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Reporting and Interpretation in Genome-Wide

Association Studies

Jon Wakefield

International Agency for Research on Cancer, Lyon, France

Departments of Statistics and Biostatistics, University of Washington, Seattle, USA

Summary

In the context of genome-wide association studies we critique a number of methods that

have been suggested for flagging associations for further investigation. The p-value is by

far the most commonly used measure, but requires careful calibration when the a priori

probability of an association is small, and discards information by not considering the

power associated with each test. The q-value is a frequentist method by which the false

discovery rate (FDR) may be controlled. We advocate the use of the Bayes factor as a

summary of the information in the data with respect to the comparison of the null and

alternative hypotheses, and describe a recently-proposed approach to the calculation of

the Bayes factor that is easily implemented. The combination of data across studies is

straightforward using the Bayes factor approach, as are power calculations. The Bayes

factor and the q-value provide complementary information and when used in addition to

the p-value may be used to reduce the number of reported findings that are subsequently

not reproduced.

Recent technological advances allow the simultaneous interrogation of huge numbers

of pieces of genetic information. We concentrate on genome-wide association studies

(GWAS)1;2 in which single nucleotide polymorphisms (SNPs) are measured on sets of

cases and controls over several stages. There are a number of standard platforms con-

taining so-called tagSNPs that have been selected to capture common polymorphisms

by exploiting linkage disequilibrium between SNPs3. As a typical example, Sladek et al.
4 recently reported a two-stage GWAS. At the first stage genotypes were obtained for

392,935 SNPs in 1,363 type 2 diabetes cases and controls; these numbers represent the

samples sizes after quality control checks on the genotyping, and removal of subjects who

exhibited admixture or other inconsistencies. In a second stage the associations between

disease and 57 SNPs were investigated in 2,617 cases and 2,894 controls, and eight were

deemed significant after a Bonferroni correction had been applied in response to the

multiple tests performed. A number of high profile GWASs have now been reported5–7,

and many more will follow in the near-future.

1
Hosted by The Berkeley Electronic Press



This exciting development produces new challenges in terms of statistical analysis and

interpretation8–11. Two key differences with conventional hypothesis testing situations,

are the large number of tests that are performed, and the low a priori probability of

a non-null association in each test. Historically, the usual situation was of a single

experiment in which the prior probability of the alternative was not small – if this were

not the case then a costly experiment would not be performed.

Given a set of tests from a GWAS we identify two important endeavors:

1. Ranking the associations in order to determine a list of SNPs to carry forward to

the next stage of study, when the size of the list has already been decided upon.

2. Calibrating inference to allow, for example, the number of false discoveries and

false non-discoveries, the size of the list to be estimated, or the probability of the

null given the data, to be estimated for reported associations.

By far the most common measure used for flagging SNPs as “noteworthy”9 is the p-value.

As we describe below, p-values are difficult to calibrate and there are various frequentist

approaches for providing more interpretable measures, in particular via control of the

false discovery rate (FDR). Alternatively, a Bayesian approach may be followed in which

the probability of the null given the data may be computed for each SNP; crucial to this

approach is the calculation of the Bayes factor, which is the ratio of the probability of the

data under the null to the probability of the data under the alternative. The Bayes factor

was recently extensively used in the Wellcome Trust Case Control Consortium study7

that investigated seven diseases using a common set of controls. The calculation of the

Bayes factor requires specification of a prior distribution over all unknown parameters,

and the evaluation of multi-dimensional integrals, and requires specialized software. To

overcome these difficulties, an approximate Bayes factor was recently proposed12, and

it on this quantity that we concentrate upon.

Methods

Consider a typical investigation in which for each SNP we wish to test H0 : θ = 0 versus

H1 : θ 6= 0, where θ is the log odds ratio for which we have a test statistic T with

E[T ] = θ. For example, we may fit a logistic regression model (perhaps adjusting for

matching or other variables) with T the estimate of the log odds ratio; in large samples

T is normally distributed with mean θ and standard error
√

V .
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The Interpretation of p-values

Before we see any data the α level of a two-sided test corresponding to T is α = Pr(|T | >

tα|H0) and the power 1−βα = Pr(|T | > tα|θ) corresponding to this α may be calculated

for different values of θ. Such pre-data inference is used for power calculations; α and

βα are frequentist probabilities with a long-run interpretation so that for a fixed critical

region with threshold tα, a proportion α of tests will be rejected using this rule when

H0 is true. Once the data are observed post-data inference is more relevant13. This has

lead to the standard practice of quoting an observed significance level, or p-value, given

by p = Pr(|T | > tobs|H0) where tobs is the observed value of the test statistic. A critical

issue is how to interpret this p-value; there are two common mis-interpretations. The

first is to observe a p-value of 0.003 (say) and state: “Under repeated sampling from the

null we would have obtained this value in only 0.3% of data sets”; this is incorrect since

we have chosen to report the exact cut-off. With an a priori fixed critical region tα it is

correct to make such a statement, but once an observed significance level is quoted we

have revised the critical region on the basis of the data and cannot appeal to long-run

frequencies.

