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Abstract

In many prospective studies, including AIDS Link to the Intravenous Experience

(ALIVE), researchers are interested in comparing event-time distributions (e.g.,

for human immunodeficiency virus seroconversion) between a small number of

groups (e.g., risk behavior categories). However, these comparisons are compli-

cated by participants missing visits or attending visits off schedule and serocon-

verting during this absence. Such data are interval-censored, or more generally,

coarsened. Most analysis procedures rely on the assumption of non-informative

censoring, a special case of coarsening at random that may produce biased results

if not valid. Our goal is to perform inference for estimated survival functions
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across a small number of goups in the presence of informative coarsening. To do

so, we propose methods for frequentist and Bayesian inference of ALIVE data

utilizing information elicited from ALIVE scientists and an AIDS epidemiology

expert about the visit compliance process.

Key Words: Survival Analysis; Informative Censoring; Interval Censoring;

Coarsening at Random; Sensitivity Analysis, EM algorithm, MCMC, Gibbs Sam-

pler, Data Augmentation.

1 Introduction

Begun in 1988, AIDS Link to the Intravenous Experience (ALIVE) is an ongoing

prospective observational study of risk factors for human immunodeficiency virus

(HIV) infection among injection drug users (IDUs) in Baltimore, Maryland. In

this study, HIV-negative participants were recruited by community outreach and

interviewed upon enrollment regarding drug-related behaviors and other potential

HIV risk factors (Vlahov et al. 1991, Strathdee et al. 2001, Nelson et al. 2002).

HIV serostatus, a proxy for HIV infection status, was determined by subsequent

regularly scheduled laboratory blood tests. For those who attended every visit

on schedule, time to seroconversion (years from enrollment) is known, resulting

in discrete event-time data. However, ALIVE participants often missed visits

or attended visits off schedule, sometimes resulting in seroconversion times only

known within a range of years, thus producing interval-censored data. In addition,

some seropositive participants never tested positive during the study due to loss

to follow up, administrative censoring, or death.
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AIDS epidemiologists are interested in comparing seroconversion incidence be-

tween those who self-reported sharing needles for injecting drugs in the six months

prior to enrollment and those who did not. Interval-censored event-time data are

usually analyzed by assuming non-informative censoring, a special case of coars-

ening at random (CAR) (Heitjan and Rubin, 1991; Heitjan, 1993; Gill et al.,

1997). However, David Vlahov and Noya Galai, principal investigator and lead

statistician of ALIVE, respectively, believe visit compliance may be related to

serostatus. That is, data are coarsened not at random (CNAR). Estimation of

survival functions with informative coarsening is complicated, as the relationship

between censoring and event-time processes is not identified by observed data.

Our goal is to extend the frequentist and Bayesian estimation methodology for

CNAR data developed in Shardell et al. (2006) for application to ALIVE. To do

so, we the extend survival curve estimation procedures to address the competing

risk of death in ALIVE and propose methods using the survival curve estimates to

perform inference regarding the association between sharing needles for injecting

drugs and HIV incidence.

When performing inference for survival functions, analyses consist of estimated

survival curves and a hypothesis test of equality. In this paper, we propose a

class of test statistics utilizing estimates from methods of Shardell et al. (2006).

Performing inference for several assumed coarsening processes can help assess the

sensitivity of scientific conclusions to assumptions. Tests for discrete or grouped

continuous interval-censored data have previously been proposed assuming CAR.

Sun (1996) and Finkelstein (1986) proposed score tests, and Petroni and Wolfe

(1994) proposed a two-sample test for stochastic ordering based on integrated

weighted differences (IWD) of survival, all using Turnbull’s (1976) estimates. Fay
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(1996) generalized Finkelstein’s (1986) procedure beyond the proportional hazards

model. Zhao and Sun (2004) generalized the test proposed by Sun (1996). Akritas

(1988) developed a rank-based test. Pan (2000a) suggested multiply imputing

all except right-censored event times and performing standard tests for right-

censored data. Fang et al. (2002) extended Petroni and Wolfe’s (1994) test to

continuous time. Fay (1999) and Chi (2001) compared these tests’ performance.

In this paper, we extend the logrank (Mantel, 1966) and a two-sided version

of Petroni and Wolfe’s (1994) IWD tests to allow informative censoring. We

generalize the latter to more than two groups. We also use results from the

Bayesian procedure in Shardell et al. (2006) to perform inference by proposing a

parameter transformation of posterior event-time probabilities, motivated by the

logrank test.

The paper is organized as follows. Section 2 describes the data structure,

Section 3 provides an overview of CAR, CNAR models, and sensitivity analysis.

Section 4 describes the complete-data likelihood and estimation and inference

procedures. Section 5 applies the proposed methods to ALIVE. Lastly, section 6

compares and contrasts the methods.

2 Data Structure

Let T = t denote seroconversion during year t, where E = {t : t = 1, . . . ,M +1} is

the support of T . M denotes last year of follow-up from enrollment, and T = M+1

for individuals who did not seroconvert during follow-up. Due to skipped or off-

schedule visits, observed data for an individual may be a set of adjacent time

periods from E. In particular, observed data are [L, R] = {t ∈ E : L ≤ t ≤ R}.

The set [L, R] is a coarsening of T because T ∈ [L, R]. If seroconversion is known
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to occur in year j, j = 1, . . . ,M , then L = R = j. If seroconversion did not occur

during follow-up, then L = R = M + 1, and if knowledge about T is incomplete,

then L < R. Those with L < R = M + 1 are right-censored drop-outs, and those

with L < R < M + 1 are interval-censored returners.

