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Abstract
Receiver operating characteristic (ROC) curves play a central role in the evaluation of biomarkers

and tests for disease diagnosis. Predictors for event time outcomes can also be evaluated with ROC
curves, but the time lag between marker measurement and event time must be acknowledged.
We discuss different definitions of time-dependent ROC curves in the context of real applications.
Several approaches have been proposed for estimation. We contrast retrospective versus prospective
methods in regards to assumptions and flexibility, including their capacities to incorporate censored
data, competing risks and different sampling schemes. Applications to two datasets are presented.
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1 Introduction

Techniques for analyzing event time data are now routinely applied in biomedical research. In

particular, regression models such as Cox regression are often fit to data in order to study the

effects of predictors on risk of a future event. However, Sam Wieand was amongst those who

recognized that risk models do not address the potential of a predictor to distinguish between those

who will have an event and those who will not (Emir et al. 1998). Indeed a marker can have a large

effect on risk yet perform poorly as a discriminator.

For a binary outcome variable the classification accuracy of a marker is typically quantified with

the true and false positive fractions. The former, TPF=P(marker positive | outcome positive), is the

probability of correctly classifying a subject with positive outcome and the latter, FPF=P(marker

positive | outcome negative), is the probability of incorrectly classifying a subject with negative

outcome. The benefit of true positive classifications is gained at the cost of false positive classifi-

cations. When the predictive marker, Y , is continuous, thresholding criteria, Y > c, are used to

define marker positivity. The ROC curve is the standard summary of classification performance

for continuous markers (Baker 2003). It plots the TPF versus FPF for all thresholds c. When

multiple predictors are involved, the marker is naturally defined as the risk function, Y =P[outcome

positive | predictors], or equivalently as any monotone increasing function of it. It is the optimal

combination of predictors for classification (McIntosh and Pepe, 2002), a result that follows from

the Neyman-Pearson lemma. See Zheng, Cai and Feng (2006) for related results pertaining to event

time outcomes.

In this paper we consider marker performance for outcomes that are not simply binary but that

are event time outcomes. A recent paper in the New England Journal of Medicine on biomarkers for

cardiovascular events (Wang et al. 2006) stated that “standard methods do not exist for deriving

ROC curves for time-to-event data.” In fact several approaches have been proposed. However the

literature is scattered and a standard approach has not emerged. Here, we review existing methods

and discuss issues that lead to preference for one method over another.

2 Applications

We describe three applications that exemplify key issues in evaluating the performance of markers

for event time outcomes.
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2.1 Markers of Acute Kidney Injury

Patients who undergo major cardiac surgery are at high risk of suffering kidney damage due to

interruption of blood flow to the kidneys during surgery. Although monitoring of serum creatinine

is the standard approach to detecting acute kidney injury (AKI), it has an important drawback. The

serum creatinine response is typically delayed by 1 to 3 days due to creatinine reserve compartments

that exist to maintain homeostasis in healthy individuals.

Biomarkers are sought to detect AKI earlier than serum creatinine so that appropriate treatment

can be promptly initiated. Two such markers measured in urine are currently under investigation

in a multicenter study of 1800 patients undergoing major cardiac surgery. Urine samples are taken

at various intervals after surgery, frozen and stored. At the end of the study these stored specimens

will be assayed for the new markers. Serum creatinine is monitored in these patients as part of

their routine clinical care. An AKI event occurs when the creatinine level increases by 25% over

preoperative levels and is sustained for 24 hours. Patients with AKI are classified as having a severe

event if the level reaches >200% of preoperative serum creatinine during the course of their clinical

care. Otherwise the event is classified as mild.

Approximately 80% of patients recover from surgery without AKI or other devastating events

and are discharged 3–5 days after surgery. We expect that 20% will experience an AKI event,

12% mild and 8% severe. An additional small group of patients, <1%, will die from complications

associated with their disease or surgery without meeting criteria for AKI. These we call non-AKI

deaths.

Some questions of interest in this study are: to determine the numbers of patients for whom the

diagnosis of AKI can be advanced with the new markers, by how long and at what cost in terms of

false diagnoses. The analysis needs to accommodate competing risk events due to non-AKI deaths,

the varying degrees of severity of AKI and the longitudinal nature of the biomarkers. The data will

not be censored as all subjects are followed closely until discharge or death.

2.2 Seattle Heart Failure Study

More than 5 million people in the United States have heart failure. However, outcomes are highly

variable and annual mortality estimates range from 5% to 75%. The Seattle Heart Failure study

(Levy et al (2006)) combined data from 6 cohorts of patients. One cohort, the PRAISE study,

(Packer et al (1996)) was used to develop a ’risk of mortality’ model with Cox regression that

included easily obtainable baseline information relating to clinical status, therapy and laboratory
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parameters. The other cohorts were used to evaluate the accuracy of this model.

Here we consider evaluating the performance of the linear predictor obtained from PRAISE

to discriminate people who die in the first 2 years from those who do not. We use the largest

independent validation cohort (Val-heft) considered by Levy et al. This cohort of 5010 patients was

derived from a randomized trial of the angiotensin-receptor blocker valsartan (Cohn and Tognoni

(2001)). Characteristics of these subjects have been reported. There were 979 deaths and the mean

followup was 2 years. Survival estimates at 1, 2 and 3 years were 91%, 81.6% and 71.7% respectively.

These numbers agree well with the survival rates predicted by the PRAISE risk model (Levy et al

(2006)).

In this application the outcome, death, is a classic event outcome qualified only by the time at

which it occurs but not by severity. There is censoring due almost entirely to gradual enrollment

into the study over time and not due to loss to followup. There are no competing risk events and

the marker, i.e., the risk score, is measured only at the baseline enrollment time.

2.3 Prostate Cancer Screening

Prostate specific antigen (PSA) is a biomarker for prostate cancer. Etzioni et al. (1999) conducted a

case-control study to evaluate the performance of PSA as a screening marker. Subjects in the Beta-

Carotene and Retinal Trial (CARET; Omenn et al. 1996) formed the cohort from which 71 prostate

cancer cases were selected. Screening for prostate cancer with PSA typically was not performed

during the study period. Serum specimens were obtained annually from participants in CARET and

stored in freezers. Frozen serum specimens that were obtained prior to diagnosis were retrieved for

the cases and most subjects had at least 3 such specimens. A set of age-matched controls who had

not been diagnosed with prostate cancer were selected for comparison. Two biomarkers, total-PSA

and ratio-PSA, were measured on the serum samples.