The second problem is the temptation to view the significance level as the probability

of the null hypothesis given tobs. Using Bayes theorem we have

Pr(H0| data ) =
p( data |H0)π0

p( data |H0)π0 + p( data |H1)(1 − π0)
(1)

which depends on two quantities that are not used in the calculation of the p-value: the

prior on H0, π0, and the power, p( data |H1), that is, the probability of the data under

the alternative. Rearrangement of (1) gives the posterior odds of no association:

Pr(H0| data )

Pr(H1| data )
=

p( data |H0)

p( data |H1)
× π0

1 − π0

(2)

or, in words,

Posterior Odds of H0 = Bayes Factor × Prior Odds of H0

so that the Bayes factor is an odds ratio corresponding to the posterior odds of the null

divided by the prior odds of the null. The Bayes factor has been previously advocated as

a measure of the evidence for an association in a GWAS7;12. When ranking associations

we see, from (2), that if the prior odds π0/(1 − π0) are constant across SNPs then the

ranks will be the same regardless of the specific value of π0 taken. However, the rankings

will change as a function of the power, which varies across SNPs as a function of the

MAF.

We now demonstrate the influence of the prior on the calibration of p-values. A lower

bound for the probability of the null is given by:

Posterior Odds of H0 > {−2.72 × p × log p} × Prior Odds of H0 (3)
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which is valid for p < 0.37, Sellke et al.14. Figure 1 shows the lower bound on

Pr(H0| data ) as a function of the p-value for the five prior choices: π0 = 0.9, 0.95, 0.99, 0.999, 0.9999.

For a p-value of 10−5 and π0 = 0.9999 we have Pr(H0| data ) ≥ 0.76, so that there is at

least a 76% chance that the null is true, even with such a small p-value. This bound is

at first sight startling but some comfort is gathered by consideration of the situation in

which the prior odds are 1 (so that we have equal prior weight on the null and on the

alternative); p-values of 0.05 and 0.01 then give lower bounds on the null of 0.29 and

0.11, respectively. In addition to the low prior probabilities of an association in GWAS

the other crucial aspect is that many hundreds of thousands of tests are being performed

at once, and so by chance alone very small p-values will be observed; if 500,000 SNPs

are examined, for example, then even if the null is true for all tests we would still expect

to see four p-values less than 10−5.
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Figure 1: Lower bound on the posterior probability of the null, as a function of the

p-value, and the prior on the null.

To evaluate the probability of H0 one must consider competing explanations for the data,

i.e. the power under alternative hypotheses. It is important to consider power because

although a small p-value suggests that the data are unlikely given H0, they may also

be unlikely under reasonable alternatives. From (2), we see that even if p( data |H0) is

small, the posterior odds of H0 may be large if p( data |H1) is small also. If we have

high power then there is stronger evidence in the data in favor of the alternative, when

compared with the situation in which we have low power; hence the Bayes factor is

quantifying what is intuitively sensible. We return to this issue subsequently.
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Control of FDR via q-values

The possible outcomes when m multiple-hypothesis tests are performed are given in

Table 1; m0 is the true number of nulls and is of course unknown; π0 = m0/m is the

proportion of nulls amongst all tests. The key issue is how to decide upon a criteria for

calling an association noteworthy; with such a criteria, k is the number of tests called

noteworthy. The number of false discoveries is V , and the number of false non-discoveries

is T . In a GWAS we wish to make V and T as small as possible so that S is close to m1.

Historically, the type I error (false discovery) was deemed the more important of the

two types of error (false discovery and false non-discovery), which lead to the use of the

Bonferroni correction, which controls the familywise error rate, that is the probability

of making at least one type I error, Pr(V ≥ 1) – there is an implicit prior assumption

that the probability that all tests are null is not small15, since if we believe that all tests

could be null then aiming to make the number of false positives zero is justifiable. In the

context of a GWAS the use of Bonferroni will often be an overly conservative procedure

since, at least in early stages of genome-wide investigations, one is more concerned with

avoiding missing associations, and making some false discoveries is not to high a cost

to pay in order to get more true hits. By overly protecting against false discoveries one

loses power in detecting real associations.

Non-Noteworthy Noteworthy

H0 U V m0

H1 T S m1

m − k k m

Table 1: Possibilities when m tests are performed and k are called noteworthy.