A complication in ALIVE is the competing risk of death. Those with first

missed visit in year l who die in year r either seroconverted in [L = l, R = r] or

died seronegative. For those censored by death, [L, R] has an altered interpre-

tation: R denotes year of death, and possible event times are {l, . . . , r, M + 1}.

Therefore, T = M + 1 denotes not seroconverting while at risk. Let ∆ = δ,

δ ∈ {0, 1}, indicate whether R is year of death. If R < M + 1 and serostatus is

unknown at year R due to death, then ∆ = 1, otherwise ∆ = 0.

Let G denote number of groups. We assume that, for those in group g, g =

1 . . . G, we observe ng i.i.d. copies of the data. Pg(·) refers to probabilities for

those in group g. Where necessary, the subscript i will denote subject-specific

data.

3 Coarsening at Random and CNAR Models

In this section we formally define CAR in the context of ALIVE and describe

“exponential tilt models” (Barndorff-Nielsen and Cox, 1989) that allow departures

from CAR.

3.1 Coarsening at Random

Given L = l, R = r, and ∆ = δ, let A(l, r, δ) denote possible values of T , where

A(l, r, 0) = [l, r] and A(l, r, 1) = {[l, r], M + 1}. Within group g, CAR means

5
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Pg(L = l, R = r, ∆ = δ | T = t) is constant in t ∈ A(l, r, δ), (3.1)

for all [l, r] ∈ E∗ = {[l, r] : l ≤ r, l, r ∈ E} and δ ∈ {0, 1}. Gill et al. (1997)

showed Equation (3.1) and

Pg(T = t | L = l, R = r, ∆ = δ) = Pg(T = t | T ∈ A(l, r, δ)), (3.2)

for all t ∈ A(l, r, δ) whatever be [l, r] ∈ E∗, both define CAR.

CAR means, among those in group g, and given vital status at R, the coars-

ening process provides no information about the seroconversion process beyond

knowing the true year of seroconversion is in a set of years. As a result, esti-

mated event-time probabilities for censored individuals only depend on estimated

probabilities for years in the set.

3.2 CNAR Models

CAR cannot be identified from observed data, therefore we consider a class of

CNAR models indexed by a (possibly group-specific) censoring bias function. This

function loosens the CAR assumption by allowing elicited expert information to

determine whether event probabilities for interval-censored individuals should be

made stochastically larger at later times (seroconversions tend to occur late in

the censoring interval) or earlier times (seroconversions tend to occur early in the

censoring interval) relative to CAR. We exponentially tilt the CAR model for each

group g, g = 1, . . . , G:

6
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Pg(T = t | L = l, R = r, ∆ = δ) =
Pg(T = t | T ∈ A(l, r, δ)) exp{qg(t, l, r, δ)}

cg(l, r, δ qg)
,

(3.3)

where cg(l, r, δ; qg) =
∑

s∈A(l,r,δ) Pg(T = s | T ∈ A(l, r, δ)) exp{qg(s, l, r, δ)}, and

qg(t, l, r, δ) is a specified censoring bias function of (t, l, r, δ) for those in group g.

If qg(·) does not depend on t, then no tilting is performed, and CAR is assumed

for group g. Information about death is only utilized to define possible serocon-

version times and in q(·) to allow estimation of the seroconversion process without

requiring estimation of the death process.

Using Bayes’ rule, Equation (3.3) can be represented as a selection model:

log

{
Pg(L = l, R = r, ∆ = δ | T = t)

Pg(L = l, R = r, ∆ = δ | T ∈ A(l, r, δ))

}
= dg(l, r, δ; qg) + qg(t, l, r, δ)

(3.4)

for t ∈ A(l, r, δ), where dg(l, r, δ; qg) = − log {cg(l, r, δ; qg)}. Equation (3.4) implies

log

{
Pg(L = l, R = r, ∆ = δ | T = t)

Pg(L = l, R = r, ∆ = δ | T = t′)

}
= qg(t, l, r, δ)− qg(t

′, l, r, δ), (3.5)

for t, t′ ∈ A(l, r, δ). From (3.5), we see qg(t, l, r, δ) is the difference in log probability

of having censoring set A(l, r, δ) comparing a group g individual with T = t

to a group g individual with T equal to some reference value, tref , such that

qg(tref , l, r, δ) = 0.

7
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Pattern-mixture models can also be used to interpret q(t, l, r, δ). From Equa-

tion (3.3),

log

{
Pg(T = t | L = l, R = r, ∆ = δ)

Pg(T = t′ | L = l, R = r, ∆ = δ)

}
= (3.6)

log

{
Pg(T = t | T ∈ A(l, r, δ))

Pg(T = t′ | T ∈ A(l, r, δ))

}
+ qg(t, l, r, δ)− qg(t

′, l, r, δ).

For those in group g, Equation (3.6) shows qg(t, l, r, δ) is the difference in log

probability ratios of seroconverting at year t compared to tref , conditioned on

L = l, R = r, and ∆ = δ versus conditioning on T ∈ A(l, r, δ) (i.e., versus CAR).

