = λ0(t) exp(βT E),

where E is the set of always observed baseline covariates. Standard software
can then be employed to obtain maximum (partial) likelihood estimators of
the baseline hazard function λ0 and the regression coefficients β (e.g., coxph
function in R). Importantly, the estimator Ḡn(T | X) and I(∆ = 1, Φ =
1) are functions of O = (C, ∆, E, ΦE∗, Φ) and thus the resulting estimator
µ̂(t, δ) depends only on the observed data structure, O1, . . . , On.

An IPCW estimating function which solely accounts for the missingness
on E∗ can be similarly built for the full data estimating function in Equa-
tion 6. This observed data estimating function which corresponds with the
denominator, µ(δ), in equation 1 is:

IC
µ(δ)
0 (O | G,D(δ)) = D(δ)(X)

I(Φ = 1)

Pr(Φ = 1 | X)
, (9)

where Φ = I(E∗ is measured). Thus, the estimator for the denominator of
the parameter of interest is the empirical mean:

µ̂(δ) =
1

n

n∑

i=1

I(E∗
i = δ)I(Φi = 1)

P (Φi = 1 | Ei)
, (10)

A simple logistic model can be used to estimate P (Φi = 1 | Ei). Similar
to µ̂(t, δ), all components of µ̂(δ) are functions of O and thus µ̂(δ) also only
depends on the observed data structure. Given Equations 8 and 10, it follows
that ϑ(t, δ) can be estimated by:

ϑ̂(t, δ) =
µ̂(t, δ)

µ̂(δ)
=

1
n

∑n
i=1

I(Ti>t,E∗i =δ)I(∆i=1,Φi=1)

Ḡn(·|Ei)

1
n

∑n
i=1

I(E∗i =δ)I(Φi=1)

P (Φi=1|Ei)

, (11)
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which only depends on the observed data structure O. In Scenario Two, the
denominator of the numerator in Equation 11 is replaced by ρ1 × Ḡn(· | E).
As also noted above, if ∆ = ∆global, then Ḡn(· | Ei) = Ḡn(Ti | Ei); whereas, if
∆ = ∆t, then Ḡn(· | Ei) = Ḡn(t | Ei). Conditions for the IPCW estimating
functions to be consistent are that Ḡ(· | X) > ε > 0, FX-a.e., for some ε > 0,
and that Ḡn is a consistent estimator for Ḡ.

In practice the numerator and denominator are estimated separately;
therefore, the ratio may need to be weighted guaranteeing that at time 0
the probability of no event is equal to 1, i.e., ϑ̂(0, δ) = 1. This can be
achieved by dividing the ratio in Equation 11 by the parameter of interest

evaluated at 0, i.e., ϑ̂(t,δ)

ϑ̂(0,δ)
. We shall denote this weighted estimator of the

parameter of interest as ϑ̂w(t, δ). Interestingly, this estimator results in the
following:

ϑ̂w(t, δ) =
ϑ̂(t, δ)

ϑ̂(0, δ)
=

µ̂(t,δ)
µ̂(δ)

µ̂(0,δ)
µ̂(δ)

,

and since µ̂(δ) is a constant this new estimator becomes,

ϑ̂w(t, δ) =
ϑ̂(t, δ)

ϑ̂(0, δ)
=

µ̂(t, δ)

µ̂(0, δ)
=

1
n

∑n
i=1

I(Ti>t,E∗i =δ)I(∆i=1,Φi=1)

Ḡn(T |Ei)

1
n

∑n
i=1

I(Ti>0,E∗i =δ)I(∆i=1,Φi=1)

Ḡn(T |Ei)

. (12)

Now any misspecification of µ(δ) = Pr(E∗ = δ) is not relevant as it is
not included in this weighted estimator of the parameter of interest, ϑ̂w(t, δ).
Equation 12 is the new estimator for Scenario One; interestingly, in Scenario
Two one can see that the constant ρ1 will divide out. Thus, the two esti-
mators become identical. This means that Equation 12 can be used as the
IPCW estimating function in unmatched as well as matched (including differ-
ent matching ratios) case-control subsample studies to evaluate the absolute
risk at time t given E∗ = δ for the entire cohort. The bootstrap estimate of
the standard error for the proposed weighted IPCW estimator can be used
to assess the variability and build confidence intervals.
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2.5 Doubly robust inverse probability of censoring weighted
estimating function.