More recently, Benjamini and Hochberg16 suggested a powerful and simple method for

controlling the frequentist expected FDR, that is the proportion of rejected tests that

are truly null: E[V
k
]. Subsequently, Storey and colleagues17;18 have advocated the use of

q-values, a refinement that provide a means of calibrating p-values in terms of the FDR.

Specifically, suppose we reject all tests for which |T | > tfix for a fixed threshold tfix. Then

the probability of the null for tests that fall within this critical region is

q(tfix) = Pr(H0||T | > tfix) =
α(tfix)π0

Pr(|T | > tfix)
(4)

where Pr(|T | > tfix) = α(tfix)π0 + [1− β(tfix)](1− π0) is the probability of a rejection and

α(tfix) is the α level corresponding to tfix. Hence for a rule defined by tfix, q(tfix) is the

probability of a false discovery, and Storey18 shows that such a rule applied to multiple

tests controls the (frequentist) FDR at level q(tfix).

5
Hosted by The Berkeley Electronic Press



For a particular SNP one can take tfix = tobs, where tobs is the observed statistic. Then

we have the q-value q(tobs) where α(tfix) = p. Hence if we have a rule that just calls

this SNP, and all SNPs with a more extreme statistic, noteworthy, then the FDR is

controlled at level q(tobs); because this threshold includes more noteworthy SNPs (for

which the probability of H0 is lower) the probability that this SNP is a false positive

may be much higher than the FDR, however.

To evaluate q-values for each SNP in practice it would appear from (4) that we need an

a priori estimate of π0. However, we may write

Pr(H0||T | > tobs) = p × π0

Pr(|T | > tobs)

and Storey18 shows that the second term can be estimated from the totality of p-values,

which removes the need to specify π0. Intuitively, under the null, the distribution of

p-values is uniform and so when we are in a multiple-hypothesis testing situation we can

use the departure of the distribution of all p-values from uniformity to estimate π0, an

approach that has much appeal.

The false non-discovery rate (FNR) is defined as E[ T
m−k

] and is the expected proportion

of non-noteworthy tests that are truly non-null. However, in a GWAS, the number of

non-noteworthy tests, m − k, will be very large (and close to m); hence, even if the

majority of true associations are missed, T will still be small and so E[ T
m−k

] will also be

close to zero and difficult to accurately estimate. The ratio of the non-null associations

missed T
m1

(i.e. 1–sensitivity) is clearly of interest, but difficult to estimate since T and

m1 are both unobserved.

The False Positive Report Probability

In response to the large proportion of false positives generated by the reporting of p-

values in genetic association studies, Wacholder and colleagues9, in a wide-ranging and

seminal article, introduced the false probability report probability (FPRP):

Pr(H0| data ) = FPRP =
p × π0

p × π0 + power × (1 − π0)
(5)

where the “data” are given by |T | > tobs and the power= Pr( data |θ1) is evaluated at a

pre-specified θ1, and for |T | > tobs. If we rewrite (5) as

Posterior Odds of H0 Given {p, power} =
p

power
× Prior Odds of H0

it is clear that the evidence in the data to support H0 are summarized in terms of the

ratio p

power , which again illustrates that when a set of tests differ in their power the

rankings of p-values and FPRP will differ also, with FPRP giving more weight to H1
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when the power is high. The functional form of (5) is familiar to epidemiologists; the

baseline odds of the event H0, and is revised in light of the odds ratio p

power , to give the

posterior odds. FPRP lies somewhere between a Bayesian and a frequentist approach

since a Bayesian calculation is carried out using frequentist reporting statistics; the

“data” correspond to p and the power, the latter is calculated at the simple alternative

H1 : θ = θ1, with a prior point mass of 1 − π0 at this value.

FPRP has a number of drawbacks which we now briefly describe, in order to motivate an

alternative that we describe in the next section. Information is being lost by considering

|T | > tobs only, rather than conditioning on the exact value observed, tobs; it can be

shown that Pr(H0||T | > tobs) ≤ Pr(H0|T = tobs) so that FPRP is a lower bound on

the probability of H0. It is inconsistent to consider a two-sided p-value and the power

corresponding to a one-sided alternative, once one knows the side then a single tail area

is appropriate. With respect to frequentist properties FPRP does not provide control

of FDR because a variable threshold is used which does not allow long-run frequencies

to be calculated – in particular FDR is not controlled by FPRP. Finally, it would be

desirable to consider a range of values for the alternative θ, rather than a single value

θ1.