3.2.1 Low-dimensional Parameterization of qg(·)

To facilitate a sensitivity analysis, we parameterize a low-dimensional censoring

bias function by a small set of unidentified censoring bias parameters to capture

key features of ALIVE. The function is indexed by parameters differentiating

between those who are interval censored, right-censored alive, and censored by

death. We allow the censoring mechanism to differ between needle sharers and

non-sharers.Let φ = {φg : g = 1, 2} denote group-specific censoring bias para-

meters, where g = 1 (g = 2) denotes non-sharers (needle sharers). The proposed

censoring bias function is

qg(φ, t, l, r, δ) =
9

4
φg1I(r < M + 1)(1− δ)

(t− l)

(M − 1)
+ φg2I(r = M + 1)

(t− l)

M

+ φg3I(r < M + 1)(δ)
(t− l)

M
, g = 1, 2, (3.7)

where φg = {φg1, φg2, φg3}. Using Bayes’ rule as in Section 3,
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• exp{φg1} is the needle sharing-specific probability ratio of having interval

[1 year, 5 years] comparing those who seroconvert during the year five to

those who seroconvert during the first year.

• exp{φg2} is the needle sharing-specific probability ratio of dropping out af-

ter baseline comparing those who do not seroconvert within ten years to

those who seroconvert during the first year, among those who remain alive

throughout the study.

• exp{φg3} is the needle sharing-specific probability ratio of dropping out after

baseline comparing those who do not seroconvert while alive to those who

seroconvert during the first year, among those who die during the study.

The factor 9
4

accounts for the ten year follow-up, but investigators were more

comfortable stating beliefs for a five-year interval than for a ten-year interval.

When exp{φg1} > 1 (< 1), returners are assumed to be more (less) likely to

seroconvert late than seroconvert early. When exp{φg2} > 1 (< 1), drop-outs

who remain alive are assumed more (less) likely to seroconvert late or not at

all than seroconvert early. When exp{φg3} > 1 (< 1), drop-outs who die with

unknown serostatus are assumed more (less) likely to seroconvert late or not at

all than seroconvert early. Using the pattern-mixture approach, exp{φgh} > 1

(exp{φgh} < 1) means those with needle-sharing status g, g = 1, 2, and censoring

pattern h, h = 1, 2, 3, seroconvert stochastically later (earlier) than expected

assuming CAR.

9
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3.3 Frequentist Inference

Frequentist estimation is performed using the EM algorithm. The complete-data

likelihood is L(p) =
∏G

g=1

∏ng

i=1

∏M+1
j=1 p

Iigj

gj . Initial estimates of pg are used to

evaluate the expected value of the complete-data log likelihood, given observed

data (E-step). The E-step at iteration s is

Q(p; p(s−1)) =
G∑

g=1

ng∑
i=1

M+1∑
j=1

I
(s−1)
igj log(pgj)−

G∑
g=1

[λg(
M+1∑
j=1

pgj − 1)],

where λg are Lagrange multipliers, and

I
(s−1)
igj =

ωigjp
(s−1)
gj exp{qg(j, l, r, δ)}∑M+1

k=1 ωigkp
(s−1)
gk c

(s−1)
ig (l, r, δ; qg)

.

Q(p; p(s−1)) is maximized (M-step) to obtain updated estimates of pg. The M-step

results in a reweighted version of Turnbull’s (1976) self-consistency equation for

each group g, g = 1, . . . , G: p
(s)
gj = 1

ng

∑ng

i=1

ωigjp
(s−1)
gj exp{qg(j,l,r,δ)}

PM+1
k=1 ωigkp

(s−1)
gk exp{qg(k,l,r,δ)}

. When qg =

0 (CAR assumed), our estimator simplifies to that of Turnbull (1976). Standard

errors for probabilities in each group are estimated using Louis’s (1982) method.

Probability estimates are used to estimate Sg(·), the survivor function for group

g. Once p̂ and standard errors are obtained, statistics can be derived for testing

the null hypothesis H0 : S1(·) = . . . = SG(·) = S(·) using the delta method,

including logrank (LR) (Mantel, 1966) and IWD (Petroni and Wolfe, 1994) tests.

Let LR = (LR1, . . . , LRG)t be a vector of length G with gth component LRg =∑M
j=1

(
djg − njg

dj

nj

)
, where djg = ngp̂jg is the estimated number of seroconverts

in group g during year j, njg = ng

∑M+1
k=j p̂jg is the estimated number at risk

in group g during year j, dj =
∑G

g=1 djg, and nj =
∑G

g=1 njg. The variance of

LR, ΣLR, is a G × G matrix estimated by Σ̂LR. The logrank test statistic
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is χ2
LR = LRtΣ̂−

LRLR, where X− denotes generalized inverse of square matrix

X. Under the null hypothesis, χ2
LR has a χ2 distribution with G − 1 degrees of

freedom.

Petroni and Wolfe’s (1994) IWD test involved a one-sided hypothesis for the

special case of G = 2. This test can be generalized to a two-sided test. The

two-sample test with weight w(·), estimated by ŵ(·), has numerator IWD =∑M
j=1 ŵ(j)

[
Ŝ1(j)− Ŝ2(j)

]
, where Ŝg(j) =

∑M+1
k=j+1 p̂gk. Let σ2

IWD denote the vari-

ance of IWD, estimated by σ̂2
IWD. The test statistic, Zobs = IWD/σ̂IWD, can

be compared to a standard normal distribution, following large-sample theory

presented in Petroni and Wolfe (1994). When G ≥ 2, the test can be modi-

fied by comparing Ŝg(j), g = 1, . . . , G, to the estimated overall survivor func-

tion: Ŝ(j) =
∑G

g=1
ngŜg(j)

n
. IWD = (IWD1, . . . , IWDG)t is a vector of length

G with gth component IWDg =
∑M

j=1 ŵ(j)
[
Ŝg(j)− Ŝ(j)

]
. The variance of

IWD is a G × G matrix, ΣIWD, estimated by Σ̂IWD. The test statistic,

χ2
IWD = IWDtΣ̂−

IWDIWD, is distributed χ2 with G− 1 degrees of freedom under

the null hypothesis.