The objectives of this study were to determine for how many subjects a diagnosis of prostate

cancer could be advanced with a PSA screen, by how long and at what cost in terms of false positive

results. In addition, the study sought to compare the performances of the two biomarkers.

This case-control study nested within the CARET cohort is retrospective in design. There is no

natural time origin. Censoring and competing risk events in the cohort were ignored. Nevertheless,

for cases the essential time component is the time lag between serum sampling and subsequent

development of disease. This can be viewed prospectively using the time of serum sampling as the

time origin or retrospectively using the time of diagnosis as the time origin. Although the outcome,
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prostate cancer, is recorded dichotomously in this study, one could have stratified case selection

using disease characteristics such as stage or grade in order to evaluate whether such factors affect

biomarker performance. Finally, we note that the study did not seek to evaluate screening rules

based on longitudinal marker trajectories or monitoring protocols, but simply the performance of

a single screen using either total or ratio PSA.

3 Definitions of ROC for Event Time Outcomes

3.1 Time Dependent TPF

Consider first the simplest scenario where the marker Y is binary and measured at a baseline time

t = 0. Let T denote the event time for a case. One definition of time-dependent TPF is

TPF(t) = Prob(Y = 1|T = t)

This definition allows the sensitivity of the marker to depend on the time that the event occurs.

Certainly in the kidney biomarkers study, baseline (day 0) biomarkers are likely to be more sensitive

to AKI diagnosed on day 1 rather than AKI diagnosed on day 3 since it is more likely that the

kidney injury was not present at baseline if it was not picked up by serum creatinine until day 3.

In the heart failure study, it is likely that people who die early have more extreme levels of baseline

risk factors than subjects who die later. Therefore the TPF associated with the risk score is likely

to be higher for earlier events than for later events. In the context of cancer screening, biomarker

levels tend to be higher for subjects with larger subclinical tumor and those are likely to manifest

clinically sooner. Thus again, the TPF is likely to be a decreasing function of t.

Now suppose that the marker is measured at time s, such as in longitudinal studies or when

there is no natural baseline time. We write

TPF(t) = Prob(Y (s) = 1|T = t + s)

the sensitivity of the marker to events that occur t units after Y is measured. In some applications

this sensitivity could depend not only on the time lag, t, but also on s the absolute time of mea-

surement. For example, if s denotes age or time after intervention then the TPF could depend on

t and s, and we would write

TPF(s, t) = Prob(Y (s) = 1|T = t + s).

Heagerty and Zheng (2005) introduced a taxonomy for time dependent measures of accuracy. The

TPF(t) defined above is the incident true positive fraction and is the version adopted by most
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methodologists (Heagerty and Zheng (2005); Etzioni et al (1999); Cai et al (2006); Zheng and

Heagerty (2004); Song and Zhou (in press)). An alternative version is the cumulative TPF:

TPFc(s, t) = Prob(Y (s) = 1|s < T <= t + s)

which evaluates sensitivity for events that occur throughout the time interval (s, s+t) as opposed to

events that occur at t time units after Y is measured. This definition is used in many applied papers

(e.g., Wang et al. (2006)) because it is easily estimated empirically. Specifically in uncensored data

an estimate is the simple proportion of subjects with events in the time interval who have positive

marker values t time units prior to their events. Estimators that accommodate censoring have been

developed (Heagerty, Lumley and Pepe (2000); DeLong, Vernon and Bollinger (1985); Parker and

Delong (2003); Zheng and Heagerty (in press); Song and Zhou (in press)). Cai et. al. (2006)

focused on the incident TPF but noted that the cumulative TPF can be calculated directly from

it as TPFc(t) =
∫

(TPF(t)dFT (u)) where FT is the cumulative distribution of the event time. On

the other hand, estimating the incident on the basis of a cumulative TPF estimate is more difficult,

in our opinion, because differentiation is harder numerically than is integration. In addition, by

lumping all events in (s, s+t) together, the cumulative TPF does not distinguish between sensitivity

to events that occur early versus late in the interval. Moreover, a series of cumulative TPFs indexed

by t shows redundant information in the sense that TPF(t2) includes events in TPF(t1) if t1 < t2,

while a series of incident TPFs show essentially different information in each. We focus on the

incident TPF in the remainder of this paper.

3.2 The FPF and ROC

In the classic setting with binary outcomes, the FPF = P (Y = 1|D = 0) is the fraction of controls

that test positive. Who are the controls when the outcome is a failure time? One sensible definition

is to consider controls to be those individuals for whom a positive test is an error. A natural such

control group emerges in some applications. In the kidney biomarkers study, controls are those

80% of patients who recover from surgery and are discharged without experiencing AKI or other

devastating event. In prostate cancer screening, ideal controls would be individuals who would never

be diagnosed with life threatening prostate cancer in their lifetimes in the absence of screening. The

CARET case-control study did not have lifetime follow up for all subjects, so subjects who did not

have prostate cancer at the time of analysis were considered an approximate control group.

Definition of control status is more problematic when all subjects eventually have the event of

interest. Since everybody dies, the Seattle Heart Failure Study does not have a natural control
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group. One possibility is to choose a large landmark time point, τ , and define controls as subjects

with T > τ . The optimal choice for τ should be context dependent. For example, if the intention is

to monitor individuals at time intervals of length, δ, considering that intervention will be adequate

if administered at time δ before the event, then the choice τ = 2δ would be sufficient. Subjects for

whom T > 2δ, do not need to test positive because they can still be tested and treated adequately

with future monitoring. In the Heart Failure Study, however, the optimal choice of τ is not clear.

Moreover limitations of the data may limit the possibilities. We choose τ = 2 years in part because

few subjects were followed beyond 2.5 years. Moreover we acknowledge that with this choice of

τ , the controls are better described as a reference group against which to compare subjects with

earlier events, rather than as a true control group.

Heagerty and Zheng (2005) call the FPF defined above,

FPF(s) = Prob(Y (s) = 1|T > s + τ ),

the static false positive fraction. An alternative is to allow the FPF to vary with the time lag

t = T − s. FPFd(t, s) = Prob(Y (s) = 1|T > s + t), the proportion of positive tests among

subjects without events by t time units after the marker measurement time, is called the dynamic

FPF (Heagerty and Zheng 2005; Zheng and Heagerty (in press)). This quantity can sometimes

misrepresent the accuracy of a biomarker. Consider that subjects with an event shortly after the

time lag t are counted as dynamic controls at t. A positive test for such a subject is counted against

the biomarker, as a false positive. Yet perhaps it should count in favor of the test’s ability to flag

future events. Another practical problem with dynamic FPFs is that because the control groups

vary with time so too does the x-axis of the corresponding ROC curves. It therefore becomes more

difficult to interpret trends over time in time-dependent ROC curves. With a static control group,

time trends in ROCs relate to trends in the detection of events. However such trends may be due

to a combination of changing control groups and changing detection properties when ROC curves

use dynamic controls. Indeed consider that when using dynamic FPFs, even if the TPF associated

with a specific thresholding rule Y (s) > c is constant over time, the ROC curves will appear to

increase with larger t as the control groups drop subjects who have events. We will focus on the

static FPF in the remainder of this paper. For applications like the kidney biomarker study, where

there is a natural control group that is not defined solely by time, we will assign a fictitious event

time τ + δ to controls, so that we can use uniform notation.