The Bayesian False Discovery Probability

For the ranking of associations we have seen that following a Bayesian approach with

a constant prior odds across SNPs we need only consider the Bayes factor, and not the

absolute value of Pr(H0| data ). For the second endeavor the latter is required, and

we describe a Bayesian decision theory approach to the choice of which of H0 or H1 to

report. This requires the costs of false non-discovery and false discovery to be specified,

Table 2 gives the costs of making the two types of error.

Decision

Not Noteworthy Noteworthy

H0 0 CFD

Truth
H1 CFND 0

Table 2: Costs of making the two types of error, CFD is the cost of a false discovery, and

CFND the cost of a false non-discovery.

The decision theory solution is to report H1 if the

Posterior Odds of H0 <
CFND

CFD

. (6)
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so that we only need to consider the ratio of costs CFND/CFD. If the costs are equal then

we should report an association as noteworthy if the posterior odds on H0 is less than 1;

if CFND/CFD = 4, so that missing a discovery is four times as costly as reporting a null

association, then an association should be called noteworthy if the posterior odds on H0

is less than 4, i.e. if the posterior probability of H1, Pr(H1| data ), is greater than 0.2.

We now discuss error measures that are closely related to FDR and FNR. For a single

test:

• If we call a hypothesis noteworthy then Pr(H0| data ) is the probability of a false

discovery.

• If we call a hypothesis not noteworthy then Pr(H1| data ) is the probability of a

false non-discovery.

In a multiple-hypothesis testing situation, we can sum Pr(H0| data ) over all associations

that are called noteworthy to give the expected number of false discoveries; summing

Pr(H1| data ) over all associations called non-noteworthy gives the expected number of

false non-discoveries.

The data appear in the posterior odds through the Bayes factor which is given by

p( data |H0)/p( data |H1), and is the ratio of the probabilities of the data under H0 and

H1. For FPRP the denominator was evaluated under a single alternative, an alternative

approach is to place a prior on plausible values of θ. The denominator of the Bayes

factor is then given by

p( data |H1) =

∫
p( data |θ) × g(θ)dθ

which is the power as a function of θ, averaged over the prior, g(θ).

To evaluate the Bayes factor in general requires the specification of the prior over all

unknown parameters, and the calculation of multi-dimensional integrals. An approxi-

mate Bayes factor that removes these difficulties, and avoids the drawbacks of FPRP has

been recently developed12, and takes as data the estimate of the log odds ratio, θ̂. The

asymptotic distribution of the estimator is N(θ, V ), where θ is the true value and
√

V

is the standard error of this estimator, provides the likelihood in the evaluation of the

Bayes factor. As prior we take a normal distribution centered on zero and with variance

W – this reflects the expected distribution of the sizes of effects over all non-null SNPs.

This combination gives the approximate Bayes factor (ABF):

ABF =
1√

1 − r
exp

(
−Z2

2
r

)

where Z = θ̂/
√

V is the usual Z statistic, and r = W/(V + W ). Hence we see that the

Bayes factor depends on both the Z statistic and the power through V (which depends

8
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on the MAF and the sample size). All that is required data-wise to calculate ABF is a

confidence interval on the parameter of interest, and we provide a number of illustrations

later. The posterior odds is given by

Posterior Odds of H0 Given θ̂ = ABF × Prior Odds of H0

To choose W we may specify a range of relative risks that we believe is a priori plausible.

For example, if we believe that there is a 95% chance that the relative risks lie between

2/3 and 1.5 then the standard deviation of the prior is
√

W = log(1.5)/1.96 (equation

(3), is a lower bound on Pr(H0| data ) over all W , Sellke et al.14). The Bayesian false

discovery probability (BFDP) is given by

BFDP =
ABF × Prior Odds

1 + ABF × Prior Odds

In general the Bayes factor is a measure of the evidence in the data for one scientific

hypothesis (H0) compared with another (H1), and a number of authors have suggested

that “a rough descriptive statement about standards of evidence in scientific investiga-

tion”19 may be presented in terms of − log10BF. It turns out that, although the rankings

of the approximate Bayes factors and p-values will in general differ, if we treat ABF as a

statistic and evaluate the frequentist p-value associated with this statistic then they are

identical to p-values obtained using the Wald statistic Z = θ̂/
√

V (Appendix 1 contains

details). The latter follows because for fixed V the approximate Bayes factor is simply

a transformation of Z. This fact allows the expected numbers falling beyond − log10BF

thresholds to be easily calculated. Hence evidential guidelines may be based on the fre-

quentist properties of the Bayes factor by comparing the observed number falling beyond

thresholds of − log10BF with those expected under the null, a point that we illustrate in

the simulations section. Similar ideas have appeared recently in the genetics literature
20. We emphasize that although the p-values corresponding to Z and ABF are identical,

the frequency distribution of ABF across SNPs will differ according to the MAFs of the

SNPs under consideration.