Simulation studies (Appendix 1) showed IWD and LR tests perform well and

are accurately sized.

3.4 Bayesian Inference

We assume a Dirichlet distribution for the probability of seroconversion for each

year. Let Bg = {bg1, · · · , bg(M+1)} be a base measure defined on E for those in

group g, the prior mean of pg. A precision parameter, α∗, describes concentration

of the distribution around Bg, where elements of Bg sum to 1. Let αgj = α∗bgj,
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for j = 1, . . . ,M + 1. The Dirichlet density is given by:

f(pg) =
Γ(αg1 + . . . + αg(M+1))

Γ(αg1) . . . Γ(αg(M+1))

M+1∏
j=1

p
αgj−1
gj , (3.8)

where pg1, · · · , pg(M+1) ≥ 0;
∑M+1

k=1 pgk = 1; the αg = {αg1, . . . , αg(M+1)} are

all positive; and αgj’s are interpreted as ‘prior counts’ of seroconverts during

year j in group g. We assume the censoring bias function for group g, qg, is

indexed by a vector of (possibly group-specific) censoring bias parameters, φ.

Data are incomplete, hence conjugate analyses like those in Calle and Gomez

(2001) cannot be performed. Therefore, we propose analysis via Markov Chain

Monte Carlo (MCMC) using the Gibbs sampler (Geman and Geman, 1984) with

data augmentation as in Tanner and Wong (1987) and a Metropolis-Hastings step

(Hastings, 1970). The detailed algorithm is in Appendix 2.

Simulated p’s can be transformed into a one-dimensional quantity summa-

rizing the difference between G event-time distributions. The proposed quan-

tity is motivated by the logrank test. Let LR(p(s)) denote the posterior lo-

grank transformation at iteration s, a vector of length G with gth component

LRg(p
(s)) =

∑M
j=1

(
d

(s)
jg − n

(s)
jg

d
(s)
j

n
(s)
j

)
, where d

(s)
jg = ngp

(s)
jg , n

(s)
jg = ng

∑M+1
k=j p

(s)
jg ,

d
(s)
j =

∑G
g=1 d

(s)
jg , and n

(s)
j =

∑G
g=1 n

(s)
jg . Let ΣLR(p(s)) be a G × G matrix moti-

vated by the variance of the logrank test numerator when the null hypothesis is

true: ΣLR(p(s)) =
∑M

j=1

d
(s)
j (n

(s)
j −d

(s)
j )(n

(s)
j n

(s)

jg′I(g=g′)−n
(s)
jg n

(s)

jg′ )

(n
(s)
j )2(n

(s)
j −1)

. The transformation is

complete by calculating χ2(p(s)) = LR(p(s))tΣ−
LR(p(s))LR(p(s)). Let Nsim de-

note the number of Gibbs sampler iterations. The median of the parameter

transformation under the null hypothesis is approximately µG = G − 1 − 2
3

+

4
27(G−1)

− 8
729(G−1)2

. The vector of logrank parameter transformations is denoted

12
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by χ2(p) = {χ2(p(1)), · · ·χ2(p(Nsim))}. A posterior tail probability can be cal-

culated by 2P (χ2(p) ≤ µG | ω). In addition, χ2(p) can be plotted with a χ2
G−1

kernel, the distribution of the logrank test when all G event-time distributions

are equal. When G = 2, a transformation can be calculated by Z(p(s)) =

LR2(p(s))

σ(p(s))
, where σ(p(s)) is the standard deviation of LR2(p

(s)). Let Z(p) =

{Z(p(1)),· · ·Z(p(Nsim))}. Z(p) can be plotted with a standard normal kernel, and

the tail probability can be calculated as 2 [min{P (Z(p) ≥ 0 | ω) , P (Z(p) ≤ 0 | ω)}].

Posterior probabilities are interpreted differently from frequentist p-values. In-

stead of calculating the tail probability of a test statistic under H0 at the observed

value, we calculate the posterior tail probability of a parameter transformation at

its expected value when H0 is true.

4 ALIVE Data Analysis

We apply our proposed methodology to ALIVE to compare the ten-year incidence

of seroconversion between those who self-reported needle sharing at enrollment

and those who did not (G = 2). Censoring due to missed visits is thought to be

informative and may depend on self-resported needle-sharing status. Serostatus

was determined by enzyme-linked immunosorbent assay (ELISA). Those who were

repeatedly reactive were confirmed by Western blot (WB). Estimated sensitivity

and specificity are over 99% for ELISA combined with WB (Chou et. al., 2005),

therefore issues regarding misclassified serostatus will not be addressed.

ALIVE consists of 2205 participants with complete needle-sharing information.