If F denotes the cdf for Y (s) in the control group, the time-dependent ROC curve is defined by

ROCt,s(f) = Prob(Y (s) >= c(s)|T = s + t) where c(s) = F−1(1 − f)

7
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That is the TPF(t, s) corresponding to an FPF(s) = f .

We emphasize that the marker at time s, Y (s), may be a function of marker history up to time

s, and is not necessarily the value of a single measurement at time s. Moreover, the distribution of

Y (s) may vary with s, for example when the time scale s is age or time after an intervention, so

the threshold c(s) may depend on s. In some applications discrimination achieved with the marker

may depend on the absolute time scale s (e.g., age) as well as on the time lag t, and our notation

allows this level of generality.

3.3 Censoring and Competing Risk Events

Censoring is often but not always an issue in prospective studies with event time outcomes. It

arises in the Heart Failure study but not in the Kidney Biomarker study. Censoring is a nuisance in

the data and clearly should not impact on the definitions for TPF and FPF. The common simple

practice of including all subjects without events in the FPF calculation (Wang et al. 2006) is flawed

in part because some of the included censored subjects may have events, thus contaminating the

control group.

On the other hand, competing risk events are real phenomena that occur in the population and

should therefore impact on (TPF, FPF) definitions. Should subjects with competing risk events

be considered cases or controls? In the kidney biomarker study, it is possible that the biomarkers

will be predictive of competing risk events. One might consider them a second case group and

evaluate the markers in them separately. That is, two separate ROC curves could be estimated:

one of primary interest that compares subjects with AKI events to the controls and one of secondary

interest that compares subjects with competing risks to controls. An alternative is to include them

in the control group. This would only be warranted if flagging such subjects as positive would

lead to clinically erroneous decisions. Even then, it might still be of interest to compare them

with the other controls so that one can interpret the overall false positive fractions in terms of the

components from each type of control group.

4 Estimation from Data

Approaches to estimating biomarker performance parameters can be classified broadly as prospec-

tive or retrospective. Each class has its own strengths.
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4.1 Retrospective Methods

Consider the simplest setting where Y (s) is a binary marker and there is no censoring. We write

the data for controls as {Yj(sjk), k = 1, . . . , nj; j = 1, . . . , nD̄} and the data for cases as {Yi(sik), k =

1, . . . , ni; Ti; i = 1, . . . , nD}. Leisenring et. al. proposed simple binary regression methods for this

setting (Leisenring, Pepe and Longton (1997)). One can model FPR(s) as a parametric function

of s using the control data to fit model parameters. Each control contributes nj data records of

the form (Yj(sjk), sjk). Similarly TPR(s, t) can be modeled as a parametric function of (s, t) and

fit with data for cases. Each case contributes ni data records of the form (Yi(sik), sik, tik) where

the time lag is tik = Ti − sik. The time lag varies across data records depending on the biomarker

measurement time sik. Standard errors of parameter estimates are based on sandwich variance

estimates. In their application to a new test for CMV infection in bone marrow transplant patients,

the distribution of Y (s) did not depend on s, the time since transplant. They therefore reported

the overall FPF and the monotone decreasing TPF(t) which was modeled as

TPF(t) = g(α + βη(t)) (1)

where g−1, the link function, was chosen to be logistic and for η(t), a set of polynomial basis

functions were chosen.

For a continuous marker, again in the absence of censoring, Etzioni et. al. (1999) extended

the binary regression approach. To simplify notation we suppose, as in Etzioni et al, that the time

dependent ROC curves do not depend on s. They modeled

ROCt(f) = g(h(f) + βη(t)) (2)

where g−1 is the link function and g(h(f)) is the baseline ROC curve at t = 0. They implemented

the method on data from the prostate cancer study described earlier, estimating the distribution of

Y (s) nonparametrically and using a parametric form for h, namely h(f) = a0 + a1Φ
−1(f). Cai and

Pepe (2002) allowed nonparametric baseline function h.

Cai et al (2006) offers the most comprehensive of existing retrospective approaches, encompassing

previous methods and extending them to censored failure time data. With binary markers, functions

to be estimated are FPF(s) and TPF(t, s). Uncensored subjects enter into the analysis as in the

Leisenring et. al. approach, as a case if 0 < T − s < τ and as a control if T − s > τ . Censored

subjects, censored at X, enter as either a control if X − s > τ or otherwise as weighted averages of

cases and controls. Observe that

Prob(Y (s) = 1|T > X) = FPF(s)P (T > s + τ |T > X) +

∫ τ

X−s

TPF(s, t)dP (T = t + s|T > X)

9
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Therefore the “likelihood contribution” for Y (s) is a weighted average of FPF(s) and TPF(s, t) for

time lags t in (X − s, τ ). Including both a control record and a set of case records with appropri-

ate weights includes censored observations in the analysis. The weights are easily determined by

estimating the distribution of T with standard failure time methods. Note that if competing risk

events exist the distributions should be estimated with cumulative incidence methods (Kalbfleisch

and Prentice (1980) page 169) rather than treating them as censoring events.

For continuous biomarkers, Cai et al. adopt the ROC-GLM model (2) with nonparametric

baseline ROC curve h. Similar to Etzioni et al, the approach is nonparametric with respect to

the distribution of Y (s) in controls as well. It can be implemented by replacing each biomarker

record, Y (s), with a series of P binary variable records of the form I(Y (s) > cp), corresponding to

biomarker thresholds c1, . . . , cP . The algorithm for binary markers is then applied with a series of

FPFs {FPF1(s), FPF2(s), . . . , FPFP (s)} corresponding to the thresholds estimated in this approach.

In addition a series of intercepts in (1), {α1, α2, . . . , αP} that correspond to the P thresholds are

estimated. These are interpreted as {h(FPF1(s)), . . . , h(FPFP (s))}. See the appendix for details.

