

UW Biostatistics Working Paper Series

May 2007

Evaluating the ROC Performance of Markers for Future Events

Margaret Pepe University of Washington, Fred Hutch Cancer Research Center, mspepe@u.washington.edu

Yingye Zheng Fred Hutchinson Cancer Research Center, yzheng@fhcrc.org

Yuying Jin University of Washington, jinyu@u.washington.edu

Follow this and additional works at: https://biostats.bepress.com/uwbiostat

Part of the Statistical Methodology Commons, and the Statistical Theory Commons

Suggested Citation

Pepe, Margaret; Zheng, Yingye; and Jin, Yuying, "Evaluating the ROC Performance of Markers for Future Events" (May 2007). *UW Biostatistics Working Paper Series.* Working Paper 313. https://biostats.bepress.com/uwbiostat/paper313

This working paper is hosted by The Berkeley Electronic Press (bepress) and may not be commercially reproduced without the permission of the copyright holder. Copyright © 2011 by the authors

Evaluating the ROC performance of markers for future events

Margaret Pepe \cdot Yingye Zheng \cdot Yuying Jin

May 11, 2007

Abstract

Receiver operating characteristic (ROC) curves play a central role in the evaluation of biomarkers and tests for disease diagnosis. Predictors for event time outcomes can also be evaluated with ROC curves, but the time lag between marker measurement and event time must be acknowledged. We discuss different definitions of time-dependent ROC curves in the context of real applications. Several approaches have been proposed for estimation. We contrast retrospective versus prospective methods in regards to assumptions and flexibility, including their capacities to incorporate censored data, competing risks and different sampling schemes. Applications to two datasets are presented. **Keywords** prediction, diagnostic test, prognosis, sensitivity, specificity

M. S. Pepe (corresponding author) · Y. Zheng Biostatistics and Biomathematics, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA e-mail: mspepe@u.washington.edu

Y. Zheng e-mail: yzheng@fhcrc.org

Y. Jin Collection of Biostatistics

Biostatistics Department, University of Washington, Seattle, WA 98195 e-mail: jinyu@u.washington.edu

1 Introduction

Techniques for analyzing event time data are now routinely applied in biomedical research. In particular, regression models such as Cox regression are often fit to data in order to study the effects of predictors on risk of a future event. However, Sam Wieand was amongst those who recognized that risk models do not address the potential of a predictor to distinguish between those who will have an event and those who will not (Emir et al. 1998). Indeed a marker can have a large effect on risk yet perform poorly as a discriminator.

For a binary outcome variable the classification accuracy of a marker is typically quantified with the true and false positive fractions. The former, TPF=P(marker positive | outcome positive), is the probability of correctly classifying a subject with positive outcome and the latter, FPF=P(marker positive | outcome negative), is the probability of incorrectly classifying a subject with negative outcome. The benefit of true positive classifications is gained at the cost of false positive classifications. When the predictive marker, Y, is continuous, thresholding criteria, Y > c, are used to define marker positivity. The ROC curve is the standard summary of classification performance for continuous markers (Baker 2003). It plots the TPF versus FPF for all thresholds c. When multiple predictors are involved, the marker is naturally defined as the risk function, Y=P[outcome positive | predictors], or equivalently as any monotone increasing function of it. It is the optimal combination of predictors for classification (McIntosh and Pepe, 2002), a result that follows from the Neyman-Pearson lemma. See Zheng, Cai and Feng (2006) for related results pertaining to event time outcomes.

In this paper we consider marker performance for outcomes that are not simply binary but that are event time outcomes. A recent paper in the *New England Journal of Medicine* on biomarkers for cardiovascular events (Wang et al. 2006) stated that "standard methods do not exist for deriving ROC curves for time-to-event data." In fact several approaches have been proposed. However the literature is scattered and a standard approach has not emerged. Here, we review existing methods and discuss issues that lead to preference for one method over another.

2 Applications

We describe three applications that exemplify key issues in evaluating the performance of markers for event time outcomes.

Research Archive

2.1 Markers of Acute Kidney Injury

Patients who undergo major cardiac surgery are at high risk of suffering kidney damage due to interruption of blood flow to the kidneys during surgery. Although monitoring of serum creatinine is the standard approach to detecting acute kidney injury (AKI), it has an important drawback. The serum creatinine response is typically delayed by 1 to 3 days due to creatinine reserve compartments that exist to maintain homeostasis in healthy individuals.

Biomarkers are sought to detect AKI earlier than serum creatinine so that appropriate treatment can be promptly initiated. Two such markers measured in urine are currently under investigation in a multicenter study of 1800 patients undergoing major cardiac surgery. Urine samples are taken at various intervals after surgery, frozen and stored. At the end of the study these stored specimens will be assayed for the new markers. Serum creatinine is monitored in these patients as part of their routine clinical care. An AKI event occurs when the creatinine level increases by 25% over preoperative levels and is sustained for 24 hours. Patients with AKI are classified as having a severe event if the level reaches >200% of preoperative serum creatinine during the course of their clinical care. Otherwise the event is classified as mild.

Approximately 80% of patients recover from surgery without AKI or other devastating events and are discharged 3–5 days after surgery. We expect that 20% will experience an AKI event, 12% mild and 8% severe. An additional small group of patients, <1%, will die from complications associated with their disease or surgery without meeting criteria for AKI. These we call non-AKI deaths.

Some questions of interest in this study are: to determine the numbers of patients for whom the diagnosis of AKI can be advanced with the new markers, by how long and at what cost in terms of false diagnoses. The analysis needs to accommodate competing risk events due to non-AKI deaths, the varying degrees of severity of AKI and the longitudinal nature of the biomarkers. The data will not be censored as all subjects are followed closely until discharge or death.

2.2 Seattle Heart Failure Study

More than 5 million people in the United States have heart failure. However, outcomes are highly variable and annual mortality estimates range from 5% to 75%. The Seattle Heart Failure study (Levy et al (2006)) combined data from 6 cohorts of patients. One cohort, the PRAISE study, (Packer et al (1996)) was used to develop a 'risk of mortality' model with Cox regression that included easily obtainable baseline information relating to clinical status, therapy and laboratory

parameters. The other cohorts were used to evaluate the accuracy of this model.

Here we consider evaluating the performance of the linear predictor obtained from PRAISE to discriminate people who die in the first 2 years from those who do not. We use the largest independent validation cohort (Val-heft) considered by Levy et al. This cohort of 5010 patients was derived from a randomized trial of the angiotensin-receptor blocker valsartan (Cohn and Tognoni (2001)). Characteristics of these subjects have been reported. There were 979 deaths and the mean followup was 2 years. Survival estimates at 1, 2 and 3 years were 91%, 81.6% and 71.7% respectively. These numbers agree well with the survival rates predicted by the PRAISE risk model (Levy et al (2006)).

In this application the outcome, death, is a classic event outcome qualified only by the time at which it occurs but not by severity. There is censoring due almost entirely to gradual enrollment into the study over time and not due to loss to followup. There are no competing risk events and the marker, i.e., the risk score, is measured only at the baseline enrollment time.

2.3 Prostate Cancer Screening

Prostate specific antigen (PSA) is a biomarker for prostate cancer. Etzioni et al. (1999) conducted a case-control study to evaluate the performance of PSA as a screening marker. Subjects in the Beta-Carotene and Retinal Trial (CARET; Omenn et al. 1996) formed the cohort from which 71 prostate cancer cases were selected. Screening for prostate cancer with PSA typically was not performed during the study period. Serum specimens were obtained annually from participants in CARET and stored in freezers. Frozen serum specimens that were obtained prior to diagnosis were retrieved for the cases and most subjects had at least 3 such specimens. A set of age-matched controls who had not been diagnosed with prostate cancer were selected for comparison. Two biomarkers, total-PSA and ratio-PSA, were measured on the serum samples.