At baseline, 1527 participants reported sharing needles, while the remaining 678

did not. Among those who reported sharing needles, 12%, 74%, 9%, and 4% were

censored by death, right-censored by drop-out or end of study, interval censored,

13
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and exactly observed, respectively. Percentages among those who reported not

sharing needles were 11%, 77%, 8%, and 4%. Among needle sharers, 242 (16%)

died during follow-up: 52 (21%) died after seroconverting while the remaining

190 (79%) died with unknown serostatus. Among those who reported not sharing

needles, 100 (15%) died during the study: 27 (27%) died after seroconverting while

the remaining 73 (73%) died with unknown serostatus. The relationship between

needle-sharing and seroconversion may be biased due to differential death rates

between groups. However, logrank test results (p-value = 0.52) do not support

this hypothesis. Those who died during the study may have a different assumed

relationship between visit and seroconversion processes than those who remained

alive at the end of the study. Death as a primary endpoint was not addressed in

the sensitivity analysis.

4.1 Elicitation and Sensitivity Analysis

To elicit values of φ in Equation (3.7), Drs. Galai and Vlahov were separately

shown Figure 1a and were asked, “Among those who self-reported needle sharing

at baseline, who is more likely to test negative for HIV at baseline, miss visits, then

return during the fifth year and test positive: one who seroconverted during the

first year or one who seroconverted during the fifth year? How many times more

likely?” Using Figure 1b, they were asked, “Among those who self-report needle

sharing at baseline and who remained alive throughout the study, who is more

likely to test negative for HIV at baseline, then drop out: one who seroconverted

during the first year or one who did not seroconvert within ten years? How many

times more likely?” Lastly, using Figure 1c, they were asked, “Among those

who self-reported needle sharing at baseline, who is more likely to test negative
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for HIV at baseline, then drop out and die with unknown serostatus: one who

seroconverted during the first year, or one who did not seroconvert while at risk?

How many times more likely?” Questions were repeated for self-reported non-

sharers.

Elicited φ varied between the two experts. After reaching a consensus about

ranges of plausible values, the experts believe, among needle sharers, those who

seroconvert during the fifth year are 1.75 times less to 2.75 times more likely to

be censored into interval (0 years, 5 years] than those who seroconvert during the

first year. The range for non-sharers is 1.15 times less to 2.50 times more likely.

The experts expressed uncertainty about the direction of this relationship because

those who seroconvert earlier may either behave erratically and miss visits, but

return when their health diminishes, or may acknowledge their high-risk status

and feel motivated to participate in the study, compared to those who seroconvert

later. For those who remained alive after ten years, the experts believe, among

needle sharers, those who did not seroconvert within ten years are 1.50 to 3.00

times more likely to drop out after baseline than those who seroconvert within one

year. Among non-sharers, the range was 1.75 to 2.50 times more likely. Among

those who die within ten years from baseline, the experts believe those who do not

seroconvert while at risk are 2.00 to 2.50 more likely to drop out than those who

seroconvert within the first year with the same baseline needle-sharing status.

The experts anticipate those who seroconvert early would eventually return to

the study as their condition worsens, compared to those who do not seroconvert.

Those who die with unknown serostatus are likely to die from other reasons, such

as drug overdose and homicide.

Ranges of elicited values are sufficient for performing a sensitivity analysis
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under several fixed assumptions, but additional elicited information is needed to

perform a Bayesian analysis mixing over assumptions. Prior beliefs about the se-

roconversion time distribution were elicited from Dr. Samuel Friedman, an expert

on AIDS epidemiology among injection drug users. Dr. Friedman was interviewed

about his expected seroconversion time distribution and the weight of his expert

opinion relative to ALIVE data. An expert not affiliated with the ALIVE study

was purposely chosen, as we are interested in opinion prior to ALIVE. HIV inci-

dence depends on seroprevalence in the population (Friedman et al. 1995), and,

given Baltimore’s high HIV seroprevalence of approximately 24% among IDUs in

1988 (Vlahov et al. 1991) and HIV prevention efforts (Wiebel and Altman, 1988),

Dr. Friedman’s prior belief is incidence would decline over time, where ≈ 65%

would remain seronegative after ten years. However, he believes his prior opinion

should be weighted 10% of the final results (ALIVE data weighted 90%). Prior

information about seroconversion probabilities was not specific to needle-sharing

status to reflect the “null” belief of equal seroconversion-time distributions.

prior information about the distribution of φ was collected from Dr. Vlahov.

For each needle-sharing and censoring combination, unimodal histograms from

several distributions with various modes and variances were displayed; each a

realization from a beta distribution, centered and scaled to reflect elicited ranges of

exp{φ}, thus we graphically elicited a prior mode and variance for each censoring

bias parameter. Dr. Vlahov believes the distribution of

• exp{φ11} (exp{φ21}) is right skewed with mode 1.0 (0.80),

• exp{φ12} (exp{φ22}) is left skewed with mode 2.25 (2.5),

• and exp{φ13} (exp{φ23}) is flat and left skewed with mode 2.5 (2.5).
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In addition, Dr. Vlahov believes the distribution for exp{φ22} is flatter than

that for exp{φ12}, reflecting greater uncertainty about behavior of alive needle-

sharing drop-outs compared to their non-sharing counterparts. He also indicated

these beliefs are correlated. Using scatter plots like those in Figure 2 to elicit this

information, Dr. Vlahov’s prior variance-covariance matrix involves positive cor-

relations for several groups. The rationale for high correlations within censoring

group is believed similarity between groups regarding other HIV risk factors (i.e.,

sexual behavior) and dishonest needle-sharing reporting. High correlations be-

tween drop-out groups reflect that many of those who died with unknown serosta-

tus may not have returned to the study even if they stayed alive during follow-up.

Beliefs about interval-censored groups were uncorrelated with drop-out groups,

because motivations for visit compliance behavior may differ.