A second candidate for the mapping D(X) → IC(O | Q,G, D) is the dou-
bly robust inverse probability of censoring weighted (DR-IPCW) estimating
function. This function is indexed by two nuisance parameters, G and
Q = Q(FX). An important consequence of CAR is the factorization of
the likelihood into an FX part and a G part. This allows consistency of a
maximum likelihood estimator under a model for FX which only relies on the
correct specification of that model.

Given a full data estimating equation D, we let IC0(O | G1, D) represent
an initial estimating function which is unbiased under the observed data
distribution P = PFX ,G1 . Now we consider the orthogonalized estimating
function obtained by subtracting from IC0(O | G1, D) a projection on a
tangent space TCAR(PFX ,G1) of G at PFX ,G1 under a convex model for G.
This can be written as:

IC(O | Q,G1, G2, D) = IC0(O | G1, D)− Π(IC0(O | G1, D) | TCAR),

where TCAR can represent the tangent space of any convex model for g(c, φ |
X) satisfying the CAR assumption. In particular, it can represent the tan-
gent space for the model G(CAR) for g only assuming CAR. We propose one
such model based on the factorization of g into two mechanisms (censoring
and missingness, Equation 2) by separately making assumptions on each of
these two mechanisms: namely, g(c|X) is only a function of E for c < T , and
g(φ | C, T, E, E∗) is only a function of I(C > T ) and E. The tangent space
of the corresponding submodel of G(CAR) is convex and it is an orthogonal
sum (by factorization of density g(c, φ | X)) of two tangent spaces TCAR,1 and
TCAR,2 corresponding with the tangent spaces of missingness and censoring
mechanism (two factors in factorization of g(c, φ | X). This can be written
as the sum of two projections:

Π [IC0(O | G1, D) | TCAR] = Π [IC0(O | G1, D) | TCAR,1]

+ Π [IC0(O | G1, D) | TCAR,2] ,

where, the projection on TCAR1 is:

Π [IC0(O | G,D) | TCAR1 ] =

E[IC0(O | G,D) | Φ, C, E]− E[IC0(O | G,D) | C,E]
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and the projection on TCAR2 as:

Π [IC0(O | G,D) | TCAR2 ] = −
∫

E[IC0(O | G,D) | T > U,C > U,E]dMG2(U).

With ∆ = ∆global, we can write the observed data DR-IPCW estimating
equation for equation 5 as:

IC
µ(t,δ)
0 (O | Q,G1, G2, D) =

D(X)I(∆ = 1, Φ = 1)

Ḡ2(T | E)
−

(
EQ,G

[
D(X)I(∆ = 1, Φ = 1)

Ḡ2(T | E)
| Φ, C, E

]

−
∫

φ
EQ,G

[
D(X)I(∆ = 1, Φ = 1)

Ḡ2(T | E)
| Φ = φ,C, E

]
PG1(Φ = φ | C, E)

)

+
∫

EQ,G

[
D(X)I(∆ = 1, Φ = 1)

Ḡ2(T | E)
| min(T,C) > U,E

]
dMG2(U)

Similarly an observed data DR-IPCW estimating function can be written
for Equation 6. The reader is directed to van der Laan and Robins (2002)
(especially Section 1.6) for a complete discussion and proofs.

It is important to note that if Q is misspecified, this orthogonalized esti-
mating function is unbiased as long as G1 is correct. This is true because the
projection operator under P still maps into functions which have conditional
mean zero given X with respect to G1. The doubly-robust name derives from
the fact that if Q is correctly specified, however, G is not, the unbiasedness
of this estimating function still holds.