The objectives of this study were to determine for how many subjects a diagnosis of prostate cancer could be advanced with a PSA screen, by how long and at what cost in terms of false positive results. In addition, the study sought to compare the performances of the two biomarkers.

This case-control study nested within the CARET cohort is retrospective in design. There is no natural time origin. Censoring and competing risk events in the cohort were ignored. Nevertheless, for cases the essential time component is the time lag between serum sampling and subsequent development of disease. This can be viewed prospectively using the time of serum sampling as the time origin or retrospectively using the time of diagnosis as the time origin. Although the outcome, prostate cancer, is recorded dichotomously in this study, one could have stratified case selection using disease characteristics such as stage or grade in order to evaluate whether such factors affect biomarker performance. Finally, we note that the study did not seek to evaluate screening rules based on longitudinal marker trajectories or monitoring protocols, but simply the performance of a single screen using either total or ratio PSA.

3 Definitions of ROC for Event Time Outcomes

3.1 Time Dependent TPF

Consider first the simplest scenario where the marker Y is binary and measured at a baseline time t = 0. Let T denote the event time for a case. One definition of time-dependent TPF is

$$\operatorname{TPF}(t) = \operatorname{Prob}(Y = 1|T = t)$$

This definition allows the sensitivity of the marker to depend on the time that the event occurs. Certainly in the kidney biomarkers study, baseline (day 0) biomarkers are likely to be more sensitive to AKI diagnosed on day 1 rather than AKI diagnosed on day 3 since it is more likely that the kidney injury was not present at baseline if it was not picked up by serum creatinine until day 3. In the heart failure study, it is likely that people who die early have more extreme levels of baseline risk factors than subjects who die later. Therefore the TPF associated with the risk score is likely to be higher for earlier events than for later events. In the context of cancer screening, biomarker levels tend to be higher for subjects with larger subclinical tumor and those are likely to manifest clinically sooner. Thus again, the TPF is likely to be a decreasing function of t.

Now suppose that the marker is measured at time s, such as in longitudinal studies or when there is no natural baseline time. We write

$$TPF(t) = Prob(Y(s) = 1|T = t + s)$$

the sensitivity of the marker to events that occur t units after Y is measured. In some applications this sensitivity could depend not only on the time lag, t, but also on s the absolute time of measurement. For example, if s denotes age or time after intervention then the TPF could depend on t and s, and we would write

ESS REPOSITIVE $(s, t) = \operatorname{Prob}(Y(s) = 1 | T = t + s).$

Heagerty and Zheng (2005) introduced a taxonomy for time dependent measures of accuracy. The TPF(t) defined above is the *incident* true positive fraction and is the version adopted by most

methodologists (Heagerty and Zheng (2005); Etzioni et al (1999); Cai et al (2006); Zheng and Heagerty (2004); Song and Zhou (in press)). An alternative version is the cumulative TPF:

$$\operatorname{TPF}_c(s,t) = \operatorname{Prob}(Y(s) = 1 | s < T < = t + s)$$

which evaluates sensitivity for events that occur throughout the time interval (s, s+t) as opposed to events that occur at t time units after Y is measured. This definition is used in many applied papers (e.g., Wang et al. (2006)) because it is easily estimated empirically. Specifically in uncensored data an estimate is the simple proportion of subjects with events in the time interval who have positive marker values t time units prior to their events. Estimators that accommodate censoring have been developed (Heagerty, Lumley and Pepe (2000); DeLong, Vernon and Bollinger (1985); Parker and Delong (2003); Zheng and Heagerty (in press); Song and Zhou (in press)). Cai et. al. (2006) focused on the incident TPF but noted that the cumulative TPF can be calculated directly from it as $\text{TPF}_c(t) = \int (\text{TPF}(t)dF_T(u))$ where F_T is the cumulative distribution of the event time. On the other hand, estimating the incident on the basis of a cumulative TPF estimate is more difficult, in our opinion, because differentiation is harder numerically than is integration. In addition, by lumping all events in (s, s+t) together, the cumulative TPF does not distinguish between sensitivity to events that occur early versus late in the interval. Moreover, a series of cumulative TPFs indexed by t shows redundant information in the sense that $\text{TPF}(t_2)$ includes events in $\text{TPF}(t_1)$ if $t_1 < t_2$, while a series of incident TPFs show essentially different information in each. We focus on the incident TPF in the remainder of this paper.

3.2 The FPF and ROC

In the classic setting with binary outcomes, the FPF = P(Y = 1|D = 0) is the fraction of controls that test positive. Who are the controls when the outcome is a failure time? One sensible definition is to consider controls to be those individuals for whom a positive test is an error. A natural such control group emerges in some applications. In the kidney biomarkers study, controls are those 80% of patients who recover from surgery and are discharged without experiencing AKI or other devastating event. In prostate cancer screening, ideal controls would be individuals who would never be diagnosed with life threatening prostate cancer in their lifetimes in the absence of screening. The CARET case-control study did not have lifetime follow up for all subjects, so subjects who did not have prostate cancer at the time of analysis were considered an approximate control group.

Definition of control status is more problematic when all subjects eventually have the event of interest. Since everybody dies, the Seattle Heart Failure Study does not have a natural control group. One possibility is to choose a large landmark time point, τ , and define controls as subjects with $T > \tau$. The optimal choice for τ should be context dependent. For example, if the intention is to monitor individuals at time intervals of length, δ , considering that intervention will be adequate if administered at time δ before the event, then the choice $\tau = 2\delta$ would be sufficient. Subjects for whom $T > 2\delta$, do not need to test positive because they can still be tested and treated adequately with future monitoring. In the Heart Failure Study, however, the optimal choice of τ is not clear. Moreover limitations of the data may limit the possibilities. We choose $\tau = 2$ years in part because few subjects were followed beyond 2.5 years. Moreover we acknowledge that with this choice of τ , the controls are better described as a reference group against which to compare subjects with earlier events, rather than as a true control group.

Heagerty and Zheng (2005) call the FPF defined above,

$$FPF(s) = Prob(Y(s) = 1|T > s + \tau),$$

the *static* false positive fraction. An alternative is to allow the FPF to vary with the time lag t = T - s. FPF_d(t, s) = Prob(Y(s) = 1|T > s + t), the proportion of positive tests among subjects without events by t time units after the marker measurement time, is called the *dynamic* FPF (Heagerty and Zheng 2005; Zheng and Heagerty (in press)). This quantity can sometimes misrepresent the accuracy of a biomarker. Consider that subjects with an event shortly after the time lag t are counted as dynamic controls at t. A positive test for such a subject is counted against the biomarker, as a false positive. Yet perhaps it should count in favor of the test's ability to flag future events. Another practical problem with dynamic FPFs is that because the control groups vary with time so too does the x-axis of the corresponding ROC curves. It therefore becomes more difficult to interpret trends over time in time-dependent ROC curves. With a static control group, time trends in ROCs relate to trends in the detection of events. However such trends may be due to a combination of changing control groups and changing detection properties when ROC curves use dynamic controls. Indeed consider that when using dynamic FPFs, even if the TPF associated with a specific thresholding rule Y(s) > c is constant over time, the ROC curves will appear to increase with larger t as the control groups drop subjects who have events. We will focus on the static FPF in the remainder of this paper. For applications like the kidney biomarker study, where there is a natural control group that is not defined solely by time, we will assign a fictitious event time $\tau + \delta$ to controls, so that we can use uniform notation.