Given V the ABF is a simple function of Z which means that power calculations are

straightforward. If we decide to call a SNP noteworthy if the posterior odds of H0 drop

below C, then the power to detect a relative risk of RR1 is given by

Pr { ABF(W, Z, V ) × π0/(1 − π0) < C|RR1 } = Pr
{
Z2 ≥ g(C, π0, W, V )|RR1

}

and under H1 Z2 is a non-central χ2 random variable. For example, Figure 2 illustrates

for sample sizes of 1000 and 2000, under a dominant genetic model. The effect of both

sample size and MAF on the variance of the estimator (and hence the power) is apparent.

Given the massive multiple hypothesis testing carried out in genome-wide scans, repli-

cation is essential21. Combination of data across studies (assuming that the effect is

9
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(b) n0 = n1 = 2000

Figure 2: Power to detect a relative risk of 1.5, as a function of MAF and π1, the

probability of a non-null association. The genetic model is dominant, and the ratio of

costs is 10 so that the null is rejected if the posterior probability of the alternative is

greater than 0.09.

constant across studies) to produce a Bayes factor summarizing both sets of data is

straightforward since

ABF(θ̂1, θ̂2) = ABF(θ̂1) × ABF(θ̂2|θ̂1) (7)

where ABF(θ̂2|θ̂1) = p(θ̂2|H0)/p(θ̂2|θ̂1, H1) and p(θ̂2|θ̂1, H1) = E
θ|bθ1

[
p(θ̂2|θ)

]
which is

available in a simple form, Appendix 2 gives details. The last expression simply shows

that when we evaluate the probability of the data θ̂2 under the alternative we average

over the posterior for θ given θ̂1; this contrasts with the evaluation of the probability for

θ̂1 under the alternative for which we average over the prior for θ.

We now turn to the thorny issue of choice of π0. As more genome-wide association

studies are carried out lower bound on π1 = 1− π0 will be obtained from the confirmed

“hits” – it is a lower bound since clearly many non-null SNPs for which we have a low

power of detection will be missed. If an estimate of π0 less than 1 is obtained using the

q-values methodology then this may be used as a non-subjective reference point.

We now illustrate how power is not considered when a p-value is calculated. In Figure

3 each curve corresponds to a fixed p-value and the vertical axis measures the evidence

in favor of the alternative (− log10BF), so that a value of 2 means that the data are

100 times more likely under the alternative than the null. On the horizontal axis we
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have the minor allele frequency (MAF), which drives the power. We assume a model

in which we have a recessive genetic model and assume that the odds ratio is less than

1.5 with probability 0.975. We concentrate on the curve labeled p = 0.00005. For MAF

close to 0.05 (low power) the evidence in favor of the alternative is small because to

obtain such a small p-value requires a large θ̂ which is unlikely under the prior. As

the MAF increases the power also increases and the evidence in favor of the alternative

consequently increases also. For MAF close to 0.5 we have strong power the evidence

starts to decrease, in contrast to p-values for which it is well-known that the null be

rejected for large sample sizes, even if e
bθ only differs from unity by a small amount. This

behavior is also discussed by Spiegelhalter et al.22.

0.1 0.2 0.3 0.4 0.5

0.5
1.0

1.5
2.0

Minor Allele Frequency

−lo
g1

0(B
F)

p−value = 0.00005
p−value = 0.0005
p−value = 0.005

Figure 3: Evidence in favor of the alternative versus the null for three different p-values,

as a function of MAF.

Operating Characteristics via Simulation

We carry out a simulation study in which there are 3,000 cases and 3,000 controls. We

assume that 317,000 SNPs are to be examined of which 100 are truly associated with

disease. We take a linear additive model23 with θ the log relative risk associated with

two copies of the mutant allele. We generate the log relative risks for these SNPs from a

beta distribution with parameters 1 and 3 scaled to lie between log(1.1) and log(1.5), and

then with probability 0.5 change the sign (so that in expectation there is a 50% chance

of a detrimental or protective effect). The relative risks are assumed independent of the

MAFs, and for the latter we assume for all SNPs a uniform distribution between 0.05
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and 0.50. The blue and red filled circles in each panel of Figure 4 show the distribution

of the non-null log relative risks plotted against MAF. The four panels of this figure

show the number of SNPs called as noteworthy (blue circles) using BFDP with different

thresholds, the number missed (red circles), and the number of false discoveries (green

circles, with points jittered in the vertical direction for clarity). The four thresholds

correspond to ratios of costs, CFND/CFD of 4-1, 20-1, 50-1, 100-1. We see the diminishing

returns in setting higher and higher thresholds with the FDR increasing dramatically as

the threshold increases.