3 Simulations

To evaluate our proposed weighted IPCW estimator ϑw(t, δ) (Equation 12)
we present the following results. The intention of this simulation study is to
evaluate ϑw(t, δ)’s performance with varying levels of censoring and matching
in data which emulates the real data in the DCIS study.

Simulation model for full and observed data structures. The full
and observed data structures were chosen to represent a ’real-world’ situation
as modeled by the DCIS data described in Section 1 and analyzed in Section
4. The full data structure was simulated as T | E∗ ≡ Weibull(shape =
α, scale = β1) × E∗ + Weibull(shape = α, scale = β2) ∗ (1 − E∗), where
E∗ ∼ Bernoulli(pE∗), pE∗ is a user-defined probability of having E∗ = 1, α
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is the shape parameter for the Weibull distribution, β1 is the scale parameter
for those observations with E∗ = 1, and β2 is the scale parameter for those
observations with E∗ = 0. Additionally, E ∼ Bernoulli(pE) and Ematch ∼
Multinomial([1 : m], pM), where m, pE, and pM are user-specified. For
the purposes of the simulations shown in Sections 3.1 and 3.2: pE∗ = 0.38,
pE = 0.21, m = 10, and pM = 0.1. These values were chosen to best emulate
the real data described in Section 4.

Censoring times C were simulated using a mixture of Weibull and uniform
distributions. The mixing proportions for the distributions, as well as the
parameters described above (i.e., α, β1, and β2), were fine-tuned to achieve
a desired level of censoring while ensuring that Pr(Ḡ0(T |W ) > 0.1) = 1, a
condition for the IPCW method (Section 2.4). For the simulations, the end of
study was set at 180 months, resulting in T ∗ = min(T, 180), T̃ = min(T ∗, C),
and the indicator of event defined as ∆ = I(T ∗ ≤ C).

3.1 Unmatched Case-Control Study

In the first simulation study, we generated an unmatched case-control study.
In this design every recurrence was included as a case and for each of the
recurrences one non-recurrence was randomly assigned as a control. For this
design, P (Φ = 1 | ∆, E, T, C) = I(C > T ) + I(C < T )ρ2(E). Censoring
percentages of 70% and 80% were simulated over three sample sizes: 500,
1000, and 5000. For each of the simulations, the proposed weighted IPCW
estimator ϑw(t, δ) was estimated. This estimate was compared to the truth,
i.e., the data as simulated in the full data structure, by calculating the mean
squared error (MSE). The estimate was assessed at 5, 10, and 15 years for
both those at high risk, i.e., E∗ = 1, and low-risk, i.e., E∗ = 0 for B = 100
bootstrap samples. The average of the bootstrap estimates, average MSE,
and the IPCW estimator’s standard deviation over the B bootstrap samples
are displayed in Table 1. The proposed weighted IPCW estimator is quite
accurate as measured by its proximity to the truth. The distance between
the two is more apparent by 15-years due to the sparsity in data by the end
of the study. The actual survival curves further elucidate the estimator in
relation to the truth. In Figure 2, it is apparent how well the IPCW method
does in finite samples (n=500).
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Table 1: Simulation Study 3.1. The cohort’s absolute risk of having an event
by time t for E∗ = 0 and E∗ = 1 based on an unmatched case-control
study over 2 censoring levels (column 1), 3 sample sizes (column 2), and
3 time points (columns 4-9). Estimates for the IPCW method (Std. error
in parens), the truth, and MSE are based on an average of 100 bootstrap
samples.