If F denotes the cdf for Y(s) in the control group, the time-dependent ROC curve is defined by

Research Archive

$$\operatorname{ROC}_{t,s}(f) = \operatorname{Prob}(Y(s)) >= c(s)|T = s + t)$$
 where $c(s) = F^{-1}(1 - f)$

That is the TPF(t, s) corresponding to an FPF(s) = f.

We emphasize that the marker at time s, Y(s), may be a function of marker history up to time s, and is not necessarily the value of a single measurement at time s. Moreover, the distribution of Y(s) may vary with s, for example when the time scale s is age or time after an intervention, so the threshold c(s) may depend on s. In some applications discrimination achieved with the marker may depend on the absolute time scale s (e.g., age) as well as on the time lag t, and our notation allows this level of generality.

3.3 Censoring and Competing Risk Events

Censoring is often but not always an issue in prospective studies with event time outcomes. It arises in the Heart Failure study but not in the Kidney Biomarker study. Censoring is a nuisance in the data and clearly should not impact on the definitions for TPF and FPF. The common simple practice of including all subjects without events in the FPF calculation (Wang et al. 2006) is flawed in part because some of the included censored subjects may have events, thus contaminating the control group.

On the other hand, competing risk events are real phenomena that occur in the population and should therefore impact on (TPF, FPF) definitions. Should subjects with competing risk events be considered cases or controls? In the kidney biomarker study, it is possible that the biomarkers will be predictive of competing risk events. One might consider them a second case group and evaluate the markers in them separately. That is, two separate ROC curves could be estimated: one of primary interest that compares subjects with AKI events to the controls and one of secondary interest that compares subjects with competing risks to controls. An alternative is to include them in the control group. This would only be warranted if flagging such subjects as positive would lead to clinically erroneous decisions. Even then, it might still be of interest to compare them with the other controls so that one can interpret the overall false positive fractions in terms of the components from each type of control group.

4 Estimation from Data

Approaches to estimating biomarker performance parameters can be classified broadly as prospective or retrospective. Each class has its own strengths.

Collection of Biostatistics Research Archive

4.1 Retrospective Methods

Consider the simplest setting where Y(s) is a binary marker and there is no censoring. We write the data for controls as $\{Y_j(s_{jk}), k = 1, \ldots, n_j; j = 1, \ldots, n_{\bar{D}}\}$ and the data for cases as $\{Y_i(s_{ik}), k = 1, \ldots, n_i; T_i; i = 1, \ldots, n_D\}$. Leisenring et. al. proposed simple binary regression methods for this setting (Leisenring, Pepe and Longton (1997)). One can model FPR(s) as a parametric function of s using the control data to fit model parameters. Each control contributes n_j data records of the form $(Y_j(s_{jk}), s_{jk})$. Similarly TPR(s,t) can be modeled as a parametric function of (s,t) and fit with data for cases. Each case contributes n_i data records of the form $(Y_i(s_{ik}), s_{ik}, t_{ik})$ where the time lag is $t_{ik} = T_i - s_{ik}$. The time lag varies across data records depending on the biomarker measurement time s_{ik} . Standard errors of parameter estimates are based on sandwich variance estimates. In their application to a new test for CMV infection in bone marrow transplant patients, the distribution of Y(s) did not depend on s, the time since transplant. They therefore reported the overall FPF and the monotone decreasing TPF(t) which was modeled as

$$TPF(t) = g(\alpha + \beta \eta(t)) \tag{1}$$

where g^{-1} , the link function, was chosen to be logistic and for $\eta(t)$, a set of polynomial basis functions were chosen.

For a continuous marker, again in the absence of censoring, Etzioni et. al. (1999) extended the binary regression approach. To simplify notation we suppose, as in Etzioni et al, that the time dependent ROC curves do not depend on s. They modeled

$$ROC_t(f) = g(h(f) + \beta \eta(t))$$
(2)

where g^{-1} is the link function and g(h(f)) is the baseline ROC curve at t = 0. They implemented the method on data from the prostate cancer study described earlier, estimating the distribution of Y(s) nonparametrically and using a parametric form for h, namely $h(f) = a_0 + a_1 \Phi^{-1}(f)$. Cai and Pepe (2002) allowed nonparametric baseline function h.

Cai et al (2006) offers the most comprehensive of existing retrospective approaches, encompassing previous methods and extending them to censored failure time data. With binary markers, functions to be estimated are FPF(s) and TPF(t, s). Uncensored subjects enter into the analysis as in the Leisenring et. al. approach, as a case if $0 < T - s < \tau$ and as a control if $T - s > \tau$. Censored subjects, censored at X, enter as either a control if $X - s > \tau$ or otherwise as weighted averages of cases and controls. Observe that

$$Prob(Y(s) = 1|T > X) = FPF(s)P(T > s + \tau|T > X) + \int_{X-s}^{\tau} TPF(s,t)dP(T = t + s|T > X)$$

Therefore the "likelihood contribution" for Y(s) is a weighted average of FPF(s) and TPF(s, t) for time lags t in $(X - s, \tau)$. Including both a control record and a set of case records with appropriate weights includes censored observations in the analysis. The weights are easily determined by estimating the distribution of T with standard failure time methods. Note that if competing risk events exist the distributions should be estimated with cumulative incidence methods (Kalbfleisch and Prentice (1980) page 169) rather than treating them as censoring events.

For continuous biomarkers, Cai et al. adopt the ROC-GLM model (2) with nonparametric baseline ROC curve h. Similar to Etzioni et al, the approach is nonparametric with respect to the distribution of Y(s) in controls as well. It can be implemented by replacing each biomarker record, Y(s), with a series of P binary variable records of the form $I(Y(s) > c_p)$, corresponding to biomarker thresholds c_1, \ldots, c_P . The algorithm for binary markers is then applied with a series of FPFs {FPF₁(s), FPF₂(s), ..., FPF_P(s)} corresponding to the thresholds estimated in this approach. In addition a series of intercepts in (1), { $\alpha_1, \alpha_2, \ldots, \alpha_P$ } that correspond to the P thresholds are estimated. These are interpreted as { $h(\text{FPF}_1(s)), \ldots, h(\text{FPF}_P(s))$ }. See the appendix for details.

4.2 Prospective Methods

Risk regression techniques are well established for modeling event time data and they naturally accommodate censoring. After fitting a prospective model one can combine it with observed predictor distributions to calculate TPF and FPF parameters.

Heagerty and Zheng (2005) employ a Cox model for a baseline marker, Y:

$$\lambda(t) = \lambda_0(t) \exp(\gamma(t)Y)$$

where the regression parameter γ may depend on t. Fitting the model to a simple random sample $\{(Y_i, T_i), i = 1, ..., n\}$, they note that for a binary marker and denoting the risk set at t, by R(t),

$$\widehat{\text{TPF}}(t) = \frac{\sum_{i \in R(t)} Y_i \exp(\widehat{\gamma}(t) Y_i)}{\sum_{i \in R(t)} \exp(\widehat{\gamma}(t) Y_i)}$$

is a consistent estimate of TPF(t). This follows from the observation (Xu and O'Quigley (2000)) that under the Cox model, the distribution of $Y \exp(\gamma(t)Y)$ for subjects in the risk set R(t) is equal to the conditional distribution of Y given T = t. To estimate FPF, they employ the empirical estimate in the controls in the risk set at τ :

Collection of Biostatistics

Research Archive
$$\widehat{\mathrm{FPF}} = \sum_{i \in R(\tau)} Y_i / n(\tau)$$

where $n(\tau)$ is the size of the risk set. With continuous biomarkers let the empirical distribution of Y in the risk set at τ be \hat{F}_{τ} , then

$$\widehat{\text{ROC}}_t(f) \equiv \frac{\sum_{i \in R(t)} I(Y_i > \widehat{F}_{\tau}^{-1}(1-f)) \exp\{\widehat{\gamma}(t)Y_i\}}{\sum_{i \in R(t)} \exp\{\widehat{\gamma}(t)Y_i\}}$$