4.2 Prospective Methods

Risk regression techniques are well established for modeling event time data and they naturally ac-

commodate censoring. After fitting a prospective model one can combine it with observed predictor

distributions to calculate TPF and FPF parameters.

Heagerty and Zheng (2005) employ a Cox model for a baseline marker, Y :

λ(t) = λ0(t) exp(γ(t)Y )

where the regression parameter γ may depend on t. Fitting the model to a simple random sample

{(Yi, Ti), i = 1, . . . , n}, they note that for a binary marker and denoting the risk set at t, by R(t),

̂TPF(t) =

∑
i∈R(t) Yi exp(γ̂(t)Yi)∑

i∈R(t) exp(γ̂(t)Yi)

is a consistent estimate of TPF(t). This follows from the observation (Xu and O’Quigley (2000))

that under the Cox model, the distribution of Y exp(γ(t)Y ) for subjects in the risk set R(t) is equal

to the conditional distribution of Y given T = t. To estimate FPF, they employ the empirical

estimate in the controls in the risk set at τ :

F̂PF =
∑

i∈R(τ )

Yi/n(τ )
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where n(τ ) is the size of the risk set. With continuous biomarkers let the empirical distribution of

Y in the risk set at τ be F̂τ , then

̂ROCt(f) ≡
∑

i∈R(t) I(Yi > F̂−1
τ (1 − f)) exp{γ̂(t)Yi}∑

i∈R(t) exp{γ̂(t)Yi}

Song and Zhou (in press) employ the same data structure but a simplified model with non–time

dependent parameter γ(t) = γ. They use Bayes’ theorem to write TPF(t) and FPF for a binary

marker:

TPF(t) = P (Y = 1)P (T = t|Y = 1)/P (T = t)

= P (Y = 1)
λ0(t) exp(γ) exp(−Λ0(t) exp(γ))

λ0(t) exp(γ) exp(−Λ0(t) exp(γ) + λ0(t) exp(−Λ0(t))

= P (Y = 1)logit−1{γ + (1 − exp(γ))Λ0(t)}

where logit−1(x) = exp(x)/(1 + exp(x)) and Λ0 is the cumulative baseline hazard function;

FPF = P (Y = 1)P (T > τ |Y = 1)/P (T > τ )

= P (Y = 1)logit−1{(1 − exp(γ))Λ0(τ )};

Observe that if γ = 0 then TPF(t) = FPF = P (Y = 1), which is an intuitive result. Under

our convention that larger Y is associated with larger hazard rate, γ > 0, and we have that

larger baseline hazard leads to smaller TPF and FPF. On the other hand, if events are rare, i.e.,

Λ0(τ ) ≈ 0, we have FPF≈ P (Y = 1), the proportion of positive markers in the population at

baseline and TPF(t) ≈ P (Y = 1)logit−1{γ}, which does not depend on t.

With continuous marker, integrals over the distribution of Y enter into the TPF and FPF

expressions corresponding to the thresholded marker, I [Y > y]:

TPF(t) = FD,t(y) ≡
∫ ∞

y
exp(γY ) exp{−Λ0(t) exp(γY )}dF (Y )∫ ∞

−∞ exp(γY ) exp{−Λ0(t) exp(γY )}dF (Y )

FPF = Fτ (y) =

∫ ∞
y

exp{−Λ0(τ ) exp(γY )}dF (Y )∫ ∞
−∞ exp{−Λ0(τ ) exp(γY )}dF (Y )

.

Song and Zhou substitute γ̂, Λ̂0 and the empirical distribution of Y, F̂ , into the above expressions

to estimate TPF(t) and FPF. The ROC curve estimator is calculated as ̂ROCt(f) = F̂D,t(F̂
−1
τ (f)).
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Song and Zhou’s method has two advantages over the Heagerty and Zheng approach. First,

it was shown to be more efficient in simulation studies (Song and Zhou (in press)). This is likely

due to its employment of the maximum partial likelihood estimators (mple) for γ and Λ0 and so

the corresponding estimators of (TPF,FPF) are also mple. In contrast the estimator of TPF(t)

employed by Heagerty and Zheng is not the mple. Moreover their empirical estimator of FPF

does not utilize the structure conferred by the Cox-model. Song and Zhou utilize this structure in

estimating FPF. The second advantage concerns censoring. Heagerty and Zheng’s methods cannot

allow censoring to depend on Y . Subjects at risk at t must be representative of the “at risk”

population in regards to the predictor distribution. The Song and Zhou approach only utilizes the

baseline marker distribution and parameters of the risk model. The latter are consistently estimated

under standard censoring assumptions that allow follow-up to depend on modeled predictors. Hence

Song and Zhou’s approach is valid even if censoring depends on the marker Y . However, Song and

Zhou’s method is only valid when the proportional hazards assumption is satisfied whereas Heagerty

and Zheng extend their approach to allow estimation under nonproportional hazards.

4.3 Comparisons of Attributes

Among the retrospective methods, Cai et al. (2006) is the most comprehensive. Other retrospective

methods can be viewed as special cases of Cai’s. Therefore we compare it with the two prospective

approaches, Song and Zhou’s method and Heagerty and Zheng’s. We use the notation Cai, S+Z,

H+Z for the three methods below.

4.3.1 Perspectives

The true and false positive fractions are defined as retrospective quantities in the sense that they

concern the distribution of Y conditional on outcome. In our opinion a retrospective analysis seems

like the more natural and direct approach to estimating them. Moreover, parameters relating to

t in the retrospective approach, i.e., β in (1) and (2), directly quantify how performance varies

with t. Inference about these parameters is straightforward with the retrospective approach. In

contrast parameters in the prospective models do not directly quantify the time effect on biomarker

performance.

4.3.2 Modeling Assumptions

The modeling assumptions required by Cai are very mild. The method is nonparametric with

respect to the distribution of Y in controls and semiparametric in regards to the distribution of Y
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in cases. In particular, they do not specify a distributional form for Prob(Y |T ), but model only the

effect of T on this distribution with a parametric form.

The prospective methods are similarly mild in their assumptions. They use a semiparametric

model for Prob(T |Y ) but leave the distribution of Y in the cohort unspecified.

4.3.3 Censoring

Censoring that is independent of Y is accommodated by all methods. However, censoring that

depends on Y is only accommodated by the S+Z method at this point. Extension of the other two

methods to the more general setting of conditionally independent censoring is possible though not

completely trivial (Xu and O’Quigley 2000; Cai et al. 2006).