5 years 10 years 15 years
Cens n Method E∗ = 0 E∗ = 1 E∗ = 0 E∗ = 1 E∗ = 0 E∗ = 1

IPCW 0.169(.04) 0.322(.07) 0.31(.07) 0.454(.08) 0.332(.07) 0.594(.1)
500 Truth 0.153 0.35 0.275 0.528 0.334 0.667

MSE .002 .005 .006 .012 .005 .015
IPCW 0.142(.02) 0.369(.05) 0.245(.03) 0.541(.07) 0.363(.05) 0.64(.08)

70% 1000 Truth 0.144 0.339 0.247 0.518 0.336 0.641
MSE .004 0 .005 .001 .006 .002
IPCW 0.166(.03) 0.335(.08) 0.246(.04) 0.493(.12) 0.389(.08) 0.604(.13)

5000 Truth 0.144 0.339 0.247 0.518 0.336 0.641
MSE .006 .001 .015 .002 .017 .01
IPCW 0.161(.04) 0.312(.07) 0.226(.04) 0.503(.11) 0.32(.07) 0.503(.11)

500 Truth 0.153 0.35 0.275 0.528 0.334 0.667
MSE .006 .001 .012 .004 .038 .005
IPCW 0.166(.03) 0.335(.08) 0.246(.04) 0.493(.12) 0.389(.08) 0.604(.13)

80% 1000 Truth 0.144 0.339 0.247 0.518 0.336 0.641
MSE .006 .001 .015 .002 .017 .01
IPCW 0.128(.01) 0.312(.02) 0.236(.01) 0.488(.03) 0.333(.02) 0.64(.03)

5000 Truth 0.131 0.293 0.247 0.488 0.338 0.608
MSE .001 0 .001 0 .002 0
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3.2 Matched Case-Control Study

In the second simulation study, we generated a matched case-control study
based. The matching here was based on that of the DCIS study where
matching was done on year of diagnosis solely to allow an equivalent follow-
up time for potential recurrence. In this simulation each of the recurrences
were included as cases. For each of the cases one non-recurrence was as-
signed as a control based on having the same value of Emat. For this design,
P (Φ = 1 | ∆, E, T, C) = I(C > T ) + I(C < T )ρ2(E, ∆), where Emat ∈ E.
Censoring percentages of 70% and 80% were simulated over three sample
sizes: 500, 1000, and 5000. For each of the simulations, the proposed weighted
IPCW estimator ϑw(t, δ) was estimated and compared to the truth, i.e., the
data as simulated in the full data structure, by calculating the MSE. The
estimate was assessed at 5, 10, and 15 years for both those at high risk, i.e.,
E∗ = 1, and low-risk, i.e., E∗ = 0 for B = 100 bootstrap samples. The
average of the bootstrap estimates, average MSE, and the IPCW estimator’s
standard deviation over the B bootstrap samples are displayed in Table 2.
The proposed weighted IPCW estimator is quite accurate as measured by its
proximity to the truth. Again, the distance between the two is more apparent
by 15-years due to the sparsity in data by the end of the study. The actual
survival curves further elucidate the estimator in relation to the truth. In
Figure 2, it is apparent how well the IPCW method does in finite samples
(n=500).

4 Data Analysis

Once the simulation studies validated the proposed estimator’s assessment
of the absolute risk, we implemented the estimator in a real data set. As de-
scribed in the Introduction, this data analysis is based on a National Cancer
Institute funded population-based cohort study. Extensive details and initial
analysis can be found in Kerlikowske et al. (2003).

To assess how well our proposed weighted IPCW estimator performs in
the real world, we selected a variable from this data set which was measured
on almost the entire cohort and then made it missing for the cohort mem-
bers not included in the subsample. The variable we chose was Method of
Detection. Method of Detection is an indicator of whether the patient or
her doctor found her DCIS lesion on physical examination (Palpation) ver-
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Table 2: Simulation Study 3.2. The cohort’s absolute risk of having an event
by time t for E∗ = 0 and E∗ = 1 based on a matched case-control study over
2 censoring levels (column 1), 3 sample sizes (column 2), and 3 time points
(columns 4-9). Estimates for the IPCW method (Std. error in parens), the
truth, and MSE are based on an average of 100 bootstrap samples.