Song and Zhou (in press) employ the same data structure but a simplified model with non-time dependent parameter $\gamma(t) = \gamma$. They use Bayes' theorem to write TPF(t) and FPF for a binary marker:

$$TPF(t) = P(Y = 1)P(T = t|Y = 1)/P(T = t)$$

= $P(Y = 1)\frac{\lambda_0(t)\exp(\gamma)\exp(-\Lambda_0(t)\exp(\gamma))}{\lambda_0(t)\exp(\gamma)\exp(-\Lambda_0(t)\exp(\gamma) + \lambda_0(t)\exp(-\Lambda_0(t)))}$
= $P(Y = 1)\text{logit}^{-1}\{\gamma + (1 - \exp(\gamma))\Lambda_0(t)\}$

where $logit^{-1}(x) = \exp(x)/(1 + \exp(x))$ and Λ_0 is the cumulative baseline hazard function;

FPF =
$$P(Y = 1)P(T > \tau | Y = 1)/P(T > \tau)$$

= $P(Y = 1)$ logit⁻¹{ $(1 - \exp(\gamma))\Lambda_0(\tau)$ };

Observe that if $\gamma = 0$ then TPF(t) = FPF = P(Y = 1), which is an intuitive result. Under our convention that larger Y is associated with larger hazard rate, $\gamma > 0$, and we have that larger baseline hazard leads to smaller TPF and FPF. On the other hand, if events are rare, i.e., $\Lambda_0(\tau) \approx 0$, we have $\text{FPF} \approx P(Y = 1)$, the proportion of positive markers in the population at baseline and $\text{TPF}(t) \approx P(Y = 1) \text{logit}^{-1}{\gamma}$, which does not depend on t.

With continuous marker, integrals over the distribution of Y enter into the TPF and FPF expressions corresponding to the thresholded marker, I[Y > y]:

$$\begin{aligned} \text{TPF}(t) &= F_{D,t}(y) \equiv \frac{\int_y^\infty \exp(\gamma Y) \exp\{-\Lambda_0(t) \exp(\gamma Y)\} dF(Y)}{\int_{-\infty}^\infty \exp(\gamma Y) \exp\{-\Lambda_0(t) \exp(\gamma Y)\} dF(Y)} \\ \text{FPF} &= F_\tau(y) = \frac{\int_y^\infty \exp\{-\Lambda_0(\tau) \exp(\gamma Y)\} dF(Y)}{\int_{-\infty}^\infty \exp\{-\Lambda_0(\tau) \exp(\gamma Y)\} dF(Y)}. \end{aligned}$$

Song and Zhou substitute $\widehat{\gamma}$, $\widehat{\Lambda_0}$ and the empirical distribution of Y, \widehat{F} , into the above expressions to estimate $\operatorname{TPF}(t)$ and FPF. The ROC curve estimator is calculated as $\widehat{\operatorname{ROC}}_t(f) = \widehat{F}_{D,t}(\widehat{F}_{\tau}^{-1}(f))$.

Song and Zhou's method has two advantages over the Heagerty and Zheng approach. First, it was shown to be more efficient in simulation studies (Song and Zhou (in press)). This is likely due to its employment of the maximum partial likelihood estimators (mple) for γ and Λ_0 and so the corresponding estimators of (TPF,FPF) are also mple. In contrast the estimator of TPF(t) employed by Heagerty and Zheng is not the mple. Moreover their empirical estimator of FPF does not utilize the structure conferred by the Cox-model. Song and Zhou utilize this structure in estimating FPF. The second advantage concerns censoring. Heagerty and Zheng's methods cannot allow censoring to depend on Y. Subjects at risk at t must be representative of the "at risk" population in regards to the predictor distribution. The Song and Zhou approach only utilizes the baseline marker distribution and parameters of the risk model. The latter are consistently estimated under standard censoring assumptions that allow follow-up to depend on modeled predictors. Hence Song and Zhou's approach is valid even if censoring depends on the marker Y. However, Song and Zhou's method is only valid when the proportional hazards assumption is satisfied whereas Heagerty and Zheng extend their approach to allow estimation under nonproportional hazards.

4.3 Comparisons of Attributes

Among the retrospective methods, Cai et al. (2006) is the most comprehensive. Other retrospective methods can be viewed as special cases of Cai's. Therefore we compare it with the two prospective approaches, Song and Zhou's method and Heagerty and Zheng's. We use the notation Cai, S+Z, H+Z for the three methods below.

4.3.1 Perspectives

The true and false positive fractions are defined as retrospective quantities in the sense that they concern the distribution of Y conditional on outcome. In our opinion a retrospective analysis seems like the more natural and direct approach to estimating them. Moreover, parameters relating to t in the retrospective approach, i.e., β in (1) and (2), directly quantify how performance varies with t. Inference about these parameters is straightforward with the retrospective approach. In contrast parameters in the prospective models do not directly quantify the time effect on biomarker performance.

4.3.2 Modeling Assumptions

The modeling assumptions required by Cai are very mild. The method is nonparametric with respect to the distribution of Y in controls and semiparametric in regards to the distribution of Y

in cases. In particular, they do not specify a distributional form for $\operatorname{Prob}(Y|T)$, but model only the effect of T on this distribution with a parametric form.

The prospective methods are similarly mild in their assumptions. They use a semiparametric model for $\operatorname{Prob}(T|Y)$ but leave the distribution of Y in the cohort unspecified.

4.3.3 Censoring

Censoring that is independent of Y is accommodated by all methods. However, censoring that depends on Y is only accommodated by the S+Z method at this point. Extension of the other two methods to the more general setting of conditionally independent censoring is possible though not completely trivial (Xu and O'Quigley 2000; Cai et al. 2006).

Interestingly the problem of verification biased sampling that is well studied in diagnostic test evaluation (Chapter 7, Pepe 2003) is entirely analogous to predictor dependent censoring. Verification biased sampling occurs when the result of the diagnostic test is used to select subjects for ascertainment of their true disease status. The resulting bias in naive estimates of (TPF,FPF) is called verification bias. Corrected estimates (Begg and Greenes 1983) are calculated by using naive estimators of positive and negative predictive values, which are unbiased, and putting these together with raw frequencies of positive and negative tests via Bayes theorem. Analogously, when follow-up for the event time outcome depends on the predictor, one can use estimates of prospective parameters and the baseline distribution of predictors to calculate TPF and FPF via Bayes theorem. Viewed in this manner, the S+Z method extends verification bias correction methods to event time data.

4.3.4 Competing Risk Events

Although not specifically addressed by any of the methods as proposed, they can all be extended to accommodate competing risk events. Hazard functions are replaced with cause specific hazard functions and survivor functions are replaced with the probability of not having an event (of any type, neither events of interest nor competing risk events). One can estimate a separate TPF(s,t) function for competing risk events. In Cai's method a separate model is stipulated. In the prospective approaches, separate cause specific hazard models would be employed.

4.3.5 Sampling Stresson

The prospective methods were proposed for cohort studies where data on a random sample from the population are obtained. However, they can be generalized. In brief, if the sampling method allows calculation of estimates of the hazard function and of the population distribution of the predictor, the two prospective approaches can be applied. Case-cohort studies and nested case-control designs where controls at T are a random sample from the population at risk at T can therefore be accommodated. An alternative case-control design where controls are a random sample from the population of controls with $T > \tau$, do not give rise to estimates of the hazard function, hence they are not accommodated. In contrast, retrospective methods naturally accommodate the latter casecontrol study design, assuming censoring does not depend on Y. They also directly accommodate cohort, case-cohort and case-'risk set control' designs under the same censoring assumption.