Interestingly the problem of verification biased sampling that is well studied in diagnostic test

evaluation (Chapter 7, Pepe 2003) is entirely analogous to predictor dependent censoring. Verifi-

cation biased sampling occurs when the result of the diagnostic test is used to select subjects for

ascertainment of their true disease status. The resulting bias in naive estimates of (TPF,FPF)

is called verification bias. Corrected estimates (Begg and Greenes 1983) are calculated by using

naive estimators of positive and negative predictive values, which are unbiased, and putting these

together with raw frequencies of positive and negative tests via Bayes theorem. Analogously, when

follow-up for the event time outcome depends on the predictor, one can use estimates of prospec-

tive parameters and the baseline distribution of predictors to calculate TPF and FPF via Bayes

theorem. Viewed in this manner, the S+Z method extends verification bias correction methods to

event time data.

4.3.4 Competing Risk Events

Although not specifically addressed by any of the methods as proposed, they can all be extended to

accommodate competing risk events. Hazard functions are replaced with cause specific hazard func-

tions and survivor functions are replaced with the probability of not having an event (of any type,

neither events of interest nor competing risk events). One can estimate a separate TPF(s, t) func-

tion for competing risk events. In Cai’s method a separate model is stipulated. In the prospective

approaches, separate cause specific hazard models would be employed.

4.3.5 Sampling

The prospective methods were proposed for cohort studies where data on a random sample from

the population are obtained. However, they can be generalized. In brief, if the sampling method
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allows calculation of estimates of the hazard function and of the population distribution of the pre-

dictor, the two prospective approaches can be applied. Case-cohort studies and nested case-control

designs where controls at T are a random sample from the population at risk at T can therefore be

accommodated. An alternative case-control design where controls are a random sample from the

population of controls with T > τ , do not give rise to estimates of the hazard function, hence they

are not accommodated. In contrast, retrospective methods naturally accommodate the latter case-

control study design, assuming censoring does not depend on Y . They also directly accommodate

cohort, case-cohort and case-‘risk set control’ designs under the same censoring assumption.

4.3.6 Longitudinal Biomarkers

Cai et al. (2006) developed the retrospective method in the general context where marker data

are collected longitudinally over time. An implicit assumption is that marker data at s are missing

at random conditional on subsequent event data. The prospective methods can be generalized to

accommodate longitudinal data using marginal regression models (Zheng and Heagerty, 2007, in

press). Specifically, each marker measurement Y (s) generates a data record with time origin for T

reset to s. That is the event or censoring time associated with Y (s) is T − s or X − s, respectively.

By allowing the corresponding baseline hazard and regression coefficients to depend on s, TPF and

FPF can be written as functions of s and t.

4.3.7 Covariates

Various factors can affect the marker distribution and/or performance of the marker as a predictor

of events. We call these factors covariates. One class is disease specific covariates, i.e., characteristic

of the disease. For example, the severity of the AKI event might affect the capacity of a biomarker to

predict it. For example, PSA may be a better predictor of one type of prostate cancer than another.

Disease specific covariates associated only with cases can be modeled as part of the TPF function

with the retrospective analysis approach. Such covariates are not generally accommodated by the

prospective methods. However, if the covariate is discrete, events can be classified and treated as

competing risks. For example, severe AKI events and mild AKI events could be considered different

competing risk event types and TPF estimates could be calculated for the two event types.

Other covariates apply to controls as well as to cases. For example, study site in a multicenter

study or characteristics of the subject or tester might influence the marker or its performance. Cai

et al. (2006) and Song and Zhou (in press) describe how to incorporate such covariates into the

analysis. We refer the reader to those papers for details.
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4.3.8 Comparing Markers

Retrospective methods can include multiple markers in the context of regression models for TPF

and FPF in a fashion similar to that described in chapter 3 of Pepe (2003). The models specify

parameters that relate to differences in performance between markers and comparative inference can

therefore be made. See sections 6.4.3 and 6.4.4 of Pepe(2003) for illustrations including illustration

with the prostate cancer screening data. Currently prospective methods have no capacity for doing

this. Comparing relative risks does not answer the question(Emir et al. 1998).

4.3.9 Combining Markers

The methods discussed in this paper are not concerned with how to combine predictors together.

However, once a combination is defined, the methods discussed in this paper can be used to evaluate

the performance of the combination using an independent test dataset. The Seattle Heart Failure

study fits exactly this paradigm. The combination score derived from one cohort is evaluated on

an independent cohort in the next section.

5 Data Analyses

5.1 Seattle Heart Failure Study

For computational ease we extracted a random sample of n = 1000 observations from the Val-heft

trial. Controls are defined as subjects alive at 2 years after enrollment into the trial. Figure 1

shows the Kaplan-Meier survivor function over (0,2) years. There were 165 deaths observed and

375 subjects were censored in this time period.

[Figure 1 here]

The remaining 460 subjects observed alive at 2 years are known controls. In addition, some

unknown proportion of those censored prior to 2 years are controls. Figure 2 displays the marker, the

SHF score measured at baseline, in the known controls and for comparison in the cases. Interestingly,

earlier deaths do not appear to have higher scores (p = 0.75 according to linear regression of SHF

score on event time for cases).

[Figure 2 here]

Assuming that censoring does not depend on the baseline SHF score, one could estimate crude

ROC curves by categorizing cases on the basis of their failure times and comparing their SHF

scores with the distribution for known controls. The crude curves in Figure 3(a) were calculated as
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empirical ROC curves for controls versus 3 groups of cases formed by categorizing T into intervals

(0.25,0.75], (0.75,1.25] and (1.25,1.75]. The median death times for the 3 groups of cases were 0.47,

1.01 and 1.46 years, respectively. The corresponding curves approximate ROC curves for subjects

who died at 0.5, 1.0 and 1.5 years after baseline. The Heagerty and Zheng curves in Figure 3(c)

use the same known controls for the FPF axis, but their Cox-model based estimate of TPF(t) on

the vertical axis. Cai’s method (Figure 3(b)) was implemented using a logistic model with the

effect of t on logitROCt(f) modelled as a linear spline with knot at t = 1 year, logit{ROCt(f)} =

h(f) + β1t + β2(t − 1)I [t > 1]. We estimated β̂1 = 0.300 and β̂2 = −0.260 without the censored

observations. A Wald test for H0 : β1 = β2 = 0; was not significant (p=0.66). The same conclusion

was reached after including observations censored by 2 years. Based on this analysis, the ROC

curves do not change significantly over time. That is, the SHF-score is not more sensitive to events

that occur early versus late in the 2-year time interval. The Song and Zhou curves (Figure 3(d))

also indicate very little variation in the ROC curves with t.