Figure 5 shows the number of SNPs that we need to call noteworthy to obtain a specified

number of “hits”. The dashed line is the line of y = x and a perfect procedure would

follow this line. We see that the signal is only strong for the first few SNPs (the two

most noteworthy SNPs under ABF and the p-value are true associations, the third is

not) and early in the list we need to call an increasing number of SNPs noteworthy in

order to flag the true non-null associations. To discover the final few signals the list

must include virtually all of the SNPs. Figure 6 shows the SNPs with lower rankings

on the Bayes factor list (marked “B”, 63 points) or on the p-value list (marked “P”, 35

points), with the first two SNPs (marked “S”) being equally ranked. We see that the

majority of SNPs for which p-values performed better had true log relative risks close to

1 and so would need very large sample sizes to be reproducible. The median position on

the list for non-null SNPs for which the Bayes factor gave the better ranking is 5,123,

whereas the median on the p-value list is 65,588 again illustrating that the SNPs that

are picked up first by the p-value are ones that would not be passed to a second phase

since the associated signal was very weak.

Figure 7 gives a number of summaries of the q-value method when applied to the sim-

ulated data. The proportion of non-null tests was empirically estimated as 0.003 (the

true proportion is 100/317,000=0.0003). Figure 7(a) plots the expected versus observed

− log10 p-values and indicates an excess in the tail; p-values based on the statistic ABF

are identical to the p-values based on the Wald statistic Z. Table 3 gives the expected

number of tests falling within different bands under the null, along with the observed

numbers. We would conclude that the top two SNPs appear to be real hits while ap-

proximately 4 of the next 9 hits are real. This table differs from that based on p-values

since the MAFs of the 317K SNPs in this dataset are explicitly considered (in other

words, Table 3 accounts for power).

Figure 7(b) plots q-values against p-values and illustrates that most of the q-values are

close to 1. The expected number of false discoveries is the q-value times the number

of SNPs called noteworthy at that threshold, and goes up rapidly with the number of

true discoveries (Figure 7(c)). Also plotted is the Bayesian estimate of the number of

expected false discoveries, which shows similar behavior to the q-value at least for the

first 50 hits (after this the q-value display anomalous behavior).
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(a) CFND/CFD = 4, S = 5, k = 11
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(b) CFND/CFD = 20, S = 8, k = 63
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(c) CFND/CFD = 50, S = 12, k = 176
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(d) CFND/CFD = 100, S = 18, k = 388

Figure 4: Discoveries (blue circles), non-discoveries (red circles) and false discoveries

(green circles) using BFDP for four different thresholds (corresponding) to ratio of costs

of false non-discovery to false discovery of 4–1, 20–1, 50–1, 100–1 in panels (a), (b), (c),

(d). CFND/CFD is the ratio of costs, S the number of true discoveries, and k the total

number of SNPs called noteworthy.
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Figure 5: Number of SNPs called noteworthy in order to detect a specified number

of true discoveries, with noteworthiness based on p-values and BFDP and FPRP. The

dashed line is the line of equality and shows that after the first few hits the curve moves

increasingly away from the dashed line demonstrating that the FDR increases rapidly

as the length of the list is increased.
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Figure 6: Log relative risks versus Z-scores for the 100 non-null SNPs; the 63 points

marked “B” had lower rankings on the Bayes factor list, while the 35 marked “P” had

lower rankings on the p-value lists; the two SNPs marked “S” had identical rankings

(and were the first two found).
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Figure 7: BFDP, p- and q-value summaries.
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Bayes Factor − log10BF Expected Observed Observed
Expected

< 0.0001 > 4 0.3 2 6.30

0.0001–0.001 3–4 5.2 9 1.74

0.001–0.01 2–3 89.0 108 1.21

0.01–0.1 1–2 1703.2 1736 1.02

0.1–0.32 0.5–1 8070.4 8164 1.01

Table 3: Strengths of evidence and observed and expected numbers of Bayes factor

statistics falling within evidential bands.

Examples from the Literature

Table 4 gives point estimates of odds ratios and confidence intervals (CIs) from a number

of genome-wide association studies that have appeared in the literature, and for which we

have calculated Bayes factors and BFDP under three prior distributions with proportions

of non-null SNPs of 1/5,000, 1/10,000 and 1/50,000.