4.3.6 Longitudinal Biomarkers

Cai et al. (2006) developed the retrospective method in the general context where marker data are collected longitudinally over time. An implicit assumption is that marker data at s are missing at random conditional on subsequent event data. The prospective methods can be generalized to accommodate longitudinal data using marginal regression models (Zheng and Heagerty, 2007, in press). Specifically, each marker measurement Y(s) generates a data record with time origin for T reset to s. That is the event or censoring time associated with Y(s) is T - s or X - s, respectively. By allowing the corresponding baseline hazard and regression coefficients to depend on s, TPF and FPF can be written as functions of s and t.

4.3.7 Covariates

Various factors can affect the marker distribution and/or performance of the marker as a predictor of events. We call these factors covariates. One class is disease specific covariates, i.e., characteristic of the disease. For example, the severity of the AKI event might affect the capacity of a biomarker to predict it. For example, PSA may be a better predictor of one type of prostate cancer than another. Disease specific covariates associated only with cases can be modeled as part of the TPF function with the retrospective analysis approach. Such covariates are not generally accommodated by the prospective methods. However, if the covariate is discrete, events can be classified and treated as competing risks. For example, severe AKI events and mild AKI events could be considered different competing risk event types and TPF estimates could be calculated for the two event types.

Other covariates apply to controls as well as to cases. For example, study site in a multicenter study or characteristics of the subject or tester might influence the marker or its performance. Cai et al. (2006) and Song and Zhou (in press) describe how to incorporate such covariates into the analysis. We refer the reader to those papers for details.

4.3.8 Comparing Markers

Retrospective methods can include multiple markers in the context of regression models for TPF and FPF in a fashion similar to that described in chapter 3 of Pepe (2003). The models specify parameters that relate to differences in performance between markers and comparative inference can therefore be made. See sections 6.4.3 and 6.4.4 of Pepe(2003) for illustrations including illustration with the prostate cancer screening data. Currently prospective methods have no capacity for doing this. Comparing relative risks does not answer the question(Emir et al. 1998).

4.3.9 Combining Markers

The methods discussed in this paper are not concerned with how to combine predictors together. However, once a combination is defined, the methods discussed in this paper can be used to evaluate the performance of the combination using an independent test dataset. The Seattle Heart Failure study fits exactly this paradigm. The combination score derived from one cohort is evaluated on an independent cohort in the next section.

5 Data Analyses

5.1 Seattle Heart Failure Study

For computational ease we extracted a random sample of n = 1000 observations from the Val-heft trial. Controls are defined as subjects alive at 2 years after enrollment into the trial. Figure 1 shows the Kaplan-Meier survivor function over (0,2) years. There were 165 deaths observed and 375 subjects were censored in this time period.

[Figure 1 here]

The remaining 460 subjects observed alive at 2 years are known controls. In addition, some unknown proportion of those censored prior to 2 years are controls. Figure 2 displays the marker, the SHF score measured at baseline, in the known controls and for comparison in the cases. Interestingly, earlier deaths do not appear to have higher scores (p = 0.75 according to linear regression of SHF score on event time for cases).

[Figure 2 here]

Assuming that censoring does not depend on the baseline SHF score, one could estimate crude ROC curves by categorizing cases on the basis of their failure times and comparing their SHF scores with the distribution for known controls. The crude curves in Figure 3(a) were calculated as empirical ROC curves for controls versus 3 groups of cases formed by categorizing T into intervals (0.25, 0.75], (0.75, 1.25] and (1.25, 1.75]. The median death times for the 3 groups of cases were 0.47, 1.01 and 1.46 years, respectively. The corresponding curves approximate ROC curves for subjects who died at 0.5, 1.0 and 1.5 years after baseline. The Heagerty and Zheng curves in Figure 3(c) use the same known controls for the FPF axis, but their Cox-model based estimate of TPF(t) on the vertical axis. Cai's method (Figure 3(b)) was implemented using a logistic model with the effect of t on logitROC_t(f) modelled as a linear spline with knot at t = 1 year, logit{ROC_t(f)} = $h(f) + \beta_1 t + \beta_2(t-1)I[t > 1]$. We estimated $\hat{\beta}_1 = 0.300$ and $\hat{\beta}_2 = -0.260$ without the censored observations. A Wald test for $H_0: \beta_1 = \beta_2 = 0$; was not significant (p=0.66). The same conclusion was reached after including observations censored by 2 years. Based on this analysis, the ROC curves do not change significantly over time. That is, the SHF-score is not more sensitive to events that occur early versus late in the 2-year time interval. The Song and Zhou curves (Figure 3(d)) also indicate very little variation in the ROC curves with t.

[Figure 3 here]

The ROC curve estimates shown in Table 1 are consistent with each other. However there are considerable differences amongst the methods in terms of precision, as quantified by widths of confidence intervals derived from quantiles of their bootstrap distributions. The crude ROC curves have largest variance. Confidence intervals based on the Cai method are narrower. However, inclusion of the censored data does not improve them considerably. Amongst the prospective methods, as expected Song and Zhou's method is more efficient than Heagerty and Zheng's. Both prospective methods yield narrower confidence intervals than those calculated with Cai's method. At this point we do not have an explanation. Further work will be needed to determine if this is a general phenomenon.

[Table 1 here]

5.2 Prostate Cancer Screening Study

ROC curves pertaining to the nested case-control study of total-PSA and ratio-PSA biomarkers in the CARET cohort have been reported previously (Etzioni et al. 1999; Cai and Pepe 2002; Pepe 2003; (Example 6.13); Pepe et al. 2001). The raw data are available at www.fhcrc.org/science /labs/pepe/dabs/. We refer the reader to those papers for full description of analysis techniques and interpretations of results. An interesting aspect of the analysis is the comparison of two biomarkers for an event time outcome.

5.3 Kidney Biomarkers Study

The study to evaluate biomarkers of AKI is in progress and data will not be available for some time. We have simulated data that approximates the study design, as described in Appendix B. These data are available on the DABS website (www.fhcrc.org/science/labs/pepe/dabs/).

[Figure 4 here]

Of the 1800 subjects in the study, 342 had AKI events, 136 severe AKI and 206 mild AKI. In addition, 18 patients died from causes seemingly unrelated to kidney damage. Figure 4 shows the distributions of event times. Consider the biomarker measured from the first postoperative urine sample that we call the baseline biomarker. Its distribution is displayed in Figure 5 for the 4 patient groups. We see that compared with controls the AKI groups have generally higher baseline biomarker values, with the severe AKI group being more removed from controls than are the mild AKI values. The baseline biomarker in patients who die from non-AKI events does not appear to differ from controls. Formal comparisons between the groups based on the Wilcoxon rank sum statistic yield p-values: p = < 0.001 for mild AKI versus controls; p = < 0.001 for severe AKI versus controls; p = 0.038 for severe AKI versus mild AKI; and p = 0.23 for non-AKI deaths versus controls. Note that the Wilcoxon rank sum statistic is a simple function of the nonparametric area under the ROC curve that compares two groups.

[Figure 5 here]

The crude ROC curves for the baseline biomarker in Figure 6 were calculated by categorizing the event time axis as early=(.25,1.5] and medium=(1.5,3]. ROC curves comparing baseline biomarker values in controls with those of subjects with severe AKI events in each of the time intervals are shown in Figure 6 left panel while corresponding curves for subjects with mild AKI events are in the right panel.