[Figure 3 here]

The ROC curve estimates shown in Table 1 are consistent with each other. However there

are considerable differences amongst the methods in terms of precision, as quantified by widths

of confidence intervals derived from quantiles of their bootstrap distributions. The crude ROC

curves have largest variance. Confidence intervals based on the Cai method are narrower. However,

inclusion of the censored data does not improve them considerably. Amongst the prospective

methods, as expected Song and Zhou’s method is more efficient than Heagerty and Zheng’s. Both

prospective methods yield narrower confidence intervals than those calculated with Cai’s method.

At this point we do not have an explanation. Further work will be needed to determine if this is a

general phenomenon.

[Table 1 here]

5.2 Prostate Cancer Screening Study

ROC curves pertaining to the nested case-control study of total-PSA and ratio-PSA biomarkers in

the CARET cohort have been reported previously (Etzioni et al. 1999; Cai and Pepe 2002; Pepe

2003; (Example 6.13); Pepe et al. 2001). The raw data are available at www.fhcrc.org/science

/labs/pepe/dabs/. We refer the reader to those papers for full description of analysis techniques

and interpretations of results. An interesting aspect of the analysis is the comparison of two

biomarkers for an event time outcome.
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5.3 Kidney Biomarkers Study

The study to evaluate biomarkers of AKI is in progress and data will not be available for some time.

We have simulated data that approximates the study design, as described in Appendix B. These

data are available on the DABS website (www.fhcrc.org/science/labs/pepe/dabs/).

[Figure 4 here]

Of the 1800 subjects in the study, 342 had AKI events, 136 severe AKI and 206 mild AKI.

In addition, 18 patients died from causes seemingly unrelated to kidney damage. Figure 4 shows

the distributions of event times. Consider the biomarker measured from the first postoperative

urine sample that we call the baseline biomarker. Its distribution is displayed in Figure 5 for the 4

patient groups. We see that compared with controls the AKI groups have generally higher baseline

biomarker values, with the severe AKI group being more removed from controls than are the mild

AKI values. The baseline biomarker in patients who die from non-AKI events does not appear

to differ from controls. Formal comparisons between the groups based on the Wilcoxon rank sum

statistic yield p−values: p =< 0.001 for mild AKI versus controls; p =< 0.001 for severe AKI

versus controls; p = 0.038 for severe AKI versus mild AKI; and p = 0.23 for non-AKI deaths versus

controls. Note that the Wilcoxon rank sum statistic is a simple function of the nonparametric area

under the ROC curve that compares two groups.

[Figure 5 here]

The crude ROC curves for the baseline biomarker in Figure 6 were calculated by categorizing the

event time axis as early=(.25,1.5] and medium=(1.5,3]. ROC curves comparing baseline biomarker

values in controls with those of subjects with severe AKI events in each of the time intervals are

shown in Figure 6 left panel while corresponding curves for subjects with mild AKI events are in

the right panel.

[Figure 6 here]

We implemented Cai’s method for the baseline marker with the following time-dependent ROC

curve model

logit{ROCt(f)} = h0(f) + β1t + β2(t − 1.5)I [t > 1.5].

That is, we used a logistic link function, nonparametric baseline ROC curve and modelled event time

effects as a linear spline with one knot at t=1.5. Separate models were fit for mild and severe AKI

events, although we note that a model including both could have been fit by including interactions

with ‘event type’ in the above ROC-GLM formulation.

Song and Zhou’s method was also applied. We included only subjects with severe events and

17

Hosted by The Berkeley Electronic Press



controls in estimating ROC curves corresponding to severe AKI versus controls and only mild AKI

versus controls in the second set of analyses. Controls were censored at 5 days which is the end of

the observation time. Separate models and analyses were used for mild and severe cases. Figure 6

displays estimated ROC curves at T =1 and 2 days. Since the data are simulated, we were also able

to calculate the true time-dependent ROC curves by simulating a very large data set, and selecting

cases of each severity with events in the interval (T − .01, T + .01) and controls, and calculating the

empirical ROC curves. Table 2 displays results.

[Table 2 here]

We see for example that allowing a 20% false positive rate the baseline marker detects 59.9% of

subjects who develop severe AKI 2 days after surgery and 41.3% of those who develop mild AKI

at 2 days after surgery. It detects a slightly higher fraction, 43.6%, of those that develop mild AKI

at one day after surgery. The true ROC curves rise steeply on the left and turn sharply linear at

approximately TPF=0.5 for severe AKI and at TPF=0.25 for mild AKI. The nonparametric nature

of the baseline ROC curve allows the curves calculated with Cai’s method to follow this shape.

Moreover, the curves estimated with Cai’s method are similar to the crude nonparametric curves,

i.e., they follow the raw data rather well. On the other hand, the Song and Zhou estimates are not

close to the crude ROC curves. Presumably this is because the proportional hazards assumption

does not hold. The results suggest that the Song and Zhou approach should be generalized to allow

non proportional hazards models.

[Figure 7 here]

Turning now to the longitudinal biomarker data, we first explored if in controls the biomarker

distribution varied with s, time from surgery. It appears to be stable over time (data not shown).

Figure 7 is similar to the display of biomarker distributions in Figure 5 except that all biomarker

measurements are displayed, and marginalized over time for the controls. The time axis t for

cases is time from marker measurement to AKI event. Each case has multiple observations, (Y, t),

corresponding to the various measurements prior to his event. Note that the time axis here differs

from that used for the baseline marker in the earlier analysis where t = T . Here, the analysis

acknowledges that the baseline marker is measured at some time in (0,0.25), not at 0. Therefore t,

time from measurement of the baseline marker to event, is not the same as the event time, T .

[Figure 8 here]

[Table 3 here]

ROC curves were fit using these longitudinal data with the same methods as described earlier.
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Results are shown in Figure 8 and Table 3. We conclude that with the new urine biomarker when

allowing a 20% FPF, 94.2% of subjects with severe AKI events can be detected 1 day prior to their

clinical diagnosis, and 87.6% can be detected 2 days prior. The corresponding numbers for subjects

with mild AKI are 89.7% and 78.9%. Contrast these with the much smaller proportions that could

be detected using only the baseline biomarker. In regards to estimating the time-dependent ROC

curves, the Song and Zhou method appears to underestimate. The underestimation is particularly

problematic at smaller FPFs. Presumably the proportional hazards assumption again fails. Cai’s

method does a much better job of estimation here. It is close to the nonparametric ‘crude’ curves,

but does not require choosing time intervals about t to estimate the ROC curve at t.