The estimate (CI) in the first row of the table corresponds to an association found in

1,924 type 2 diabetes patients6 when compared to 2,938 controls (490,032 SNPs were

examined in total). There is strong evidence of a non-null association for this FTO

gene variant, which manifests itself in very small probabilities of the null under all three

priors. In a second stage this association was examined in 3,757 type 2 diabetes cases

and 5,346 controls and in the second line of the table we see a greatly reduced relative

risk estimate, and the three posterior probabilities of the null for these data alone are all

greater than 0.9. However, combining the Bayes factors using equation (8) in Appendix

2 we obtain a combined − log10BF of 13.8. Hence the data are overwhelmingly in favor

of the alternative so that even with a prior of 1/50,000 the posterior probability of the

null is 7.6×10−10. For summarizing inference under the alternative the (5%, 50%, 95%)

points of the prior are (0.67,1,1.5), being refined to (1.17,1.26,1.36) after the first stage

data and finally to (1.15,1.21,1.27) using both stages of data. The posterior interval after

stage 1 is virtually identical to the asymptotic CI in Table 4 because the variance of θ̂1

is so small compared to the prior variance, W (the shrinkage factor, r = 0.97 showing

that the prior is dominated by the data). The summary of the association is of a relative

risk increase of 21%.

In the third and fourth rows of Table 4 we examine an estimate of 11.14 reported in 96

patients previously described with wet age-related macular degenaration, as compared to

130 age-matched controls (97,824 SNPs were examined in total). The small sample size

means that the data are only 20 times more likely under the alternative as compared

to the null, giving posterior probabilities for the null close to 1 under each prior, π0.

The observed estimate is very unlikely under the assumed prior for the size of the effect
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which predicts 95% of relative risks to lie between 2/3 and 1.5, and also contributes to

the weak evidence here. Changing the prior to have 95% of the mass between 0.2 and

5 greatly increases the evidence though under the prior with the smallest probability of

the alternative, there is still a posterior probability of 0.269 for the null. A prior with

a wider range is more appropriate here since the case sample was enriched and so we

would expect a greater effect.

The estimate and confidence interval for rs8051542 appear as the third SNP in Table 2

of Easton et al.5 and summarize the third stage of a GWAS. These data alone do not

provide strong evidence of an association (51% posterior probability of the null under

the most optimistic prior).

Table S5 of the supplementary table of Sladek et al.4 gives the genotype counts for cases

and controls for 43 SNPs that passed the first stage selection cut-off. For illustration for

SNP rs7913837 we fitted a logistic regression model using a risk model that is linear (on

the logistic scale) in the number of mutant alleles. We then calculated the Bayes factor,

and BFDP using the resultant relative risk estimate and asymptotic variance. The latter

was multiplied by the estimated genomic control inflation factor24 of 1.1233. The last

two lines of the table give the Bayes factor and BFDP for two different priors for the

size of the relative risk. One prior assumes that with probability 0.95 the relative risk

associated with 2 mutant copies is [2/3,1.5] and the other is [0.2,5]. Under the prior that

assumes a narrower range of risks the evidence for a non-null association is not strong.

In the second stage of the study the relative risk estimate was much smaller (1.45 for

two mutant alleles).

BFDP with Prior:

SNPREF Est 95% C.I. p-value − log10 BF 1/5,000 1/10,000 1/50,000

rs99396096 1.27 1.16–1.37 6.4 × 10−10 7.28 0.00026 0.00052 0.0026

rs99396096 1.15 1.09–1.23 4.6 × 10−5 2.72 0.905 0.950 0.990

rs1049092425 11.14 4.83–25.69 1.6 × 10−8 1.28 0.996 0.998 1.00

rs1049092425? 11.14 4.83–25.69 1.6 × 10−8 5.13 0.036 0.069 0.269

rs80515425 1.09 1.06–1.13 2.8 × 10−6 3.68 0.511 0.677 0.913

rs79138374 2.20 1.57–3.07 4.0 × 10−6 2.55 0.933 0.965 0.993

rs79138374? 2.20 1.57–3.07 4.0 × 10−6 3.74 0.477 0.646 0.901

Table 4: Frequentist and Bayesian summaries for reported SNPs. The 97.5% point of

the prior for the odds ratio was set at 1.5 apart from ? for which the 97.5% point was

set at 5.
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Conclusions

We have discussed the interpretation of p-values in GWAS and shown that small p-values

have to be taken in the context of low prior probabilities of an association and multiple-

hypothesis tests being carried out, as previously argued by Wacholder et al.9. In terms

of reporting, p-values are useful in that their null distribution is known to be uniform,

but they do not consider power or the prior of an association. The q-value explicitly

estimates the proportion of non-null tests using the totality of p-values, and provides an

estimate of the FDR for any fixed threshold, but the proportion of non-null associations

is small in GWASs and more experience of its use in this context is required.