[Figure 6 here]

We implemented Cai's method for the baseline marker with the following time-dependent ROC curve model

logit{ROC_t(f)} =
$$h_0(f) + \beta_1 t + \beta_2 (t - 1.5) I[t > 1.5].$$

That is, we used a logistic link function, nonparametric baseline ROC curve and modelled event time effects as a linear spline with one knot at t=1.5. Separate models were fit for mild and severe AKI events, although we note that a model including both could have been fit by including interactions with 'event type' in the above ROC-GLM formulation.

Song and Zhou's method was also applied. We included only subjects with severe events and

controls in estimating ROC curves corresponding to severe AKI versus controls and only mild AKI versus controls in the second set of analyses. Controls were censored at 5 days which is the end of the observation time. Separate models and analyses were used for mild and severe cases. Figure 6 displays estimated ROC curves at T = 1 and 2 days. Since the data are simulated, we were also able to calculate the true time-dependent ROC curves by simulating a very large data set, and selecting cases of each severity with events in the interval (T - .01, T + .01) and controls, and calculating the empirical ROC curves. Table 2 displays results.

[Table 2 here]

We see for example that allowing a 20% false positive rate the baseline marker detects 59.9% of subjects who develop severe AKI 2 days after surgery and 41.3% of those who develop mild AKI at 2 days after surgery. It detects a slightly higher fraction, 43.6%, of those that develop mild AKI at one day after surgery. The true ROC curves rise steeply on the left and turn sharply linear at approximately TPF=0.5 for severe AKI and at TPF=0.25 for mild AKI. The nonparametric nature of the baseline ROC curve allows the curves calculated with Cai's method to follow this shape. Moreover, the curves estimated with Cai's method are similar to the crude nonparametric curves, i.e., they follow the raw data rather well. On the other hand, the Song and Zhou estimates are not close to the crude ROC curves. Presumably this is because the proportional hazards assumption does not hold. The results suggest that the Song and Zhou approach should be generalized to allow non proportional hazards models.

[Figure 7 here]

Turning now to the longitudinal biomarker data, we first explored if in controls the biomarker distribution varied with s, time from surgery. It appears to be stable over time (data not shown). Figure 7 is similar to the display of biomarker distributions in Figure 5 except that all biomarker measurements are displayed, and marginalized over time for the controls. The time axis t for cases is time from marker measurement to AKI event. Each case has multiple observations, (Y, t), corresponding to the various measurements prior to his event. Note that the time axis here differs from that used for the baseline marker in the earlier analysis where t = T. Here, the analysis acknowledges that the baseline marker is measured at some time in (0,0.25), not at 0. Therefore t, time from measurement of the baseline marker to event, is not the same as the event time, T.

[Figure 8 here]

[Table 3 here]

Collection of Biostatistic

ROC curves were fit using these longitudinal data with the same methods as described earlier.

Results are shown in Figure 8 and Table 3. We conclude that with the new urine biomarker when allowing a 20% FPF, 94.2% of subjects with severe AKI events can be detected 1 day prior to their clinical diagnosis, and 87.6% can be detected 2 days prior. The corresponding numbers for subjects with mild AKI are 89.7% and 78.9%. Contrast these with the much smaller proportions that could be detected using only the baseline biomarker. In regards to estimating the time-dependent ROC curves, the Song and Zhou method appears to underestimate. The underestimation is particularly problematic at smaller FPFs. Presumably the proportional hazards assumption again fails. Cai's method does a much better job of estimation here. It is close to the nonparametric 'crude' curves, but does not require choosing time intervals about t to estimate the ROC curve at t.

6 Discussion

Sam Wieand made many contributions to the fields of biostatistics and oncology in particular. One of his legacies is the promotion of sound approaches to evaluating predictors for diagnostic and prognostic purposes. He recognized that relative risks alone are inadequate and he promoted the use of ROC curves instead. Since his landmark 1989 paper with Gail, James and James (Wieand et al. 1989), ROC analysis methodology has progressed considerably. Yet ROC analysis methods are not well developed for the analysis of censored failure time data, another topic of great interest to Sam Wieand. Our paper is an effort to summarize the current state of this field. These methods should be used in practice and some directions for further work are apparent.

The focus of this paper has been on estimating time dependent ROC curves. Methods for estimating summary indices such as the area under the time-dependent ROC curve (AUC), were not discussed, although they have been developed (Antolini, Boracchi and Biganzoli 2005; Chambers and Dias 2006). Although the AUC is a popular summary index, it has been widely criticized as clinically irrelevant (Cook 2007; Baker 2003). Sam Wieand himself suggested using instead the partial AUC to summarize predictor performance over a restricted range of false positive (or true positive) fractions (Wieand et al. 1989). It would be interesting and useful to develop methodology for inference about time-dependent partial AUC as a summary of the performance of a marker for predicting event time outcomes.

Appendix A: Implementation of Cai's procedure

First suppose that the marker Y_i is binary, measured only at baseline time 0, and that there is no censoring. Each subject is classified as a case with event time $T_i < \tau$ or as a control (possibly with event time $T_i > \tau$). Writing the TPF and FPF models as

$$TPF(t) = g(\alpha + \beta \eta(t))$$
$$FPF = f,$$

we fit a binary GLM to the data for cases with outcome variable Y and covariates $\eta(T)$. This yields TPF(t). The FPF estimate is the proportion of controls with Y = 1.

To include censored observations, if the observation time $X_i > \tau$ then that subject is included as a control with observation weight $w_i = \hat{P}(T_i > \tau | T_i > X_i) = \hat{P}(T_i > \tau)/\hat{P}(T_i > X_i)$ where both numerator and denominator can be calculated with a Kaplan-Meier estimate. The censored subject is also included as multiple case observations with observation weights. Specifically, a data record is created for him for each event time in the dataset observed after X_i and before τ , written as $\{T_j : T_j > X_i \text{ and } T_j > T_j - 1\}$. In the j^{th} record, let $T = T_j$, $Y = Y_i$ and let the observation weight $w_{ij} = \{\hat{P}(T \ge T_j) - \hat{P}(T \ge T_{j-1})\}/\hat{P}(T \ge X_i)$. Each component of w_{ij} is estimated with the Kaplan Meier. The analysis then proceeds as before.

To analyze data in which biomarkers are measured at multiple time points, each subject has a data record for each biomarker measurement time s_{ik} , $\{Y_i(s_{ik}), X_i, \delta_i\}$ where δ_i denotes his censoring status and X_i denotes his observation time. The time origin for this record is reset to 0 at s_{ik} since we are concerned with t =time until event after biomarker measurement. Thus replace X_i with $X_i - s_{ik}$ and the analysis proceeds as before. Note that the measurement time s_{ik} may be included as a covariate. That is, if the distribution of the biomarker can vary with s, the models for FPF and TPF(t) may be extended to include s as a covariate.

Finally, suppose that the biomarker Y is continuous. This is accommodated by replacing each record in the dataset with P records, each corresponding to a different cutpoint $\{c_1 \dots c_P\}$, and replacing the continuous marker $Y_i(s_{ik})$ with the dichotomous version $I[Y_i(s_{ik}) > c_p]$. The FPF and TPF models include factor variables for the cutpoint so that cutpoint specific FPF and TPF estimates are derived from the fitted models. Ideally the cutpoints used are estimated quantiles of the biomarker in controls (possibly depending on s through regression quantile techniques). This implies that they represent points corresponding to specific FPF points on the x-axis of the ROC curve.