4.2 Frequentist Analysis

Sufficient conditions for unique estimation (Shardell et al., 2006) were met. Fre-

quentist analyses were performed assuming CAR and combinations of minimum

and maximum elicited values of φ. For each combination, needle-sharing specific

seroconversion probabilities were estimated, and logrank and IWD tests were per-

formed with weights w = 1, and w∗, where w∗(j) ≡
QG

g=1 K̂g(j)
PG

g=1(ng/n)K̂g(j)
, and K̂g(j) is

the proportion of group g participants with known serostatus in year j.

Table 1 shows estimated needle-sharing specific one-year, five-year, and ten-

year seronegative probabilities and 95% confidence intervals (using the comple-

mentary log-log transformation) for three values of exp{φ}: CAR (φ = 0),

{max(φ2),min(φ1)}, and {min(φ2),max(φ1)}. When CAR is assumed, estimated

probabilities are similar across groups, corroborated by large p-values for IWD
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(w = 1, p-value=0.857; w = w∗, p-value=0.866) and logrank (p-value=0.684)

tests. The minimum p-values (w=1, p-value=0.170; w = w∗, p-value=0.176; LR,

p-value=0.109) were produced when needle sharers are assumed to seroconvert sto-

chastically early in their observed sets (minimum φ2) and non-sharers are assumed

to seroconvert stochastically late in their observed sets (maximum φ1) according

to elicited ranges for φ. Estimated probabilities of remaining seronegative for non-

sharers are higher than those for needle-sharers for this assumption. Similarly,

when the opposite assumption is made (minimum φ1, maximum φ2), estimated

seronegative probabilities for non-sharers were lower than those for needle sharers

(w = 1, p-value=0.528; w = w∗, p-value=0.525; LR, p-value=0.675). Other com-

binations of φ1 and φ2 were also explored (data not shown). Test results were

most sensitive to values of φ22, the parameter for needle-sharing drop-outs who

remain alive, because this group is the largest needle-sharing status-by-censoring

type category in ALIVE, and the experts were most uncertain about them.

4.3 Bayesian Analysis

Dr. Friedman’s prior beliefs about seroconversion time were converted into Dirich-

let hyperparameters. Dr. Vlahov’s prior beliefs about censoring bias parameters

were converted into multivariate normal hyperparameters. First, exp{φ} were

centered and scaled to have range [0, 1]: exp{φgh}scaled =
exp{φgh}−exp{min(φgh)}

exp{max(φgh)}−exp{min(φgh)}
,

where g = 1, 2, h = 1, 2, 3. These exp{φ}scaled were assumed to have marginal

beta distributions, inducing a mean and variance used to make a normal ap-

proximation to the beta density. The normal approximation for exp{φ} can be

found by transforming exp{φ}scaled back to the elicited range (Table 2). Elicited

correlation coefficients then induced an approximate multivariate normal joint
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distribution for exp{φ}. However, in order to preserve elicited ranges for sam-

pled exp{φ}, exp{φ} were centered and scaled to have range [0, 1], then the logit

transformation was performed, and these transformed parameters were simulated

from their multivariate normal distribution.

Before modeling random φ, Bayesian analysis was performed for fixed φ. We

examine CAR and the same two extreme specifications discussed in Section 4.2: 1)

(non) needle-sharers seroconverting stochastically late (early) and 2) (non) needle-

sharers seroconverting stochastically early (late). The Gibbs sampler was run for

500 burn-in and 5000 additional iterations. For this and all subsequent analyses,

the diagnostic scheme from Cowles and Carlin (1996) was used. Needle-sharing

specific mean posterior one-year, five-year, and ten-year seronegative probabilities

(95% credible intervals) are shown in Table 3. The first three columns are Bayesian

analogs of frequentist results shown in Table 1. When CAR is assumed, the mean

posterior logrank transformation {Z(p)} (95% credible interval) is 0.407 (-1.935,

2.740) with a tail probability of 0.736. For the first {second} specification, the

mean posterior logrank transformation (95% credible interval) is −0.566 (-2.972,

1.618) {1.696 (-0.591, 3.828)} with a tail probability of 0.629 {0.128}. Thus, zero is

a plausible value for the mean of {Z(p)} in all three specifications. Mean posterior

seronegative probabilities are lower than estimated probabilities from the EM

algorithm with equal φ, shown in Table 1. This result is due to shrinkage to the

prior, which suggested more accelerated seroconversion than estimates from data

alone. Also, credible intervals are slightly more narrow than analogous confidence

intervals, especially for the ten-year seronegative probability, due to additional

information from the prior and many drop outs.
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Next, fully Bayesian analysis was performed, averaging over the posterior dis-

tribution of φ. The Gibbs sampler was burned in for 1000 iterations and run for

10000 more. Metropolis-Hastings acceptance was 64% and 86% for needle shar-

ers and non-sharers, respectively. Prior and posterior correlations for exp{φ} are

shown in Figure 3. Prior and posterior densities for one-year, five-year, and ten-

year probabilities of being seronegative are reported in the first row of Figure 4.