5 years 10 years 15 years
Cens n Method E∗ = 0 E∗ = 1 E∗ = 0 E∗ = 1 E∗ = 0 E∗ = 1

IPCW 0.163(.03) 0.322(.08) 0.239(.05) 0.567(.12) 0.311(.08) 0.681(.14)
500 Truth 0.167 0.3 0.243 0.535 0.343 0.635

MSE .006 .001 .015 .003 .023 .007
IPCW 0.14(.02) 0.282(.04) 0.261(.03) 0.505(.07) 0.288(.04) 0.647(.09)

70% 1000 Truth 0.144 0.261 0.264 0.45 0.339 0.597
MSE .002 0 .008 .001 .01 .004
IPCW 0.133(.01) 0.277(.02) 0.246(.01) 0.474(.03) 0.342(.02) 0.603(.04)

5000 Truth 0.129 .292 0.239 0.493 0.334 0.631
MSE 0 0 .001 0 .002 0
IPCW 0.166(.04) 0.308(.08) 0.225(.04) 0.617(.10) 0.344(.07) 0.836(.11)

500 Truth 0.167 0.3 0.243 0.535 0.343 0.635
MSE .007 .001 .018 .002 .052 .004
IPCW 0.15(.02) 0.26(.05) 0.348(.05) 0.446(.08) 0.373(.05) 0.616(.11)

80% 1000 Truth 0.144 0.261 0.264 0.45 0.339 0.597
MSE .002 .001 .006 .009 .012 .004
IPCW 0.133(.01) 0.292(.02) 0.243(.01) 0.501(.04) 0.301(.02) 0.647(.04)

5000 Truth 0.129 0.292 0.239 0.493 0.334 0.631
MSE 0 0 .001 0 .002 .002
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Table 3: Absolute Risk Estimation 4. Estimates based on the entire co-
hort, the IPCW and an unmatched case-control with all cases (Sampling 1),
the IPCW and an unmatched case-control with a random sample of cases
(Sampling 2), and the IPCW and a matched case-control (Sampling 3), for
Method of Detection (column 2), number of cases (column 3), number of
controls (column 4), odds ratio for Palpation vs. Mammography (column 5),
and 5-year absolute risk of recurrence (column 6).

Sample Detect Cases Controls OR 5 years
Palpation 42 126 0.26

Cohort Mammography 168 527 1.05 0.15
IPCW Palpation 42 68 0.26

Sampling 1 Mammography 168 269 0.99 0.15
IPCW Palpation 30 62 0.27

Sampling 2 Mammography 120 262 1.06 0.16
IPCW Palpation 41 54 0.31

Sampling 3 Mammography 160 258 1.22 0.19

sus mammography examination (Mammography). To investigate potential
differences between case-control designs, we looked at three different ways of
choosing the case-control members: Sampling 1 denotes an unmatched design
with all cases and a random sampling of controls as described in Section 2.2
and similar to a case-cohort design; Sampling 2 denotes an unmatched design
with a random sampling of both cases and controls; and Sampling 3 denotes
a matched design with the matching based on diagnosis year. These three
ways of sampling were compared to the ’true’ absolute risk of the cohort, i.e.,
the absolute risk based on all measurements of Method of Detection. The
results for each of the samplings and the ’true’ absolute risk are shown in
Table 3.

The results shown in column 5 of Table 3 do not correspond with the
odds ratios for Method of Detection reported in Table 1 of Kerlikowske et al.
(Kerlikowske et al., 2003) because the latter were adjusted for age at diag-
nosis which is not the case here. However, the absolute risk of recurrence at
5 years as reported here for Sampling 1 and 2 do fall into the confidence in-
tervals of the absolute risk estimate reported in Table 4 of Kerlikowske et al.
(2003) (i.e., in the cited article the 95% confidence interval for Palpation is
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(0.145, 0.275) and for Mammography it is (0.139, 0.196)).
As seen in Table 3, the cohort’s absolute risk of recurrence at 5 years is