To summarize, the steps involved in fitting the Cai model to data, which is organized as records of the form $(Y_i(s_{ik}), X_i, \delta_i)$

- (i) If the biomarker is continuous: Using P cutpoints, expand each record to a series of P records with corresponding dichotomized marker and include the variable s_{ik} in the record;
- (ii) If the biomarker is measured at times $s_{ik} > 0$: replace X_i with $X_i s_{ik}$ in the $(ik)^{th}$ data record.
- (iii) If some observations are censored: calculate survivor function estimates and expand censored observation to multiple observations with weights as described above. Note that survivor function estimates may be allowed to depend on s_{ik} if necessary by stratification or hazard function regression modeling.
- (iv) Having restructured the data, binary GLM regression models are fit for the FPF and TPF models using respectively case and control observation records.
- (v) Standard errors and confidence intervals are calculated by bootstrapping the original datasetB times and proceeding with restructuring and estimation for each resampled dataset.

Appendix B: Generation of Simulated Kidney Biomarker Data

(i)Notation

n = total sample size = 1800 i = subject index $k = k^{th}$ specimen sample $s_{ik} = \text{time of the } k^{th}$ specimen for the i^{th} subject

(ii) Sampling Times (s_{ik})

Patients should have a urine sample taken approximately every 5 hours for 5 days after surgery. The timing is often delayed. Generate

Research Archive

$$s_{ik} = 0.25k + \varepsilon_{ik}$$

k = 1, ..., 20 and $\varepsilon \sim$ uniform (0,0.25). These *potential* sampling times are modified (below) depending on patient status.

(iii) Patient Subgroups

Controls

A random set of 1440 patients were assigned control status. We simulated their being discharged on day 3 (30%), day 4 (40%) and day 5 (30%) by dropping measurement times s_{ik} exceeding days 3 and 4 for random subsets of 30% and 40% of controls, respectively.

Non-AKI deaths

18 patients were assigned non-AKI death status. Measurement times after day 1 were dropped for 6 of the patients simulating that the event occurred on day 1. Similarly by dropping measurement times after days 2, 3, and 4 for sets of 3 patients each, we simulated events at day 2 for 3 patients, at day 3 for 3 patients, at day 4 for 3 patients and at day 5 for 3 patients.

AKI events (T)

All remaining 342 patients had an AKI event. Of these, we assigned 206 severity status mild and 135 severe. An unobserved latent event time E was generated as follows for patients with severe AKI:

 $E^{sev} \sim$ uniform (0,0.25) with probability 0.6 $E^{sev} \sim$ uniform (0.25, 1.25) with probability 0.4

That is, E^{sev} , the true latent time of AKI, was uniformly distributed between 0 and 0.25 in 60% of severe patients and uniformly distributed between 0.25 and 1.25 in 40%. Corresponding true time of AKI in patients who had mild AKI was such that

 $E^{mild} \sim$ uniform (0,0.25) with probability 0.4 $E^{mild} \sim$ uniform (0.25, 2.25) with probability 0.6

The time, T, of *clinical* diagnosis of AKI with serum creatinine was generated as

T = E + V where $V \sim$ uniform (0, 2.75)

(iv) Biomarker Values

Controls and non-AKI deaths

Biomarker values are normally distributed with mean 0 and variance 1 with no trend over time. An

auto-regressive structure was simulated:

$$Y_{i,1} \sim N(0,1)$$
$$Y_{i,k} = \alpha Y_{i,k-1} + \sqrt{1 - \alpha^2} \ \varepsilon_{ik}, \qquad k \ge 2$$

where ε_{ik} is independent N(0, 1) error and the autoregressive correlation is determined by α . We chose $\alpha = 0.8$.

Cases

In cases, biomarker values are generated as for controls up to the time of their (unobserved) event time E. Let s_{ik^*} be the time of the first measurement after E. We generated

$$Y_{i,k^*} = \Delta + \alpha Y_{i,k^*-1} + \sqrt{1 - \alpha^2} \ \varepsilon_{ik^*}$$

where $\Delta = \mu + \delta$, δ independent normally distributed with mean 0 and standards deviation 2 and μ , the mean of Y_{ik^*} depends on severity of AKI.

 $\mu = 8$ for subjects with severe AKI $\mu = 4$ for subjects with mild AKI.

For later measurement times,

$$Y_{i,k} = \alpha Y_{i,k-1} + \sqrt{1 - \alpha^2} \ \varepsilon_{ik}, \qquad k > k^*.$$

References

Antolini L, Boracchi P, Biganzoli E (2005) A time dependent discrimination index for survival data. Statistics in Medicine 24: 3927-3944.

Baker SG (2003) The central role of receiver operating characteristic (ROC) curves in evaluating tests for the early detection of cancer. J Natl Cancer Inst 95:511–515.

Begg CB and Greenes RA (1983) Assessment of diagnostic tests when disease verification is subject to selection bias. Biometrics 39:207–15.

Cai T, Pepe MS, Zheng Y, Lumley T, Jenny NS (2006) The sensitivity and specificity of markers for event times. Biostatistics 7:182–97.

Cai T and Pepe MS (2002) Semi-parametric ROC analysis to evaluate biomarkers for disease. Journal of the American Statistical Association 97:1099–1107.

Chambless LE, Diao G (2006) Estimation of time-dependent area under the ROC curve for long-term risk prediction. Statistics in Medicine 25: 3474–3486.

Cohn JN, Tognoni G (2001) A randomized trial of the angiotensin-receptor blocker valsartan in chronic heart failure. N Engl J Med 345:1667–1675.

Cook NR. Use and misuse of the receiver operating characteristic curve in risk prediction. Circulation 2007; 115:928–935.

Delong ER, Vernon WB and Bollinger RR (1985) Sensitivity and specificity of a monitoring test. Biometrics 41:947–958.

Emir B, Wieand S, Su JQ, Cha S (1998) Analysis of repeated markers used to predict progression of cancer. Stat Med 17:2563–2578.

Etzioni R, Pepe M, Longton G, Hu C, Goodman G (1999) Incorporating the time dimension in receiver operating characteristic curves: a case study of prostate cancer. Medical Decision Making 19:242–251.

Heagerty PJ, Zheng Y (2005) Survival model predictive accuracy and ROC curves. Biometrics 61:92–105.

Heagerty PJ, Lumley T, Pepe MS (2000) Time-dependent ROC curves for censored survival data and a diagnostic marker. Biometrics 56: 337–344.

Kalbfleisch JD, Prentice RL (1980) The Statistical Analysis of Failure Time Data. Wiley. New York.

Leisenring W, Pepe MS, LongtonG (1997) A marginal regression modelling framework for evaluating medical diagnostic tests. Statistics in Medicine 16: 1263-81.

Levy WC, Mozaffarian D, Linker DT, Sutradhar SC, Anker SD, Cropp AB, Anand I, Maggioni A, Burton P, Sullivan MD, Pitt B, Poole-Wilson PA, Mann DL, Packer M (2006) The Seattle Heart Failure Model: prediction of survival in heart failure. Circulation 113:1424-33.

McIntosh M, Pepe MS (2002) Combining several screening tests: Optimality of the risk score. Biometrics 58:657-664

Omenn GS, Goodman GE, Thornquist MD, Balmes J, Cullen MR, Glass A, Keogh JP, Meyskens FL Jr, Valanis B, Williams JH Jr, Barnhart S, Cherniack MG, Brodkin CA, Hammar S (1996) Risk factors for lung cancer and for intervention effects in CARET, the Beta-Carotene and Retinol Efficacy Trial. J Natl Cancer Inst 88:1550-9.

Packer M, O'Connor CM, Ghali JK, Pressler ML, Carson PE, Belkin RN, Miller AB, Neuberg GW, Frid D, Wertheimer JH, Cropp AB, DeMets DL, for the Prospective Randomized Amlodipine Survival Evaluation Study Group (1996) Effect of amlodipine on morbidity and mortality in severe chronic heart failure. New England Journal of Medicine 335:1107-1114.

Parker CB, Delong ER (2003) ROC methodology within a monitoring framework. Statistics in Medicine 22:3473-3488.