Posterior densities are much tighter than priors, due to small weight given to

elicited information relative to the data. Mean posterior one-year, five-year, and

ten-year needle-sharing specific seronegative probabilities (95% credible intervals)

for needle sharers are shown in the last column of Table 5. Seronegative probabil-

ities are between those obtained using extreme elicited censoring bias parameter

values. Box plots for prior and posterior distributions for censoring bias parame-

ters are shown in the second row of Figure 4. Marginal posterior distributions

are almost identical to the priors, as data provide no information about these

parameters. Posterior means (95% credible intervals) of exp{φ2} (needle-sharers)

are 1.002 (0.677, 1.564), 2.454 (1.939, 2.849), and 2.318 (2.102, 2.468). Posterior

means (95% credible intervals) of exp{φ1} (non-sharers) are 1.245 (0.965, 1.718),

2.231 (1.997, 2.408), and 2.317 (2.102, 2.469). The posterior mean (95% credible

interval) of Z(p) is 0.357 (-1.900, 2.494), with tail probability 0.738. Figure 5

shows the posterior logrank parameter transformation differs little from the stan-

dard normal kernel, suggesting seroconversion distributions do not differ across

needle-sharing status. Posterior mean survival probabilities and tail probability

corroborate this conclusion.
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5 Discussion

Two different procedures for comparing survival curves for informatively coarsened

data were developed in this paper and applied to ALIVE. The CAR-based analysis

of ALIVE data suggests baseline needle sharing is not significantly associated

with time to seroconversion. These results hold for both Bayesian and frequentist

sensitivity analysis procedures, and conclusions are robust to elicited assumptions

about the visit-compliance process. CAR-based and random-φ posterior survival

probabilities varied slightly, but qualitative conclusions were identical.

The proposed methods are beneficial in that they enable statisticians and sci-

entists to discuss assumptions about scientific questions and standard statistical

procedures. They are more flexible and more honestly represent knowledge about

coarsening than methods that solely rely on CAR or any one alternative assump-

tion. Additionally, analysis results can be displayed like those from CAR-based

analyses. These methods can be used to design studies, allowing the statistician

to build various scientists’ assumptions about coarsening into sample size calcu-

lations when frequentist procedures will be used, where information from past

studies can serve as auxiliary information in planning a subsequent study.

However, these methods have limitations. In particular, results may be sen-

sitive to distributional assumptions. For example, the correlation structure of

Dirichlet priors does not take advantage of time ordering of visits. Also, the

proposed methods are limited to small numbers of groups.

The proposed methods are not meant to replace objective statistical proce-

dures with subjective ones. When data are coarsened, additional assumptions

are required to estimate parameters of interest. Therefore, the best that can be
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accomplished is a sensitivity analysis based on unidentifiable subjective assump-

tions (Kadane, 1993). Although scientists with discordant opinions may derive

different conclusions from the same analysis, it is our hope such differences would

facilitate productive discussions within the scientific community.

Appendix 1: Simulation Study

Simulations were performed for two-sample and G-sample logrank and IWD tests

with G = 3, allowing left censoring, and no competing risks. Event times were

simulated from a multinomial distribution using the continuation ratio logistic

model with M = 4. Let ρij = P (Ti = j | Ti ≥ j, Zi) for j = 0, ...,M + 1.

The continuation ratio model for the three-sample simulation is log
(

ρij

1−ρij

)
=

θj + βZt
i, j = 0, . . . ,M , where β = {β1, β2} and Zi = {Zi1, Zi2}, where Z1 =

I(g = 2) and Z2 = I(g = 3). Replacing βZt
i with β1Z1i results in the continuation

ratio model assumed for the two-sample simulation study. For the three-group

simulation study, groups two and three are assumed to have the same distribution

(e.g., a control group and two exchangeable treatments), β1 = β2 = β. For

each group, censoring intervals were simulated given T . The pattern-mixture

restrictions in Section 3 and the distribution of T for group g are not enough to

fully identify the group-specific distribution of the censoring intervals given T .

The number of free parameters in this distribution for each group is (M+2)(M+1)
2

,

the number of intervals minus the number of event times. These parameters

(interval probabilities) were fixed at values satisfying the constraints Pg(T = t) >

Pg(T = t, L = l, R = r), for g = 1, . . . , G. The strict inequality allows positive

probability for each combination of l and r including t. The remaining M + 2

interval probabilities were identified from the constraints
∑

l≤r Pg(L = l, R = r) =
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1 and
∑

{l,r}: l≤t≤r Pg(T = t | L = l, R = r)Pg(L = l, R = r) = Pg(T = t).

True event times, T , were drawn given g, with β ∈ {0, 0.75} and θ = {−0.65,

−0.55, −0.45, −0.15, −0.05}. Let φ = {φg : g = 1, . . . , G} be the vector of group-

specific censoring bias parameters for the censoring bias function in Equation (3.7).

The true censoring bias parameters were combinations of {−log(2), 0, log(2)}. In

this study, φ2 = φ3.

The empirical sizes of the tests were estimated assuming β = 0. Empirical

power was estimated for the alternative hypothesis H1 : Sg(·) 6= Sg′ (·) when

β = 0.75, where g = 1 and g
′

= 2 for the two-sample test and where g 6= g
′

for some g, g
′ ∈ {1, . . . , G} for the G-sample test. We chose ng = 100, 200,

500 and performed 1000 simulations for each specification. Simulations were also

performed on uncensored data. Values of the true parameters were chosen to

produce between 86% and 97% censoring (i.e., P (L 6= R)), depending on φ and

β. For censored data, two weight functions were used for the IWD test, ŵ(j) = 1

and ŵ(j) = w∗(j) ≡
QG

g=1 K̂g(j)
PG

g=1(ng/n)K̂g(j)
, where K̂g(j) is the proportion of individuals

in the group g sample whose serostatus is known in year j.