0.26 for those who found a mass by palpation and 0.15 for those who found
a mass by mammography. In Sampling 1, an unmatched case-control design
where all recurrences from the cohort are included as cases and a random
sampling of non-recurrences are included as controls, there were almost two
controls for each case. The IPCW estimator performed perfectly in this
design compared to the entire cohort (i.e., absolute risk of 0.26 for palpation
and 0.15 for mammography) even though the odds ratio decreased from 1.05
(in the cohort) to 0.99 (in this unmatched design). The results for Sampling
1 can also be seen in Figure 4. Sampling 2, an unmatched case-control design
where both the recurrences and non-recurrences were randomly sampled has
approximately one case for every two controls. The IPCW estimator did
quite well in this sampling (i.e., absolute risk of 0.27 for palpation and 0.16
for mammography). The odds ratio was almost the same for this sampling
as in the cohort (1.06 and 1.05, respectively).

Sampling 3’s absolute risk estimate does a bit worse than the cohort’s
(0.31 and 0.19 versus 0.26 and 0.15, respectively). There are two possible
reasons for this discrepancy. First, the number of Palpation controls included
in Sampling 3 is substantially smaller than the number included in the other
two samplings and the cohort (see column 4 in Table 3). As opposed to a
one-case-to-two-controls design, Sampling 3 represents more of a one-case-to-
one-control design. Second, due to the fewer number of members in the case-
control the data is sparser and this may violate the Pr(Ḡ0(T |W ) > 0.1) = 1,
a condition for the IPCW method (Section 2.4).

To investigate the first possible cause for discrepancy (and potentially
the second), we randomly assigned a few more non-recurrences as controls
to increase the total number of controls included. The results are shown in
Table 4. There are a total of 11 controls added to the Palpation category as
well as one case. As expected, this increase in controls leads to a decrease in
the odds ratio from 1.22 to 1.01. Although the 5-year absolute risk estimate
does not change for Mammography it does decrease from 0.31 to 0.26 for
Palpation. The prevailing discrepancy for Mammography can be seen in
Figure 5. Nevertheless, this estimate still falls within the confidence interval
of Table 4 of Kerlikowske et al. (2003) (i.e., (0.139, 0.196)).

A very important aspect of Sampling 3’s results is that the odds ratio
of 1.22 (Table 3) is quite biased as an estimate for the cohort’s odds ratio
of 1.05; however, the absolute risk estimate is not that far from that of
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Table 4: Sampling 3 with a different sampling scheme for the case-control
(Section 4). Estimates based on the IPCW and a matched case-control (Sam-
pling 3) for Method of Detection (column 1), number of cases (column 2),
number of controls (column 3), odds ratio for Palpation vs. Mammography
(column 4), and 5-year absolute risk of recurrence (column 5).

Detect Cases Controls OR 5 years
Palpation 42 65 0.26

Mammography 158 246 1.01 0.19

the cohort’s. This reinforces the use of the proposed method which is not
as reliant on disease prevalence (i.e., as measured by the relative risk) as
previously documented methods.

Increasing the number of controls seems to have alleviated most of the
discrepancy seen in Table 3. An interesting insight given by this data analysis
is that the initial odds ratio estimate for Sampling 3 (Table 3) may point to
a biased sampling for those chosen in the case-control subsample. It appears
that this biased sampling was remedied by increasing the number of controls,
i.e., it went from about a one-to-one to a almost a one-to-two sampling
scheme.

5 Discussion & Conclusions

We introduced an estimator of the cohort’s absolute risk of an event by time
t based on variables of interest only measured in a subsample of the cohort.
In addition to this method being resilient to prevalence of disease (by not
inheriting the relative risk estimate), it allows for informative censoring, is
a locally efficient estimator, and collapses to the full data estimator in the
presence of the full data.