Pepe MS (2003) The Statistical Evaluation of Medical Tests for Classification and Prediction. Oxford University Press. New York.

Pepe MS, Etzioni R, Feng Z, Potter JD, Thompson M, Thornquist M, Winget M and Yasui Y (2001). Phases of biomarker development for early detection of cancer. Journal of the National Cancer Institute, 93, 1054-61.

Song X and Zhou XH (in press) A semiparametric approach for the covariate specific ROC curve with survival outcome. Statistica Sinca.

Wang TJ, Gona P, Larson MG, Tofler GH, Levy D, Newton-Cheh C, Jacques PF, Rifai N, Selhub J, Robins SJ, Benjamin EJ, D'Agostino RB, Vasan RS (2006) Multiple biomarkers for the prediction of first major cardiovascular events and death. N Engl J Med. 355:2631-9.

Wieand S, Gail MH, James BR, James KL (1989) A family of nonparametric statistics for comparing diagnostic markers with paired or unpaired data. Biometrika 76:585-592

Xu R, O'Quigley J (2000) Proportional hazards estimate of the conditional survival function. Journal of the Royal Statistical Society Series B 62: 667-680.

Zheng Y, Heagerty PJ (2004) Semiparametric estimation of time-dependent ROC curves for longitudinal marker data. Biostatistics 5: 615-632.

Zheng Y, Heagerty PJ (in press) Prospective accuracy for longitudinal markers. Biometrics.

Zheng Y, Cai T, Feng Z (2006) Application of the time-dependent ROC curves for prognostic accuracy with multiple biomarkers. Biometrics 62:279-287.

Figure 1: Kaplan-Meier survival estimates for 1000 subjects enrolled in the Val-heft trial. 460 subjects remain alive and uncensored at $\tau = 2$ years.

Figure 2: SHF scores measured at enrollment in cases (left panel) as a function of their death time T and a box-plot of the SHF score distribution in known controls (right panel). The median, 25^{th} and 75^{th} percentile curves displayed in the left panel were modelled as linear splines with knots at 0.75 and 1.5 years and estimated using quantile regression methods (Koenker and Bassett 1982).

Figure 3: ROC curves calculated with the Seattle Heart Failure data using 4 methods: (a) categorizing T and comparing with known controls only; (b) Cai's retrospective method with logit{ROC_t(f)} $\equiv h(f) + \beta t$, nonparametric h; (c) Heagerty and Zheng with proportional hazards model; and (d) Song and Zhou with a proportional hazards model.

COBRA A BEPRESS REPOSITORY Collection of Biostatistics Research Archive

Figure 5: Baseline AKI biomarker distributions. Lowess curves for biomarkers in severe and mild AKI subgroups are shown.

Figure 6: ROC curves and their estimates for the baseline AKI biomarker at T = 1 and 2 days after surgery.

Figure 7: Biomarker distributions in cases as a function of the time lag between marker measurement and event time, T = T - s, and in controls.

Figure 8: ROC curves for the longitudinally measured AKI biomarker measured at 1 and 2 days prior to clinical diagnosis of AKI with serum creatinine.

Collection of Biostatistics Research Archive

Table 1: Comparison of estimated ROC curves calculated from The Seattle Heart Failure Study data. 95% confidence intervals in parentheses are based on the same 200 bootstrapped samples.

		Crude	Cai^1	$Cai-cens^2$	$H+Z^3$	$S+Z^4$
0.2	t = 0.5	0.489(0.319, 0.633)	0.412(0.293, 0.519)	0.411(0.304, 0.500)	0.410(0.329, 0.487)	0.418(0.335, 0.486)
	t = 1.0	0.395(0.256, 0.581)	0.448(0.264, 0.593)	0.454(0.288, 0.602)	0.399(0.322, 0.467)	0.407(0.327, 0.466)
	t = 1.5	0.421(0.274, 0.606)	0.453(0.319, 0.547)	0.389(0.290, 0.469)	0.401(0.333, 0.472)	0.392(0.319, 0.449)
0.5	t = 0.5	0.766(0.654, 0.878)	0.700(0.582, 0.786)	0.719(0.613, 0.790)	0.702(0.626, 0.753)	0.723(0.652, 0.771)
	t = 1.0	0.737(0.538, 0.864)	0.730(0.560, 0.829)	0.753(0.598, 0.847)	0.692(0.619, 0.743)	0.715(0.646, 0.760)
	t = 1.5	0.737(0.593, 0.870)	0.734(0.627, 0.801)	0.701(0.620, 0.766)	0.693(0.624, 0.737)	0.705(0.639, 0.748)
0.8	t = 0.5	0.936(0.860, 1.000)	0.897(0.829, 0.943)	0.910(0.854, 0.952)	0.911(0.876, 0.937)	0.918(0.885, 0.937)
	t = 1.0	0.842(0.710, 0.957)	0.910(0.830, 0.961)	0.923(0.845, 0.963)	0.907(0.873, 0.934)	0.915(0.883, 0.934)
	t = 1.5	0.947(0.857, 1.000)	0.912(0.858, 0.952)	0.902(0.847, 0.944)	0.908(0.871, 0.934)	0.911(0.879, 0.930)

¹Cai's method using only known controls for the FPF ²Cai's method including censored observation in (0,2) years

³Heagerty and Zheng's method

⁴Song and Zhou's method

Table 2: Compariso	n of estimated ROC curv	es for the baseline	biomarker of a	cute kidney injury.
Here t is the time af	ter surgery that AKI was	diagnosed.		

		0 0	Severe	AKI				Mild	AKI
		True	Crude	Cai	$S+Z^1$	True	Crude	Cai	$S+Z^1$
0.05	t = 1	0.525	0.529	0.565	0.619	0.315	0.354	0.385	0.278
	t = 2	0.524	0.600	0.541	0.414	0.289	0.283	0.226	0.199
0.20	t = 1	0.599	0.608	0.631	0.722	0.436	0.538	0.577	0.475
	t = 2	0.599	0.613	0.608	0.568	0.413	0.398	0.384	0.414
0.50	t = 1	0.751	0.745	0.755	0.861	0.644	0.754	0.770	0.741
	t = 2	0.752	0.725	0.736	0.783	0.634	0.584	0.605	0.710
0.80	t = 1	0.897	0.843	0.875	0.958	0.858	0.892	0.917	0.923
	t = 2	0.901	0.863	0.864	0.934	0.857	0.867	0.837	0.914
¹ Song and Zhou's method									

Hosted by The Berkeley Electronic Press

Table 3: Comparison of estimated ROC curves for the biomarker of acute kidney injury. Here t is the time interval in days prior to clinical diagnosis of kidney injury that the biomarker was measured. Longitudinal biomarker data are included.

			Severe AKI				Mild AKI		
		True	Crude	Cai	$S+Z^1$	True	Crude	Cai	$S+Z^1$
f = 0.05	t = 1	0.932	0.923	0.933	0.645	0.874	0.887	0.880	0.564
	t = 2	0.854	0.839	0.804	0.325	0.743	0.696	0.665	0.323
f = 0.20	t = 1	0.942	0.933	0.955	0.717	0.897	0.919	0.917	0.663
	t = 2	0.876	0.850	0.847	0.461	0.789	0.753	0.748	0.475
f = 0.50	t = 1	0.965	0.957	0.971	0.839	0.936	0.950	0.953	0.817
·	t = 2	0.923	0.894	0.897	0.693	0.868	0.853	0.846	0.715
f = 0.8	t = 1	0.986	0.980	0.988	0.943	0.975	0.979	0.983	0.939
	t = 2	0.968	0.950	0.955	0.891	0.947	0.948	0.940	0.905

¹Song and Zhou's method