6 Discussion

Sam Wieand made many contributions to the fields of biostatistics and oncology in particular. One

of his legacies is the promotion of sound approaches to evaluating predictors for diagnostic and

prognostic purposes. He recognized that relative risks alone are inadequate and he promoted the

use of ROC curves instead. Since his landmark 1989 paper with Gail, James and James (Wieand

et al. 1989), ROC analysis methodology has progressed considerably. Yet ROC analysis methods

are not well developed for the analysis of censored failure time data, another topic of great interest

to Sam Wieand. Our paper is an effort to summarize the current state of this field. These methods

should be used in practice and some directions for further work are apparent.

The focus of this paper has been on estimating time dependent ROC curves. Methods for

estimating summary indices such as the area under the time-dependent ROC curve (AUC), were

not discussed, although they have been developed (Antolini, Boracchi and Biganzoli 2005; Chambers

and Dias 2006). Although the AUC is a popular summary index, it has been widely criticized as

clinically irrelevant (Cook 2007; Baker 2003). Sam Wieand himself suggested using instead the

partial AUC to summarize predictor performance over a restricted range of false positive (or true

positive) fractions (Wieand et al. 1989). It would be interesting and useful to develop methodology

for inference about time-dependent partial AUC as a summary of the performance of a marker for

predicting event time outcomes.
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Appendix A: Implementation of Cai’s procedure

First suppose that the marker Yi is binary, measured only at baseline time 0, and that there is no

censoring. Each subject is classified as a case with event time Ti < τ or as a control (possibly with

event time Ti > τ ). Writing the TPF and FPF models as

TPF(t) = g(α + βη(t))

FPF = f,

we fit a binary GLM to the data for cases with outcome variable Y and covariates η(T ). This yields

TPF(t). The FPF estimate is the proportion of controls with Y = 1.

To include censored observations, if the observation time Xi > τ then that subject is included

as a control with observation weight wi = P̂ (Ti > τ |Ti > Xi) = P̂ (Ti > τ )/P̂ (Ti > Xi) where

both numerator and denominator can be calculated with a Kaplan-Meier estimate. The censored

subject is also included as multiple case observations with observation weights. Specifically, a data

record is created for him for each event time in the dataset observed after Xi and before τ , written

as {Tj : Tj > Xi and Tj > Tj − 1}. In the jth record, let T = Tj, Y = Yi and let the observation

weight wij = {P̂ (T ≥ Tj) − P̂ (T ≥ Tj−1)}/P̂ (T ≥ Xi). Each component of wij is estimated with

the Kaplan Meier. The analysis then proceeds as before.

To analyze data in which biomarkers are measured at multiple time points, each subject has a

data record for each biomarker measurement time sik, {Yi(sik), Xi, δi} where δi denotes his censoring

status and Xi denotes his observation time. The time origin for this record is reset to 0 at sik since

we are concerned with t =time until event after biomarker measurement. Thus replace Xi with

Xi − sik and the analysis proceeds as before. Note that the measurement time sik may be included

as a covariate. That is, if the distribution of the biomarker can vary with s, the models for FPF

and TPF(t) may be extended to include s as a covariate.

Finally, suppose that the biomarker Y is continuous. This is accommodated by replacing each

record in the dataset with P records, each corresponding to a different cutpoint {c1 . . . cP }, and

replacing the continuous marker Yi(sik) with the dichotomous version I [Yi(sik) > cp]. The FPF

and TPF models include factor variables for the cutpoint so that cutpoint specific FPF and TPF

estimates are derived from the fitted models. Ideally the cutpoints used are estimated quantiles of

the biomarker in controls (possibly depending on s through regression quantile techniques). This

implies that they represent points corresponding to specific FPF points on the x-axis of the ROC

curve.
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To summarize, the steps involved in fitting the Cai model to data, which is organized as records

of the form (Yi(sik), Xi, δi)

(i) If the biomarker is continuous: Using P cutpoints, expand each record to a series of P records

with corresponding dichotomized marker and include the variable sik in the record;

(ii) If the biomarker is measured at times sik > 0: replace Xi with Xi − sik in the (ik)th data

record.

(iii) If some observations are censored: calculate survivor function estimates and expand censored

observation to multiple observations with weights as described above. Note that survivor

function estimates may be allowed to depend on sik if necessary by stratification or hazard

function regression modeling.

(iv) Having restructured the data, binary GLM regression models are fit for the FPF and TPF

models using respectively case and control observation records.

(v) Standard errors and confidence intervals are calculated by bootstrapping the original dataset

B times and proceeding with restructuring and estimation for each resampled dataset.

Appendix B: Generation of Simulated Kidney Biomarker

Data

(i)Notation

n = total sample size = 1800

i = subject index

k = kth specimen sample

sik = time of the kth specimen for the ith subject

(ii) Sampling Times (sik)

Patients should have a urine sample taken approximately every 5 hours for 5 days after surgery.

The timing is often delayed. Generate

sik = 0.25k + εik
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k = 1, . . . , 20 and ε ∼ uniform (0,0.25). These potential sampling times are modified (below)

depending on patient status.

(iii) Patient Subgroups

Controls

A random set of 1440 patients were assigned control status. We simulated their being discharged

on day 3 (30%), day 4 (40%) and day 5 (30%) by dropping measurement times sik exceeding days

3 and 4 for random subsets of 30% and 40% of controls, respectively.

Non-AKI deaths

18 patients were assigned non-AKI death status. Measurement times after day 1 were dropped for

6 of the patients simulating that the event occurred on day 1. Similarly by dropping measurement

times after days 2, 3, and 4 for sets of 3 patients each, we simulated events at day 2 for 3 patients,

at day 3 for 3 patients, at day 4 for 3 patients and at day 5 for 3 patients.

AKI events (T )

All remaining 342 patients had an AKI event. Of these, we assigned 206 severity status mild and

135 severe. An unobserved latent event time E was generated as follows for patients with severe

AKI:

Esev ∼ uniform (0, 0.25) with probability 0.6

Esev ∼ uniform (0.25, 1.25) with probability 0.4

That is, Esev, the true latent time of AKI, was uniformly distributed between 0 and 0.25 in 60% of

severe patients and uniformly distributed between 0.25 and 1.25 in 40%. Corresponding true time

of AKI in patients who had mild AKI was such that

Emild ∼ uniform (0, 0.25) with probability 0.4

Emild ∼ uniform (0.25, 2.25) with probability 0.6

The time, T , of clinical diagnosis of AKI with serum creatinine was generated as

T = E + V where V ∼ uniform (0, 2.75)

(iv) Biomarker Values

Controls and non-AKI deaths

Biomarker values are normally distributed with mean 0 and variance 1 with no trend over time. An
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auto-regressive structure was simulated:

Yi,1 ∼ N(0, 1)

Yi,k = αYi,k−1 +
√

1 − α2 εik, k ≥ 2

where εik is independent N(0, 1) error and the autoregressive correlation is determined by α. We

chose α = 0.8.