Simulation test results are shown in Tables 4 and 5. The first row of each sam-

ple size-specific study shows results for uncensored data. The first column shows

the true φ that generated the censoring intervals for simulations with censoring.

The second column shows the assumed φ for the model with censored data, either

CAR or the true φ. Both tables show results for six tests: the IWD test with

w = 1 and w = w∗ and the logrank test, all for G = 2 and G = 3. The empirical

size results in Table 4 show the tests perform well with no censoring, and the per-

formance improves as the sample size increases. When φ are correctly specifiec,

or when the bias for both parameters is of equal magnitude in the same direction
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(e.g., true φ are {−log(2),−log(2)}, but CAR is assumed), the tests perform well.

Empirical size differs most from nominal size when φ are biased in different di-

rections (e.g., true φ are {−log(2), log(2)}, but CAR is assumed). No single test

performs uniformly better than the others, however, the logrank test tends to be

more anticonservative than the IWD test for smaller samples sizes, even with no

censoring. When the data are censored, the three-group IWD test produces the

most conservative (n=500, true φ = {−log(2),−log(2)}) and most anticonserva-

tive (n=200, true φ = {−log(2), 0}) results. Empirical power is shown in Table 5.

In general, the test with weight w∗ is more powerful than the analogous test with

w = 1. With no censoring, the logrank test is more powerful than the IWD test.

However, with censoring in smaller sample sizes, the IWD test tends to be more

powerful. In larger sample sizes, the difference is negligible. The true underlying

distribution has hazard ratio 2.12 (exp{0.75}) comparing groups 2 and 3 to group

1. When groups 2 and 3 are biased to have greater (lower) hazards relative to

group 1, power is increased (decreased).

6 Appendix 2: Bayesian Algorithm

The Bayesian algorithm is a G-group version of that described in Shardell et al.

(2006). Let Ig be complete data and ωg be observed data for all individuals in

group g. First, starting values are chosen for censoring bias parameters, φ(0), and

event-time probabilities, p(0). The algorithm proceeds by simulating quantities in

three steps for iteration s = 1, . . . , Nsim:

1. Simulate I
(s)
g from p(Ig | ωg, p

(s−1)
g , φ(s−1)).

2. Simulate p
(s)
g from p(pg | ωg, φ

(s−1), I
(s)
g ) = p(pg | I

(s)
g ).
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3. Simulate φ(s) from p(φ | ωg, I
(s)
g , p

(s)
g ),

where p(·) denotes the density.

The vector of imputed event indicators, I
(s)
ig , for person i in group g are simu-

lated from a truncated multinomial distribution,

M+1∏
j=1

[
ωigjp

(s−1)
gj exp{qg(j, l, r, δ, φ

(s−1))}∑M+1
k=1 ωigkp

(s−1)
gk exp{qg(k, l, r, δ, φ(s−1))}

]Iigj

.

The I
(s)
g are aggregated into group-by-time frequencies. Let n

(s)
gj denote the

simulated event count during interval j among those in group g at iteration S,

and n
(s)
g = {n(s)

g1 . . . n
(s)
g(M+1)}. Conditional on n

(s)
g , pg is independent of φ and

ωg. Therefore, p
(s)
g can be simulated in Step 2 from p(pg | I

(s)
g ) = p(pg | n

(s)
g ),

a Dirichlet distribution with αg in Equation (3.8) replaced by αg + n
(s)
g . The

φ are simulated in Step 3 via a Metropolis-Hastings step. Let I(s) denote the

iteration 4 vector of simulated event indicators and ω denote observed data across

all groups. The candidate, φ∗, is simulated from the jumping distribution at

iteration s, Js(φ
∗ | φ(s−1)), and is accepted with probability min(1,rMH), where

p(I(s)|ω,p(s)
g ,φ∗

)p(φ∗
)Js(φ

(s−1)
|φ∗

)

p(I(s)|ω,p(s)
g ,φ(s−1)

)p(φ(s−1)
)Js(φ

∗
|φ(s−1)

)
.
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Figure 1: ALIVE schematic used to elicit expert information.
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Figure 2: Correlation elicitation device for exp{φg1}. Axes are Pg(L = 1, R =
5, ∆ = 0 | T = 5)/Pg(L = 1, R = 5, ∆ = 0 | T = 1) (g = 1, non-sharers;
g = 2, needle-sharers). ρ denotes the correlation coefficient between exp{φ11} and
exp{φ21}.
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Figure 3: Elicited prior and [posterior] correlation matrix for exp{φ}.
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Figure 4: ALIVE Bayesian results. Posterior (solid line, needle sharers; dashed
line, non-sharers) and prior (dotted line) densities of one-year, five-year, and ten-
year seronegative probabilities. Posterior (gray) and prior (white) box plots of
exp{φ}.
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Figure 5: ALIVE Bayesian comparisons. Posterior density for Z(p) (solid line)
with standard normal kernel (dotted line). Mean posterior (solid line, needle
sharers; dashed line, non-sharers) and prior (dotted line) survival curves with
posterior tail probability.
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Table 2: Elicited hyperparameters for beta distributions used in Bayesian analy-
ses.

Needle-sharing Censoring φ Shape Scale
Yes Interval-censored φ11 2.00 7.75

Dropped out φ12 5.25 2.75
Dead φ13 2.00 1.00

No Interval-censored φ21 2.00 9.50
Dropped out φ22 3.75 2.00

Dead φ23 2.00 1.00
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