A refinement of FPRP, BFDP has been described here and elsewhere12, and has the

advantage of only requiring a confidence interval for its calculation. Treating the dis-

tribution of the statistic as the data also provides flexibility and allows, for example,

overdispersion (genomic control) to be simply incorporated by multiplying the variance

of the odds ratio by the overdispersion factor. Treating the approximate Bayes factor as

a statistic one may evaluate its frequentist properties and it turns out that the p-values

associated with the ABF are identical to those for the conventional Wald statistic. We

stress, however, that the rankings of ABF and p-values will differ in general, since the

former takes into account the power.

We have presented BFDP in its simplest form, and a number of extensions are currently

being explored. We may allow the variance on the size of the effect, W , to depend on

the MAF to exploit the common perception that larger detrimental effects may occur

with rarer minor allele frequencies. We have assumed a fixed threshold across all SNPs

(corresponding to fixed costs) but we may wish for the costs (and therefore the threshold)

to depend on the MAF, with greater costs associated with more common alleles, since

these will have a greater attributable risk. The ratio of costs will clearly depend on

the phase of the study and on the sample size. The use of Bayes factors based on test

statistics has been previously advocated as a robust and theoretically sound strategy26.

Replacing confidence intervals with p-values does not overcome the problems of report-

ing when the prior probability of an association is low, since confidence intervals assume

that the null has been rejected. The posterior distribution for the relative risk of an

association given an association (i.e. H1) is lognormal with parameters rθ̂ and rθ̂. With-

out assuming an association the posterior consists of a point mass of BFDP at RR=1

and the remaining 1–BFDP is the area under the lognormal.

Throughout we have used the term noteworhty, following Wacholder et al.9, but these

tests may be alternatively labelled as “anomalous” recognising that the flagged associ-

ations may be due to errors in the data such as differential genotyping errors.

Software to evaluate approximate Bayes factors and posterior moments is available from
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the website: http//faculty.washington.edu/jonno/cv.html

Returning to the endeavors highlighted in the introduction:

1. To rank associations the Bayes factor provides an alternative to the p-value which

accounts for power.

2. To calibrate inference/decide upon the list length for further investigation, the

q-value and BFDP may be used to estimate FDR or the probability of the null.

BFDP may also be used to interpret reported associations.

Appendix 1

Let S = − log10 BF denote the log to the base 10 of the approximate Bayes factor. The

latter is a function of Z2, which is χ2
1 under the null and the standard error

√
V which

differs between SNPs. To evaluate the expected numbers of S that exceed a threshold

s0 we note that for fixed V :

Pr(S ≥ s0|V ) = Pr

(

Z2 ≥ −2 log10

{√
1 − r/10s0

}

r
|V
)

where r = W/(V + W ). Across all SNPs we have

Pr(S ≥ s0) = Ev [Pr(S ≥ s0|V )]

so that we simply have the average of χ2
1 tail errors.

For evaluating the p-values we examine the tail areas for each SNP conditional on the

variance V and so the p-values are identical to those obtained for the p-values based on

the Wald statistic Z.

Appendix 2

Suppose we have results from two independent studies and that for a particular SNP,

θ̂1 has distribution N(θ, V1) and θ̂2 has distribution N(θ, V2) where we have assumed a

common log odds ratio θ is being estimated. After seeing the first stage data only the

posterior distribution θ|θ̂1 has mean and variance

µ1 = E[θ|θ̂1] = rθ̂1

σ2
1 = var(θ|θ̂1) = rV1
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where r = W/(V1 +W ). After seeing both sets of data the posterior distribution θ|θ̂1, θ̂2

has mean and variance

µ2 = E[θ|θ̂1, θ̂2] = Rθ̂1V2 + Rθ̂2V1

σ2
2 = var(θ|θ̂1, θ̂2) = RV1V2

where R = W/(V1W + V2W + V1V2). For both stages a 95% posterior credible interval

for the relative risk eθ is given by

exp(µ ± 1.96 × σ)

with substitution of the appropriate µ, σ.

The Bayes factor summarizing the information with respect to H0 and H1 in the two

studies is given by:

ABF(θ̂1, θ̂2) =

√
W

RV1V2

exp

{
−1

2

(
Z2

1RV2 + 2Z1Z2R
√

V1V2 + Z2
2RV1

)}
(8)

where Z1 = θ̂1/
√

V1 and Z2 = θ̂2/
√

V2 are the usual Z statistics. Note that if the

first and third terms in the exponent are large then the Bayes factor will be small and

will favor the alternative; if Z1 and Z2 are of the same sign then the second term will

also suggest the alternative, but if they are of opposite sign then the evidence in favor

of H0 will increase as we would expect. Care should be taken in examining summary

measures only since two small Bayes factors (or p-values) may be associated with effects

in opposite directions, which obviously does not correspond to strong evidence of the

alternative; the above combined Bayes factor automatically penalizes such a situation.
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