This estimator allows the numerator and denominator to be evaluated
separately, resulting in a ratio of two estimators; therefore, a weighting may
be necessary to guarantee the probability of no event is equal to 1 at time 0.
This can be achieved by dividing the ratio in Equation 11 by the parameter
of interest evaluated at 0. Interestingly, a ramification of this weighting is
that the denominator of Equation 11, i.e., µ(δ) = Pr(E∗ = δ), divides out.
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This means that any misspecification of Pr(E∗ = δ) is irrelevant as well as
the matching (or non-matching) scheme. Thus, as shown in Section 2.4, the
proposed weighted IPCW estimator (Equation 12) can be implemented in
either a matched or unmatched case-control subsample design.

To explore the validity of ϑw(t, δ), we implemented simulation studies over
numerous sample sizes and several censoring percentages. The simulation
studies enable us to compare ϑw(t, δ)’s estimated absolute risk to the truth.
In Tables 2 and 1 as well as Figures 2 and 3 one can see that the IPCW
estimator is doing quite well approximating the truth. This is true for finite
sample sizes (e.g., n = 500) as well as relatively large sample sizes (e.g.,
n = 5000) (Molinaro, 2004). Importantly the latter indicates that although
we assume i. i. d. observations in the presence of matching (i.e., there is a
fixed ratio between the number of cases and controls), the proposed method
is asymptotically valid.

In Section 4, the proposed weighted IPCW estimator was evaluated in
the DCIS study. The variable, Method of Detection, was selected as the risk
factor of interest. Because this variable was measured in almost all members
of the cohort, we could assess our proposed estimators accuracy based on only
the measurements for patients in the case-control compared to the those for
the entire (or almost entire) cohort. As shown in Tables 3, for Samplings
1 and 2 the proposed estimator is doing well. The discrepancy seen in the
estimate for Sampling 3 could be indicative of a biased underlying sampling
of the subsample or simply sparsity in the data as there are fewer included
controls. To examine this situation, more non-recurrences were added to
the sampling. The results in Table 4 show that in fact this did close the
gap between the cohort’s known absolute risk and odds ratio and that of
Sampling 3’s.

Thus, limitations of this method will be dependent on the underlying
sampling of the subsample. As we saw in Section 4, if there is an unmatched
case-control with all the cases or a sampling of the cases the estimation of
the full cohort’s absolute risk was accurate. However, sparsity in the data,
due to matching or to too few participants in the case-control, may violate
assumptions needed for the IPCW estimator to be consistent.

In future simulations, the effect of the underlying sampling for the nested
case-control, case-cohort, and two-stage case-control study designs will be
studied. Additionally, we will implement the locally efficient estimator for
continuous and time-dependent variables, as well as expand the proposed
method to encompass more than one outcome or disease of interest, i.e.,

23

Hosted by The Berkeley Electronic Press



0 50 100 150

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Curves stratified by E*

Time in months

P
ro

ba
bi

lit
y 

of
 n

on
−

ev
en

t

IPCW
Truth

Figure 2: Survival Curves for Unmatched Case Control (n=500). The sur-
vival curves were calculated for the truth (no cens) and the proposed IPCW
method using ∆global, 70% censoring, and cohort size = 500. The top two
lines correspond with E∗ = 0 while the bottom two correspond with E∗ = 1.

competing risks.
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Figure 3: Survival Curves for Matched Case Control (n=500). The sur-
vival curves were calculated for the truth (no cens) and the proposed IPCW
method using ∆global, 70% censoring, and cohort size = 500. The top two
lines correspond with E∗ = 0 while the bottom two correspond with E∗ = 1.
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Figure 4: Survival Curves for Sampling 1. The survival curves were calcu-
lated for the entire cohort (Truth) and the proposed IPCW method stratified
by Detection Method using all cases and a random selection of controls. The
top two lines correspond with Mammography while the bottom two corre-
spond with Palpation.
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Figure 5: Survival Curves for Sampling 3 (Additional Controls). The survival
curves were calculated for the entire cohort (Truth) and the proposed IPCW
method stratified by Detection Method using a matched design based on year
of diagnosis with additional controls added. The top two lines correspond
with Mammography while the bottom two correspond with Palpation.
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