Cases

In cases, biomarker values are generated as for controls up to the time of their (unobserved) event

time E. Let sik∗ be the time of the first measurement after E. We generated

Yi,k∗ = Δ + αYi,k∗−1 +
√

1 − α2 εik∗

where Δ = μ + δ, δ independent normally distributed with mean 0 and standards deviation 2 and

μ, the mean of Yik∗ depends on severity of AKI.

μ =8 for subjects with severe AKI

μ =4 for subjects with mild AKI.

For later measurement times,

Yi,k = αYi,k−1 +
√

1 − α2 εik, k > k∗.
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Figure 1: Kaplan-Meier survival estimates for 1000 subjects enrolled in the Val-heft trial. 460
subjects remain alive and uncensored at τ = 2 years.
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Figure 2: SHF scores measured at enrollment in cases (left panel) as a function of their death time
T and a box-plot of the SHF score distribution in known controls (right panel). The median, 25th

and 75th percentile curves displayed in the left panel were modelled as linear splines with knots at
0.75 and 1.5 years and estimated using quantile regression methods (Koenker and Bassett 1982).
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Figure 3: ROC curves calculated with the Seattle Heart Failure data using 4 methods: (a)
categorizing T and comparing with known controls only; (b) Cai’s retrospective method with
logit{ROCt(f)} ≡ h(f) + βt, nonparametric h; (c) Heagerty and Zheng with proportional haz-
ards model; and (d) Song and Zhou with a proportional hazards model.
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Figure 4: Cumulation distributions of event times in the kidney biomarker study.
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Figure 5: Baseline AKI biomarker distributions. Lowess curves for biomarkers in severe and mild
AKI subgroups are shown.
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Figure 6: ROC curves and their estimates for the baseline AKI biomarker at T = 1 and 2 days
after surgery.
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Figure 7: Biomarker distributions in cases as a function of the time lag between marker measurement
and event time,T = T − s, and in controls.
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Figure 8: ROC curves for the longitudinally measured AKI biomarker measured at 1 and 2 days
prior to clinical diagnosis of AKI with serum creatinine.
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Table 1: Comparison of estimated ROC curves calculated from The Seattle Heart Failure Study
data. 95% confidence intervals in parentheses are based on the same 200 bootstrapped samples.

Crude Cai1 Cai-cens2 H+Z3 S+Z4

0.2 t = 0.5 0.489(0.319,0.633) 0.412(0.293,0.519) 0.411(0.304,0.500) 0.410(0.329,0.487) 0.418(0.335,0.486)
t = 1.0 0.395(0.256,0.581) 0.448(0.264,0.593) 0.454(0.288,0.602) 0.399(0.322,0.467) 0.407(0.327,0.466)
t = 1.5 0.421(0.274,0.606) 0.453(0.319,0.547) 0.389(0.290,0.469) 0.401(0.333,0.472) 0.392(0.319,0.449)

0.5 t = 0.5 0.766(0.654,0.878) 0.700(0.582,0.786) 0.719(0.613,0.790) 0.702(0.626,0.753) 0.723(0.652,0.771)
t = 1.0 0.737(0.538,0.864) 0.730(0.560,0.829) 0.753(0.598,0.847) 0.692(0.619,0.743) 0.715(0.646,0.760)
t = 1.5 0.737(0.593,0.870) 0.734(0.627,0.801) 0.701(0.620,0.766) 0.693(0.624,0.737) 0.705(0.639,0.748)

0.8 t = 0.5 0.936(0.860,1.000) 0.897(0.829,0.943) 0.910(0.854,0.952) 0.911(0.876,0.937) 0.918(0.885,0.937)
t = 1.0 0.842(0.710,0.957) 0.910(0.830,0.961) 0.923(0.845,0.963) 0.907(0.873,0.934) 0.915(0.883,0.934)
t = 1.5 0.947(0.857,1.000) 0.912(0.858,0.952) 0.902(0.847,0.944) 0.908(0.871,0.934) 0.911(0.879,0.930)

1Cai’s method using only known controls for the FPF
2Cai’s method including censored observation in (0,2) years
3Heagerty and Zheng’s method
4Song and Zhou’s method

Table 2: Comparison of estimated ROC curves for the baseline biomarker of acute kidney injury.
Here t is the time after surgery that AKI was diagnosed.

Severe AKI Mild AKI
True Crude Cai S+Z1 True Crude Cai S+Z1

0.05 t = 1 0.525 0.529 0.565 0.619 0.315 0.354 0.385 0.278
t = 2 0.524 0.600 0.541 0.414 0.289 0.283 0.226 0.199

0.20 t = 1 0.599 0.608 0.631 0.722 0.436 0.538 0.577 0.475
t = 2 0.599 0.613 0.608 0.568 0.413 0.398 0.384 0.414

0.50 t = 1 0.751 0.745 0.755 0.861 0.644 0.754 0.770 0.741
t = 2 0.752 0.725 0.736 0.783 0.634 0.584 0.605 0.710

0.80 t = 1 0.897 0.843 0.875 0.958 0.858 0.892 0.917 0.923
t = 2 0.901 0.863 0.864 0.934 0.857 0.867 0.837 0.914

1Song and Zhou’s method
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Table 3: Comparison of estimated ROC curves for the biomarker of acute kidney injury. Here
t is the time interval in days prior to clincial diagnosis of kidney injury that the biomarker was
measured. Longitudinal biomarker data are included.

Severe AKI Mild AKI
True Crude Cai S+Z1 True Crude Cai S+Z1

f = 0.05 t = 1 0.932 0.923 0.933 0.645 0.874 0.887 0.880 0.564
t = 2 0.854 0.839 0.804 0.325 0.743 0.696 0.665 0.323

f = 0.20 t = 1 0.942 0.933 0.955 0.717 0.897 0.919 0.917 0.663
t = 2 0.876 0.850 0.847 0.461 0.789 0.753 0.748 0.475

f = 0.50 t = 1 0.965 0.957 0.971 0.839 0.936 0.950 0.953 0.817
t = 2 0.923 0.894 0.897 0.693 0.868 0.853 0.846 0.715

f = 0.8 t = 1 0.986 0.980 0.988 0.943 0.975 0.979 0.983 0.939
t = 2 0.968 0.950 0.955 0.891 0.947 0.948 0.940 0.905

1Song and Zhou’s method
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